fbpx
Wikipedia

Rogers–Ramanujan continued fraction

The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.

Domain coloring representation of the convergent of the function , where is the Rogers–Ramanujan continued fraction.

Definition edit

 
Representation of the approximation   of the Rogers–Ramanujan continued fraction.

Given the functions   and   appearing in the Rogers–Ramanujan identities, and assume  ,

 

and,

 

with the coefficients of the q-expansion being OEISA003114 and OEISA003106, respectively, where   denotes the infinite q-Pochhammer symbol, j is the j-function, and 2F1 is the hypergeometric function. The Rogers–Ramanujan continued fraction is then

 
  is the Jacobi symbol.

One should be careful with notation since the formulas employing the j-function   will be consistent with the other formulas only if   (the square of the nome) is used throughout this section since the q-expansion of the j-function (as well as the well-known Dedekind eta function) uses  . However, Ramanujan, in his examples to Hardy and given below, used the nome  instead.[citation needed]

Special values edit

If q is the nome or its square, then   and  , as well as their quotient  , are related to modular functions of  . Since they have integral coefficients, the theory of complex multiplication implies that their values for   involving an imaginary quadratic field are algebraic numbers that can be evaluated explicitly.

Examples of R(q) edit

Given the general form where Ramanujan used the nome  ,

 

f when  ,

 

when  ,

 

when  ,

 

when  ,

 

when  ,

 

when  ,

 

when  ,

 

and   is the golden ratio. Note that   is a positive root of the quartic equation,

 

while   and   are two positive roots of a single octic,

 

(since   has a square root) which explains the similarity of the two closed-forms. More generally, for positive integer m, then   and   are two roots of the same equation as well as,

 

The algebraic degree k of   for   is   (OEISA082682).

Incidentally, these continued fractions can be used to solve some quintic equations as shown in a later section.

Examples of G(q) and H(q) edit

Interestingly, there are explicit formulas for   and   in terms of the j-function   and the Rogers-Ramanujan continued fraction  . However, since   uses the nome's square  , then one should be careful with notation such that   and   use the same  .

 
 

Of course, the secondary formulas imply that   and   are algebraic numbers (though normally of high degree) for   involving an imaginary quadratic field. For example, the formulas above simplify to,

 

and,

 

and so on, with   as the golden ratio.

Derivation of special values edit

Tangential sums edit

In the following we express the essential theorems of the Rogers-Ramanujan continued fractions R and S by using the tangential sums and tangential differences:

 
 

The elliptic nome and the complementary nome have this relationship to each other:

 

The complementary nome of a modulus k is equal to the nome of the Pythagorean complementary modulus:

 

These are the reflection theorems for the continued fractions R and S:

 
 

The letter   represents the Golden number exactly:

 
 

The theorems for the squared nome are constructed as follows:

 
 

Following relations between the continued fractions and the Jacobi theta functions are given:

 
 

Derivation of Lemniscatic values edit

Into the now shown theorems certain values are inserted:

 

Therefore following identity is valid:

 

In an analogue pattern we get this result:

 

Therefore following identity is valid:

 

Furthermore we get the same relation by using the above mentioned theorem about the Jacobi theta functions:

 
 

This result appears because of the Poisson summation formula and this equation can be solved in this way:

 

By taking the other mentioned theorem about the Jacobi theta functions a next value can be determined:

 
 

That equation chain leads to this tangential sum:

 

And therefore following result appears:

 

In the next step we use the reflection theorem for the continued fraction R again:

 
 

And a further result appears:

 

Derivation of Non-Lemniscatic values edit

The reflection theorem is now used for following values:

 

The Jacobi theta theorem leads to a further relation:

 
 

By tangential adding the now mentioned two theorems we get this result:

 
 

By tangential substraction that result appears:

 
 

In an alternative solution way we use the theorem for the squared nome:

 
 

Now the reflection theorem is taken again:

 
 

The insertion of the last mentioned expression into the squared nome theorem gives that equation:

 

Erasing the denominators gives an equation of sixth degree:

 
 

The solution of this equation is the already mentioned solution:

 

Relation to modular forms edit

  can be related to the Dedekind eta function, a modular form of weight 1/2, as,[1]

 
 

The Rogers-Ramanujan continued fraction can also be expressed in terms of the Jacobi theta functions. Recall the notation,

 

The notation   is slightly easier to remember since  , with even subscripts on the LHS. Thus,

 
 
 
 

Note, however, that theta functions normally use the nome q = eiπτ, while the Dedekind eta function uses the square of the nome q = e2iπτ, thus the variable x has been employed instead to maintain consistency between all functions. For example, let   so  . Plugging this into the theta functions, one gets the same value for all three R(x) formulas which is the correct evaluation of the continued fraction given previously,

 

One can also define the elliptic nome,

 

The small letter k describes the elliptic modulus and the big letter K describes the complete elliptic integral of the first kind. The continued fraction can then be also expressed by the Jacobi elliptic functions as follows:

 

with

 

Relation to j-function edit

One formula involving the j-function and the Dedekind eta function is this:

 

where   Since also,

 

Eliminating the eta quotient   between the two equations, one can then express j(τ) in terms of   as,

 

where the numerator and denominator are polynomial invariants of the icosahedron. Using the modular equation between   and  , one finds that,

 

Let  , then  

where

 

which in fact is the j-invariant of the elliptic curve,

 

parameterized by the non-cusp points of the modular curve  .

Functional equation edit

For convenience, one can also use the notation   when q = e2πiτ. While other modular functions like the j-invariant satisfies,

 

and the Dedekind eta function has,

 

the functional equation of the Rogers–Ramanujan continued fraction involves[2] the golden ratio  ,

 

Incidentally,

 

Modular equations edit

There are modular equations between   and  . Elegant ones for small prime n are as follows.[3]

For  , let   and  , then  


For  , let   and  , then

rogers, ramanujan, continued, fraction, continued, fraction, discovered, rogers, 1894, independently, srinivasa, ramanujan, closely, related, rogers, ramanujan, identities, evaluated, explicitly, broad, class, values, argument, domain, coloring, representation. The Rogers Ramanujan continued fraction is a continued fraction discovered by Rogers 1894 and independently by Srinivasa Ramanujan and closely related to the Rogers Ramanujan identities It can be evaluated explicitly for a broad class of values of its argument Domain coloring representation of the convergent A 400 q B 400 q displaystyle A 400 q B 400 q of the function q 1 5 R q displaystyle q 1 5 R q where R q displaystyle R q is the Rogers Ramanujan continued fraction Contents 1 Definition 2 Special values 2 1 Examples of R q 2 2 Examples of G q and H q 3 Derivation of special values 3 1 Tangential sums 3 2 Derivation of Lemniscatic values 3 3 Derivation of Non Lemniscatic values 4 Relation to modular forms 5 Relation to j function 6 Functional equation 7 Modular equations 8 Other results 9 Quintic equations 9 1 Example 1 9 2 Example 2 10 References 11 External linksDefinition edit nbsp Representation of the approximation q 1 5 A 400 q B 400 q displaystyle q 1 5 A 400 q B 400 q nbsp of the Rogers Ramanujan continued fraction Given the functions G q displaystyle G q nbsp and H q displaystyle H q nbsp appearing in the Rogers Ramanujan identities and assume q e 2 p i t displaystyle q e 2 pi i tau nbsp G q n 0 q n 2 1 q 1 q 2 1 q n n 0 q n 2 q q n 1 q q 5 q 4 q 5 n 1 1 1 q 5 n 1 1 q 5 n 4 q j 60 2 F 1 1 60 19 60 4 5 1728 j q j 1728 60 2 F 1 1 60 29 60 4 5 1728 j 1728 1 q q 2 q 3 2 q 4 2 q 5 3 q 6 displaystyle begin aligned G q amp sum n 0 infty frac q n 2 1 q 1 q 2 cdots 1 q n sum n 0 infty frac q n 2 q q n frac 1 q q 5 infty q 4 q 5 infty 6pt amp prod n 1 infty frac 1 1 q 5n 1 1 q 5n 4 6pt amp sqrt 60 q j 2 F 1 left tfrac 1 60 tfrac 19 60 tfrac 4 5 tfrac 1728 j right 6pt amp sqrt 60 q left j 1728 right 2 F 1 left tfrac 1 60 tfrac 29 60 tfrac 4 5 tfrac 1728 j 1728 right 6pt amp 1 q q 2 q 3 2q 4 2q 5 3q 6 cdots end aligned nbsp and H q n 0 q n 2 n 1 q 1 q 2 1 q n n 0 q n 2 n q q n 1 q 2 q 5 q 3 q 5 n 1 1 1 q 5 n 2 1 q 5 n 3 1 q 11 j 11 60 2 F 1 11 60 31 60 6 5 1728 j 1 q 11 j 1728 11 60 2 F 1 11 60 41 60 6 5 1728 j 1728 1 q 2 q 3 q 4 q 5 2 q 6 2 q 7 displaystyle begin aligned H q amp sum n 0 infty frac q n 2 n 1 q 1 q 2 cdots 1 q n sum n 0 infty frac q n 2 n q q n frac 1 q 2 q 5 infty q 3 q 5 infty 6pt amp prod n 1 infty frac 1 1 q 5n 2 1 q 5n 3 6pt amp frac 1 sqrt 60 q 11 j 11 2 F 1 left tfrac 11 60 tfrac 31 60 tfrac 6 5 tfrac 1728 j right 6pt amp frac 1 sqrt 60 q 11 left j 1728 right 11 2 F 1 left tfrac 11 60 tfrac 41 60 tfrac 6 5 tfrac 1728 j 1728 right 6pt amp 1 q 2 q 3 q 4 q 5 2q 6 2q 7 cdots end aligned nbsp with the coefficients of the q expansion being OEIS A003114 and OEIS A003106 respectively where a q displaystyle a q infty nbsp denotes the infinite q Pochhammer symbol j is the j function and 2F1 is the hypergeometric function The Rogers Ramanujan continued fraction is then R q q 11 60 H q q 1 60 G q q 1 5 n 1 1 q 5 n 1 1 q 5 n 4 1 q 5 n 2 1 q 5 n 3 q 1 5 n 1 1 q n n 5 q 1 5 1 q 1 q 2 1 q 3 1 displaystyle begin aligned R q amp frac q frac 11 60 H q q frac 1 60 G q q frac 1 5 prod n 1 infty frac 1 q 5n 1 1 q 5n 4 1 q 5n 2 1 q 5n 3 q 1 5 prod n 1 infty 1 q n n 5 8pt amp cfrac q 1 5 1 cfrac q 1 cfrac q 2 1 cfrac q 3 1 ddots end aligned nbsp n m displaystyle n mid m nbsp is the Jacobi symbol One should be careful with notation since the formulas employing the j function j displaystyle j nbsp will be consistent with the other formulas only if q e 2 p i t displaystyle q e 2 pi i tau nbsp the square of the nome is used throughout this section since the q expansion of the j function as well as the well known Dedekind eta function uses q e 2 p i t displaystyle q e 2 pi i tau nbsp However Ramanujan in his examples to Hardy and given below used the nome q e p i t displaystyle q e pi i tau nbsp instead citation needed Special values editIf q is the nome or its square then q 1 60 G q displaystyle q frac 1 60 G q nbsp and q 11 60 H q displaystyle q frac 11 60 H q nbsp as well as their quotient R q displaystyle R q nbsp are related to modular functions of t displaystyle tau nbsp Since they have integral coefficients the theory of complex multiplication implies that their values for t displaystyle tau nbsp involving an imaginary quadratic field are algebraic numbers that can be evaluated explicitly Examples of R q edit Given the general form where Ramanujan used the nome q e p i t displaystyle q e pi i tau nbsp R q q 1 5 1 q 1 q 2 1 q 3 1 displaystyle R q cfrac q 1 5 1 cfrac q 1 cfrac q 2 1 cfrac q 3 1 ddots nbsp f when t i displaystyle tau i nbsp R e p e p 5 1 e p 1 e 2 p 1 1 2 f 5 f 3 2 5 4 f 3 2 0 511428 displaystyle R big e pi big cfrac e frac pi 5 1 cfrac e pi 1 cfrac e 2 pi 1 ddots tfrac 1 2 varphi sqrt 5 varphi 3 2 sqrt 4 5 varphi 3 2 0 511428 dots nbsp when t 2 i displaystyle tau 2i nbsp R e 2 p e 2 p 5 1 e 2 p 1 e 4 p 1 5 4 f 1 2 f 0 284079 displaystyle R big e 2 pi big cfrac e frac 2 pi 5 1 cfrac e 2 pi 1 cfrac e 4 pi 1 ddots sqrt 4 5 varphi 1 2 varphi 0 284079 dots nbsp when t 4 i displaystyle tau 4i nbsp R e 4 p e 4 p 5 1 e 4 p 1 e 8 p 1 1 2 f 5 f 3 2 5 4 f 3 2 0 081002 displaystyle R big e 4 pi big cfrac e frac 4 pi 5 1 cfrac e 4 pi 1 cfrac e 8 pi 1 ddots tfrac 1 2 varphi sqrt 5 varphi 3 2 sqrt 4 5 varphi 3 2 0 081002 dots nbsp when t 2 5 i displaystyle tau 2 sqrt 5 i nbsp R e 2 5 p e 2 p 5 1 e 2 p 5 1 e 4 p 5 1 5 1 5 3 4 f 1 5 2 1 1 5 f 0 0602094 displaystyle R big e 2 sqrt 5 pi big cfrac e frac 2 pi sqrt 5 1 cfrac e 2 pi sqrt 5 1 cfrac e 4 pi sqrt 5 1 ddots frac sqrt 5 1 big 5 3 4 varphi 1 5 2 1 big 1 5 varphi 0 0602094 dots nbsp when t 5 i displaystyle tau 5i nbsp R e 5 p e p 1 e 5 p 1 e 10 p 1 1 f 2 f 1 2 4 f 3 f 1 3 f 3 2 5 4 1 5 f 0 0432139 displaystyle R big e 5 pi big cfrac e pi 1 cfrac e 5 pi 1 cfrac e 10 pi 1 ddots frac 1 varphi 2 varphi big frac 1 2 4 varphi 3 sqrt varphi 1 3 varphi 3 2 sqrt 4 5 big 1 5 varphi 0 0432139 dots nbsp when t 10 i displaystyle tau 10i nbsp R e 10 p e 2 p 1 e 10 p 1 e 20 p 1 1 f 2 f 3 1 f 2 4 f 1 5 f 0 00186744 displaystyle R big e 10 pi big cfrac e 2 pi 1 cfrac e 10 pi 1 cfrac e 20 pi 1 ddots frac 1 varphi 2 varphi big 3 sqrt 1 varphi 2 4 varphi big 1 5 varphi 0 00186744 dots nbsp when t 20 i displaystyle tau 20i nbsp R e 20 p e 4 p 1 e 20 p 1 e 40 p 1 1 f 2 f 1 2 4 f 3 f 1 3 f 3 2 5 4 1 5 f 0 00000348734 displaystyle R big e 20 pi big cfrac e 4 pi 1 cfrac e 20 pi 1 cfrac e 40 pi 1 ddots frac 1 varphi 2 varphi big frac 1 2 4 varphi 3 sqrt varphi 1 3 varphi 3 2 sqrt 4 5 big 1 5 varphi 0 00000348734 dots nbsp and f 1 5 2 displaystyle varphi tfrac 1 sqrt 5 2 nbsp is the golden ratio Note that R e 2 p displaystyle R big e 2 pi big nbsp is a positive root of the quartic equation x 4 2 x 3 6 x 2 2 x 1 0 displaystyle x 4 2x 3 6x 2 2x 1 0 nbsp while R e p displaystyle R big e pi big nbsp and R e 4 p displaystyle R big e 4 pi big nbsp are two positive roots of a single octic y 4 2 f 4 y 3 6 f 2 y 2 2 f 4 y 1 0 displaystyle y 4 2 varphi 4 y 3 6 varphi 2 y 2 2 varphi 4 y 1 0 nbsp since f displaystyle varphi nbsp has a square root which explains the similarity of the two closed forms More generally for positive integer m then R e 2 p m displaystyle R e 2 pi m nbsp and R e 2 p m displaystyle R e 2 pi m nbsp are two roots of the same equation as well as R e 2 p m f R e 2 p m f 5 f displaystyle bigl R e 2 pi m varphi bigr bigl R e 2 pi m varphi bigr sqrt 5 varphi nbsp The algebraic degree k of R e p n displaystyle R e pi n nbsp for n 1 2 3 4 displaystyle n 1 2 3 4 dots nbsp is k 8 4 32 8 displaystyle k 8 4 32 8 dots nbsp OEIS A082682 Incidentally these continued fractions can be used to solve some quintic equations as shown in a later section Examples of G q and H q edit Interestingly there are explicit formulas for G q displaystyle G q nbsp and H q displaystyle H q nbsp in terms of the j function j t displaystyle j tau nbsp and the Rogers Ramanujan continued fraction R q displaystyle R q nbsp However since j t displaystyle j tau nbsp uses the nome s square q e 2 p i t displaystyle q e 2 pi i tau nbsp then one should be careful with notation such that j t G q H q displaystyle j tau G q H q nbsp and r R q displaystyle r R q nbsp use the same q displaystyle q nbsp G q n 1 1 1 q 5 n 1 1 q 5 n 4 q 1 60 j t 1 60 r 20 228 r 15 494 r 10 228 r 5 1 1 20 displaystyle begin aligned G q amp prod n 1 infty frac 1 1 q 5n 1 1 q 5n 4 6pt amp q 1 60 frac j tau 1 60 r 20 228r 15 494r 10 228r 5 1 1 20 end aligned nbsp H q n 1 1 1 q 5 n 2 1 q 5 n 3 1 q 11 60 r 20 228 r 15 494 r 10 228 r 5 1 11 20 j t 11 60 r 10 11 r 5 1 displaystyle begin aligned H q amp prod n 1 infty frac 1 1 q 5n 2 1 q 5n 3 6pt amp frac 1 q 11 60 frac r 20 228r 15 494r 10 228r 5 1 11 20 j tau 11 60 r 10 11r 5 1 end aligned nbsp Of course the secondary formulas imply that q 1 60 G q displaystyle q 1 60 G q nbsp and q 11 60 H q displaystyle q 11 60 H q nbsp are algebraic numbers though normally of high degree for t displaystyle tau nbsp involving an imaginary quadratic field For example the formulas above simplify to G e 2 p e 2 p 1 60 1 5 f 1 4 1 R e 2 p 1 00187093 H e 2 p 1 e 2 p 11 60 1 5 f 1 4 R e 2 p 1 00000349 displaystyle begin aligned G e 2 pi amp e 2 pi 1 60 frac 1 5 varphi 1 4 frac 1 sqrt R e 2 pi 6pt amp 1 00187093 dots 6pt H e 2 pi amp frac 1 e 2 pi 11 60 frac 1 5 varphi 1 4 sqrt R e 2 pi 6pt amp 1 00000349 ldots end aligned nbsp and G e 4 p e 4 p 1 60 1 5 f 3 1 4 f 5 4 1 4 1 R e 4 p 1 000003487354 H e 4 p 1 e 4 p 11 60 1 5 f 3 1 4 f 5 4 1 4 R e 4 p 1 000000000012 displaystyle begin aligned G e 4 pi amp e 4 pi 1 60 frac 1 5 varphi 3 1 4 varphi sqrt 4 5 1 4 frac 1 sqrt R e 4 pi 6pt amp 1 000003487354 dots 6pt H e 4 pi amp frac 1 e 4 pi 11 60 frac 1 5 varphi 3 1 4 varphi sqrt 4 5 1 4 sqrt R e 4 pi 6pt amp 1 000000000012 dots end aligned nbsp and so on with f displaystyle varphi nbsp as the golden ratio Derivation of special values editTangential sums edit In the following we express the essential theorems of the Rogers Ramanujan continued fractions R and S by using the tangential sums and tangential differences a b tan arctan a arctan b a b 1 a b displaystyle a oplus b tan bigl arctan a arctan b bigr frac a b 1 ab nbsp c d tan arctan c arctan d c d 1 c d displaystyle c ominus d tan bigl arctan c arctan d bigr frac c d 1 cd nbsp The elliptic nome and the complementary nome have this relationship to each other ln q ln q 1 p 2 displaystyle ln q ln q 1 pi 2 nbsp The complementary nome of a modulus k is equal to the nome of the Pythagorean complementary modulus q 1 k q k q 1 k 2 displaystyle q 1 k q k q sqrt 1 k 2 nbsp These are the reflection theorems for the continued fractions R and S S q S q 1 F displaystyle S q oplus S q 1 Phi nbsp R q 2 R q 1 2 F 1 displaystyle R q 2 oplus R q 1 2 Phi 1 nbsp The letter F displaystyle Phi nbsp represents the Golden number exactly F 1 2 5 1 cot 1 2 arctan 2 2 cos 1 5 p displaystyle Phi tfrac 1 2 sqrt 5 1 cot tfrac 1 2 arctan 2 2 cos tfrac 1 5 pi nbsp F 1 1 2 5 1 tan 1 2 arctan 2 2 sin 1 10 p displaystyle Phi 1 tfrac 1 2 sqrt 5 1 tan tfrac 1 2 arctan 2 2 sin tfrac 1 10 pi nbsp The theorems for the squared nome are constructed as follows R q 2 R q 2 1 R q R q 2 2 1 displaystyle R q 2 R q 2 1 oplus R q R q 2 2 1 nbsp S q 2 R q 2 1 S q R q 2 2 1 displaystyle S q 2 R q 2 1 ominus S q R q 2 2 1 nbsp Following relations between the continued fractions and the Jacobi theta functions are given S q R q 2 ϑ 00 q 1 5 2 ϑ 00 q 2 5 ϑ 00 q 5 2 ϑ 00 q 2 displaystyle S q oplus R q 2 frac vartheta 00 q 1 5 2 vartheta 00 q 2 5 vartheta 00 q 5 2 vartheta 00 q 2 nbsp R q R q 2 ϑ 01 q 2 ϑ 01 q 1 5 2 5 ϑ 01 q 5 2 ϑ 01 q 2 displaystyle R q ominus R q 2 frac vartheta 01 q 2 vartheta 01 q 1 5 2 5 vartheta 01 q 5 2 vartheta 01 q 2 nbsp Derivation of Lemniscatic values edit Into the now shown theorems certain values are inserted S exp p S exp p F displaystyle S bigl exp pi bigr oplus S bigl exp pi bigr Phi nbsp Therefore following identity is valid S exp p tan 1 2 arctan F tan 1 4 p 1 4 arctan 2 displaystyle S bigl exp pi bigr tan bigl tfrac 1 2 arctan Phi bigr tan bigl tfrac 1 4 pi tfrac 1 4 arctan 2 bigr nbsp In an analogue pattern we get this result R exp 2 p R exp 2 p F 1 displaystyle R bigl exp 2 pi bigr oplus R bigl exp 2 pi bigr Phi 1 nbsp Therefore following identity is valid R exp 2 p tan 1 2 arctan F 1 tan 1 4 arctan 2 displaystyle R bigl exp 2 pi bigr tan bigl tfrac 1 2 arctan Phi 1 bigr tan bigl tfrac 1 4 arctan 2 bigr nbsp Furthermore we get the same relation by using the above mentioned theorem about the Jacobi theta functions S exp p R exp 2 p S q R q 2 q exp p displaystyle S bigl exp pi bigr oplus R bigl exp 2 pi bigr S q oplus R q 2 bigl q exp pi bigr nbsp ϑ 00 q 1 5 2 ϑ 00 q 2 5 ϑ 00 q 5 2 ϑ 00 q 2 q exp p 1 displaystyle frac vartheta 00 q 1 5 2 vartheta 00 q 2 5 vartheta 00 q 5 2 vartheta 00 q 2 bigl q exp pi bigr 1 nbsp This result appears because of the Poisson summation formula and this equation can be solved in this way R exp 2 p 1 S exp p 1 tan 1 4 p 1 4 arctan 2 tan 1 4 arctan 2 displaystyle R bigl exp 2 pi bigr 1 ominus S bigl exp pi bigr 1 ominus tan bigl tfrac 1 4 pi tfrac 1 4 arctan 2 bigr tan bigl tfrac 1 4 arctan 2 bigr nbsp By taking the other mentioned theorem about the Jacobi theta functions a next value can be determined R exp p R exp 2 p R q R q 2 q exp p displaystyle R bigl exp pi bigr ominus R bigl exp 2 pi bigr R q ominus R q 2 bigl q exp pi bigr nbsp ϑ 01 q 2 ϑ 01 q 1 5 2 5 ϑ 01 q 5 2 ϑ 01 q 2 q exp p 5 4 1 5 4 1 5 4 1 tan arctan 5 4 1 4 p displaystyle frac vartheta 01 q 2 vartheta 01 q 1 5 2 5 vartheta 01 q 5 2 vartheta 01 q 2 bigl q exp pi bigr frac sqrt 4 5 1 sqrt 4 5 1 sqrt 4 5 ominus 1 tan bigl arctan sqrt 4 5 tfrac 1 4 pi bigr nbsp That equation chain leads to this tangential sum R exp p R exp 2 p tan arctan 5 4 1 4 p displaystyle R bigl exp pi bigr R bigl exp 2 pi bigr oplus tan bigl arctan sqrt 4 5 tfrac 1 4 pi bigr nbsp And therefore following result appears R exp p tan 1 4 arctan 2 arctan 5 4 1 4 p displaystyle R bigl exp pi bigr tan bigl tfrac 1 4 arctan 2 arctan sqrt 4 5 tfrac 1 4 pi bigr nbsp In the next step we use the reflection theorem for the continued fraction R again R exp p R exp 4 p F 1 displaystyle R bigl exp pi bigr oplus R bigl exp 4 pi bigr Phi 1 nbsp R exp 4 p tan 1 2 arctan 2 R exp p displaystyle R bigl exp 4 pi bigr tan bigl tfrac 1 2 arctan 2 bigr ominus R bigl exp pi bigr nbsp And a further result appears R exp 4 p tan 1 4 arctan 2 arctan 5 4 1 4 p displaystyle R bigl exp 4 pi bigr tan bigl tfrac 1 4 arctan 2 arctan sqrt 4 5 tfrac 1 4 pi bigr nbsp Derivation of Non Lemniscatic values edit The reflection theorem is now used for following values R exp 2 p R exp 2 2 p F 1 displaystyle R bigl exp sqrt 2 pi bigr oplus R bigl exp 2 sqrt 2 pi bigr Phi 1 nbsp The Jacobi theta theorem leads to a further relation R exp 2 p R exp 2 2 p R q R q 2 q exp 2 p displaystyle R bigl exp sqrt 2 pi bigr ominus R bigl exp 2 sqrt 2 pi bigr R q ominus R q 2 bigl q exp sqrt 2 pi bigr nbsp ϑ 01 q 2 ϑ 01 q 1 5 2 5 ϑ 01 q 5 2 ϑ 01 q 2 q exp 2 p tan 2 arctan 1 3 5 1 3 6 30 4 5 3 1 3 6 30 4 5 3 1 4 p displaystyle frac vartheta 01 q 2 vartheta 01 q 1 5 2 5 vartheta 01 q 5 2 vartheta 01 q 2 bigl q exp sqrt 2 pi bigr tan bigl 2 arctan tfrac 1 3 sqrt 5 tfrac 1 3 sqrt 3 6 sqrt 30 4 sqrt 5 tfrac 1 3 sqrt 3 6 sqrt 30 4 sqrt 5 tfrac 1 4 pi bigr nbsp By tangential adding the now mentioned two theorems we get this result R exp 2 p R exp 2 p F 1 tan 2 arctan 1 3 5 1 3 6 30 4 5 3 1 3 6 30 4 5 3 1 4 p displaystyle R bigl exp sqrt 2 pi bigr oplus R bigl exp sqrt 2 pi bigr Phi 1 oplus tan bigl 2 arctan tfrac 1 3 sqrt 5 tfrac 1 3 sqrt 3 6 sqrt 30 4 sqrt 5 tfrac 1 3 sqrt 3 6 sqrt 30 4 sqrt 5 tfrac 1 4 pi bigr nbsp R exp 2 p tan arctan 1 3 5 1 3 6 30 4 5 3 1 3 6 30 4 5 3 1 4 arccot 2 displaystyle R bigl exp sqrt 2 pi bigr tan bigl arctan tfrac 1 3 sqrt 5 tfrac 1 3 sqrt 3 6 sqrt 30 4 sqrt 5 tfrac 1 3 sqrt 3 6 sqrt 30 4 sqrt 5 tfrac 1 4 operatorname arccot 2 bigr nbsp By tangential substraction that result appears R exp 2 2 p R exp 2 2 p F 1 tan 2 arctan 1 3 5 1 3 6 30 4 5 3 1 3 6 30 4 5 3 1 4 p displaystyle R bigl exp 2 sqrt 2 pi bigr oplus R bigl exp 2 sqrt 2 pi bigr Phi 1 ominus tan bigl 2 arctan tfrac 1 3 sqrt 5 tfrac 1 3 sqrt 3 6 sqrt 30 4 sqrt 5 tfrac 1 3 sqrt 3 6 sqrt 30 4 sqrt 5 tfrac 1 4 pi bigr nbsp R exp 2 2 p tan 1 4 arccot 2 arctan 1 3 5 1 3 6 30 4 5 3 1 3 6 30 4 5 3 displaystyle R bigl exp 2 sqrt 2 pi bigr tan bigl tfrac 1 4 operatorname arccot 2 arctan tfrac 1 3 sqrt 5 tfrac 1 3 sqrt 3 6 sqrt 30 4 sqrt 5 tfrac 1 3 sqrt 3 6 sqrt 30 4 sqrt 5 bigr nbsp In an alternative solution way we use the theorem for the squared nome R exp 2 p 2 R exp 2 2 p 1 R exp 2 p R exp 2 2 p 2 1 displaystyle R bigl exp sqrt 2 pi bigr 2 R bigl exp 2 sqrt 2 pi bigr 1 oplus R bigl exp sqrt 2 pi bigr R bigl exp 2 sqrt 2 pi bigr 2 1 nbsp R exp 2 p 2 R exp 2 2 p 1 1 R exp 2 p R exp 2 2 p 2 1 2 displaystyle bigl R bigl exp sqrt 2 pi bigr 2 R bigl exp 2 sqrt 2 pi bigr 1 1 bigr bigl R bigl exp sqrt 2 pi bigr R bigl exp 2 sqrt 2 pi bigr 2 1 bigr 2 nbsp Now the reflection theorem is taken again R exp 2 2 p F 1 R exp 2 p displaystyle R bigl exp 2 sqrt 2 pi bigr Phi 1 ominus R bigl exp sqrt 2 pi bigr nbsp R exp 2 2 p 1 F R exp 2 p F R exp 2 p displaystyle R bigl exp 2 sqrt 2 pi bigr frac 1 Phi R bigl exp sqrt 2 pi bigr Phi R bigl exp sqrt 2 pi bigr nbsp The insertion of the last mentioned expression into the squared nome theorem gives that equation R exp 2 p 2 F R exp 2 p 1 F R exp 2 p 1 R exp 2 p 1 F R exp 2 p 2 F R exp 2 p 2 1 2 displaystyle biggl R bigl exp sqrt 2 pi bigr 2 frac Phi R bigl exp sqrt 2 pi bigr 1 Phi R bigl exp sqrt 2 pi bigr 1 biggr biggl langle R bigl exp sqrt 2 pi bigr frac bigl 1 Phi R bigl exp sqrt 2 pi bigr bigr 2 bigl Phi R bigl exp sqrt 2 pi bigr bigr 2 1 biggr rangle 2 nbsp Erasing the denominators gives an equation of sixth degree R exp 2 p 6 2 F 2 R exp 2 p 5 5 F 1 R exp 2 p 4 displaystyle R bigl exp sqrt 2 pi bigr 6 2 Phi 2 R bigl exp sqrt 2 pi bigr 5 sqrt 5 Phi 1 R bigl exp sqrt 2 pi bigr 4 nbsp 2 5 F R exp 2 p 3 5 F 1 R exp 2 p 2 2 F 2 R exp 2 p 1 0 displaystyle 2 sqrt 5 Phi R bigl exp sqrt 2 pi bigr 3 sqrt 5 Phi 1 R bigl exp sqrt 2 pi bigr 2 2 Phi 2 R bigl exp sqrt 2 pi bigr 1 0 nbsp The solution of this equation is the already mentioned solution R exp 2 p tan arctan 1 3 5 1 3 6 30 4 5 3 1 3 6 30 4 5 3 1 4 arccot 2 displaystyle R bigl exp sqrt 2 pi bigr tan bigl arctan tfrac 1 3 sqrt 5 tfrac 1 3 sqrt 3 6 sqrt 30 4 sqrt 5 tfrac 1 3 sqrt 3 6 sqrt 30 4 sqrt 5 tfrac 1 4 operatorname arccot 2 bigr nbsp Relation to modular forms editR q displaystyle R q nbsp can be related to the Dedekind eta function a modular form of weight 1 2 as 1 1 R q R q h t 5 h 5 t 1 displaystyle frac 1 R q R q frac eta frac tau 5 eta 5 tau 1 nbsp 1 R 5 q R 5 q h t h 5 t 6 11 displaystyle frac 1 R 5 q R 5 q left frac eta tau eta 5 tau right 6 11 nbsp The Rogers Ramanujan continued fraction can also be expressed in terms of the Jacobi theta functions Recall the notation ϑ 10 0 t 8 2 q n q n 1 2 2 ϑ 00 0 t 8 3 q n q n 2 ϑ 01 0 t 8 4 q n 1 n q n 2 displaystyle begin aligned vartheta 10 0 tau amp theta 2 q sum n infty infty q n 1 2 2 vartheta 00 0 tau amp theta 3 q sum n infty infty q n 2 vartheta 01 0 tau amp theta 4 q sum n infty infty 1 n q n 2 end aligned nbsp The notation 8 n displaystyle theta n nbsp is slightly easier to remember since 8 2 4 8 4 4 8 3 4 displaystyle theta 2 4 theta 4 4 theta 3 4 nbsp with even subscripts on the LHS Thus R x tan 1 2 arccot 1 2 8 4 x 1 5 5 8 4 x 5 2 8 4 x 2 2 8 4 x 5 8 4 x 2 8 4 x 1 5 2 displaystyle R x tan biggl frac 1 2 operatorname arccot biggl frac 1 2 frac theta 4 x 1 5 5 theta 4 x 5 2 theta 4 x 2 2 theta 4 x 5 theta 4 x 2 theta 4 x 1 5 2 biggr biggr nbsp R x tan 1 2 arccot 1 2 8 2 x 1 10 8 3 x 1 10 8 4 x 1 10 2 3 8 2 x 5 2 8 3 x 5 2 8 4 x 5 2 1 3 displaystyle R x tan biggl frac 1 2 operatorname arccot biggl frac 1 2 bigg frac theta 2 x 1 10 theta 3 x 1 10 theta 4 x 1 10 2 3 theta 2 x 5 2 theta 3 x 5 2 theta 4 x 5 2 bigg 1 3 biggr biggr nbsp R x tan 1 2 arctan 1 2 8 4 x 2 2 8 4 x 5 2 1 5 tan 1 2 arccot 1 2 8 4 x 2 2 8 4 x 5 2 2 5 displaystyle R x tan biggl frac 1 2 arctan biggl frac 1 2 frac theta 4 x 2 2 theta 4 x 5 2 biggr biggr 1 5 times tan biggl frac 1 2 operatorname arccot biggl frac 1 2 frac theta 4 x 2 2 theta 4 x 5 2 biggr biggr 2 5 nbsp R x tan 1 2 arctan 1 2 8 4 x 1 2 2 2 8 4 x 5 2 2 2 5 cot 1 2 arccot 1 2 8 4 x 1 2 2 2 8 4 x 5 2 2 1 5 displaystyle R x tan biggl frac 1 2 arctan biggl frac 1 2 frac theta 4 x 1 2 2 2 theta 4 x 5 2 2 biggr biggr 2 5 times cot biggl frac 1 2 operatorname arccot biggl frac 1 2 frac theta 4 x 1 2 2 2 theta 4 x 5 2 2 biggr biggr 1 5 nbsp Note however that theta functions normally use the nome q eipt while the Dedekind eta function uses the square of the nome q e2ipt thus the variable x has been employed instead to maintain consistency between all functions For example let t 1 displaystyle tau sqrt 1 nbsp so x e p displaystyle x e pi nbsp Plugging this into the theta functions one gets the same value for all three R x formulas which is the correct evaluation of the continued fraction given previously R e p 1 2 f 5 f 3 2 5 4 f 3 2 0 511428 displaystyle R big e pi big frac 1 2 varphi sqrt 5 varphi 3 2 sqrt 4 5 varphi 3 2 0 511428 dots nbsp One can also define the elliptic nome q k exp p K 1 k 2 K k displaystyle q k exp big pi K sqrt 1 k 2 K k big nbsp The small letter k describes the elliptic modulus and the big letter K describes the complete elliptic integral of the first kind The continued fraction can then be also expressed by the Jacobi elliptic functions as follows R q k tan 1 2 arctan y 1 5 tan 1 2 arccot y 2 5 y 2 1 1 y 1 5 y 1 y 2 1 1 2 5 displaystyle R big q k big tan biggl frac 1 2 arctan y biggr 1 5 tan biggl frac 1 2 operatorname arccot y biggr 2 5 left frac sqrt y 2 1 1 y right 1 5 left y left sqrt frac 1 y 2 1 1 right right 2 5 nbsp with y 2 k 2 sn 2 5 K k k 2 sn 4 5 K k k 2 5 k 2 sn 2 5 K k k 2 sn 4 5 K k k 2 displaystyle y frac 2k 2 text sn tfrac 2 5 K k k 2 text sn tfrac 4 5 K k k 2 5 k 2 text sn tfrac 2 5 K k k 2 text sn tfrac 4 5 K k k 2 nbsp Relation to j function editOne formula involving the j function and the Dedekind eta function is this j t x 2 10 x 5 3 x displaystyle j tau frac x 2 10x 5 3 x nbsp where x 5 h 5 t h t 6 displaystyle x left frac sqrt 5 eta 5 tau eta tau right 6 nbsp Since also 1 R 5 q R 5 q h t h 5 t 6 11 displaystyle frac 1 R 5 q R 5 q left frac eta tau eta 5 tau right 6 11 nbsp Eliminating the eta quotient x displaystyle x nbsp between the two equations one can then express j t in terms of r R q displaystyle r R q nbsp as j t r 20 228 r 15 494 r 10 228 r 5 1 3 r 5 r 10 11 r 5 1 5 j t 1728 r 30 522 r 25 10005 r 20 10005 r 10 522 r 5 1 2 r 5 r 10 11 r 5 1 5 displaystyle begin aligned amp j tau frac r 20 228r 15 494r 10 228r 5 1 3 r 5 r 10 11r 5 1 5 6pt amp j tau 1728 frac r 30 522r 25 10005r 20 10005r 10 522r 5 1 2 r 5 r 10 11r 5 1 5 end aligned nbsp where the numerator and denominator are polynomial invariants of the icosahedron Using the modular equation between R q displaystyle R q nbsp and R q 5 displaystyle R q 5 nbsp one finds that j 5 t r 20 12 r 15 14 r 10 12 r 5 1 3 r 25 r 10 11 r 5 1 j 5 t 1728 r 30 18 r 25 75 r 20 75 r 10 18 r 5 1 2 r 25 r 10 11 r 5 1 displaystyle begin aligned amp j 5 tau frac r 20 12r 15 14r 10 12r 5 1 3 r 25 r 10 11r 5 1 6pt amp j 5 tau 1728 frac r 30 18r 25 75r 20 75r 10 18r 5 1 2 r 25 r 10 11r 5 1 end aligned nbsp Let z r 5 1 r 5 displaystyle z r 5 frac 1 r 5 nbsp then j 5 t z 2 12 z 16 3 z 11 displaystyle j 5 tau frac left z 2 12z 16 right 3 z 11 nbsp where z 5 h 25 t h 5 t 6 11 z 0 h t h 5 t 6 11 z 1 h 5 t 2 5 h 5 t 6 11 z 2 h 5 t 4 5 h 5 t 6 11 z 3 h 5 t 6 5 h 5 t 6 11 z 4 h 5 t 8 5 h 5 t 6 11 displaystyle begin aligned amp z infty left frac sqrt 5 eta 25 tau eta 5 tau right 6 11 z 0 left frac eta tau eta 5 tau right 6 11 z 1 left frac eta frac 5 tau 2 5 eta 5 tau right 6 11 6pt amp z 2 left frac eta frac 5 tau 4 5 eta 5 tau right 6 11 z 3 left frac eta frac 5 tau 6 5 eta 5 tau right 6 11 z 4 left frac eta frac 5 tau 8 5 eta 5 tau right 6 11 end aligned nbsp which in fact is the j invariant of the elliptic curve y 2 1 r 5 x y r 5 y x 3 r 5 x 2 displaystyle y 2 1 r 5 xy r 5 y x 3 r 5 x 2 nbsp parameterized by the non cusp points of the modular curve X 1 5 displaystyle X 1 5 nbsp Functional equation editFor convenience one can also use the notation r t R q displaystyle r tau R q nbsp when q e2pit While other modular functions like the j invariant satisfies j 1 t j t displaystyle j tfrac 1 tau j tau nbsp and the Dedekind eta function has h 1 t i t h t displaystyle eta tfrac 1 tau sqrt i tau eta tau nbsp the functional equation of the Rogers Ramanujan continued fraction involves 2 the golden ratio f displaystyle varphi nbsp r 1 t 1 f r t f r t displaystyle r tfrac 1 tau frac 1 varphi r tau varphi r tau nbsp Incidentally r 7 i 10 i displaystyle r tfrac 7 i 10 i nbsp Modular equations editThere are modular equations between R q displaystyle R q nbsp and R q n displaystyle R q n nbsp Elegant ones for small prime n are as follows 3 For n 2 displaystyle n 2 nbsp let u R q displaystyle u R q nbsp and v R q 2 displaystyle v R q 2 nbsp then v u 2 v u 2 u v 2 displaystyle v u 2 v u 2 uv 2 nbsp For n 3 displaystyle n 3 nbsp let u R q displaystyle u R q nbsp and v R q 3 displaystyle v R q 3 nbsp then v u 3 1 u v 3 3 u 2 v 2 displaystyle v u 3 1 uv 3 3u 2 v 2 nos, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.