fbpx
Wikipedia

Rheumatic fever

Rheumatic fever (RF) is an inflammatory disease that can involve the heart, joints, skin, and brain.[1] The disease typically develops two to four weeks after a streptococcal throat infection.[2] Signs and symptoms include fever, multiple painful joints, involuntary muscle movements, and occasionally a characteristic non-itchy rash known as erythema marginatum.[1] The heart is involved in about half of the cases.[1] Damage to the heart valves, known as rheumatic heart disease (RHD), usually occurs after repeated attacks but can sometimes occur after one.[1] The damaged valves may result in heart failure, atrial fibrillation and infection of the valves.[1]

Rheumatic fever
Other namesAcute rheumatic fever (ARF)
Rheumatic heart disease at autopsy with characteristic findings (thickened mitral valve, thickened chordae tendineae, hypertrophied left ventricular myocardium).
SpecialtyCardiology
SymptomsFever, multiple painful joints, involuntary muscle movements, erythema marginatum[1]
ComplicationsRheumatic heart disease, heart failure, atrial fibrillation, infection of the valves[1]
Usual onset2–4 weeks after a streptococcal throat infection, age 5-14 years[2]
CausesAutoimmune disease triggered by Streptococcus pyogenes[1]
Risk factorsGenetics, malnutrition, poverty[1]
Diagnostic methodBased on symptoms and infection history[3]
PreventionAntibiotics for strep throat, improved sanitation[1][4]
TreatmentProlonged periods of antibiotics, valve replacement surgery, valve repair[1]
Frequency325,000 children a year[1]
Deaths319,400 (2015)[5]

Rheumatic fever may occur following an infection of the throat by the bacterium Streptococcus pyogenes.[1] If the infection is left untreated, rheumatic fever occurs in up to three percent of people.[6] The underlying mechanism is believed to involve the production of antibodies against a person's own tissues.[1] Due to their genetics, some people are more likely to get the disease when exposed to the bacteria than others.[1] Other risk factors include malnutrition and poverty.[1] Diagnosis of RF is often based on the presence of signs and symptoms in combination with evidence of a recent streptococcal infection.[3]

Treating people who have strep throat with antibiotics, such as penicillin, decreases the risk of developing rheumatic fever.[4] In order to avoid antibiotic misuse this often involves testing people with sore throats for the infection; however, testing might not be available in the developing world.[1] Other preventive measures include improved sanitation.[1] In those with rheumatic fever and rheumatic heart disease, prolonged periods of antibiotics are sometimes recommended.[1] Gradual return to normal activities may occur following an attack.[1] Once RHD develops, treatment is more difficult.[1] Occasionally valve replacement surgery or valve repair is required.[1] Otherwise complications are treated as usual.[1]

Rheumatic fever occurs in about 325,000 children each year and about 33.4 million people currently have rheumatic heart disease.[1][7] Those who develop RF are most often between the ages of 5 and 14,[1] with 20% of first-time attacks occurring in adults.[8] The disease is most common in the developing world and among indigenous peoples in the developed world.[1] In 2015 it resulted in 319,400 deaths down from 374,000 deaths in 1990.[5][9] Most deaths occur in the developing world where as many as 12.5% of people affected may die each year.[1] Descriptions of the condition are believed to date back to at least the 5th century BCE in the writings of Hippocrates.[10] The disease is so named because its symptoms are similar to those of some rheumatic disorders.[11]

Signs and symptoms

 
A culture positive case of streptococcal pharyngitis with typical tonsillar exudate in a 16-year-old.

The disease typically develops two to four weeks after a throat infection.[2] Symptoms include: fever, painful joints with those joints affected changing with time, involuntary muscle movements, and occasionally a characteristic non-itchy rash known as erythema marginatum. The heart is involved in about half of the cases. Damage to the heart valves usually occurs only after multiple attacks but may occasionally occur after a single case of RF. The damaged valves may result in heart failure and also increase the risk of atrial fibrillation and infection of the valves.[1]

Pathophysiology

Rheumatic fever is a systemic disease affecting the connective tissue around arterioles, and can occur after an untreated strep throat infection, specifically due to group A streptococcus (GAS), Streptococcus pyogenes. The similarity between antigens of Streptococcus pyogenes and multiple cardiac proteins can cause a life-threatening type II hypersensitivity reaction.[12] Usually, self reactive B cells remain anergic in the periphery without T cell co-stimulation. During a streptococcal infection, mature antigen-presenting cells such as B cells present the bacterial antigen to CD4+T cells which differentiate into helper T2 cells. Helper T2 cells subsequently activate the B cells to become plasma cells and induce the production of antibodies against the cell wall of Streptococcus. However the antibodies may also react against the myocardium and joints,[13] producing the symptoms of rheumatic fever. S. pyogenes is a species of aerobic, cocci, gram-positive bacteria that are non-motile, non-spore forming, and forms chains and large colonies.[14]

S. pyogenes has a cell wall composed of branched polymers which sometimes contain M protein, a virulence factor that is highly antigenic. The antibodies which the immune system generates against the M protein may cross-react with heart muscle cell protein myosin,[15] heart muscle glycogen and smooth muscle cells of arteries, inducing cytokine release and tissue destruction. However, the only proven cross-reaction is with perivascular connective tissue.[citation needed] This inflammation occurs through direct attachment of complement and Fc receptor-mediated recruitment of neutrophils and macrophages. Characteristic Aschoff bodies, composed of swollen eosinophilic collagen surrounded by lymphocytes and macrophages can be seen on light microscopy. The larger macrophages may become Anitschkow cells or Aschoff giant cells. Rheumatic valvular lesions may also involve a cell-mediated immunity reaction as these lesions predominantly contain T-helper cells and macrophages.[16]

In rheumatic fever, these lesions can be found in any layer of the heart causing different types of carditis. The inflammation may cause a serofibrinous pericardial exudate described as "bread-and-butter" pericarditis, which usually resolves without sequelae. Involvement of the endocardium typically results in fibrinoid necrosis and wart formation along the lines of closure of the left-sided heart valves. Warty projections arise from the deposition, while subendocardial lesions may induce irregular thickenings called MacCallum plaques.[citation needed]

Rheumatic heart disease

 
Pathophysiology of rheumatic heart disease
 
Micrograph showing an Aschoff body (right of image), as seen in rheumatic heart disease. H&E stain.

Chronic rheumatic heart disease (RHD) is characterized by repeated inflammation with fibrinous repair. The cardinal anatomic changes of the valve include leaflet thickening, commissural fusion, and shortening and thickening of the tendinous cords.[16] It is caused by an autoimmune reaction to Group A β-hemolytic streptococci (GAS) that results in valvular damage.[17] Fibrosis and scarring of valve leaflets, commissures and cusps leads to abnormalities that can result in valve stenosis or regurgitation.[18] The inflammation caused by rheumatic fever, usually during childhood, is referred to as rheumatic valvulitis. About half of patients with rheumatic fever develop inflammation involving valvular endothelium.[19] The majority of morbidity and mortality associated with rheumatic fever is caused by its destructive effects on cardiac valve tissue.[18] The complicated pathogenesis of RHD is not fully understood, though it has been observed to use molecular mimicry via group A streptococci carbohydrates and genetic predisposition involving HLA Class II genes that trigger autoimmune reactions.[20]

Molecular mimicry occurs when epitopes are shared between host antigens and Streptococcus antigens.[21] This causes an autoimmune reaction against native tissues in the heart that are incorrectly recognized as "foreign" due to the cross-reactivity of antibodies generated as a result of epitope sharing. The valvular endothelium is a prominent site of lymphocyte-induced damage. CD4+ T cells are the major effectors of heart tissue autoimmune reactions in RHD.[22] Normally, T cell activation is triggered by the presentation of bacterial antigens. In RHD, molecular mimicry results in incorrect T cell activation, and these T lymphocytes can go on to activate B cells, which will begin to produce self-antigen-specific antibodies. This leads to an immune response attack mounted against tissues in the heart that have been misidentified as pathogens. Rheumatic valves display increased expression of VCAM-1, a protein that mediates the adhesion of lymphocytes.[23] Self-antigen-specific antibodies generated via molecular mimicry between human proteins and streptococcal antigens up-regulate VCAM-1 after binding to the valvular endothelium. This leads to the inflammation and valve scarring observed in rheumatic valvulitis, mainly due to CD4+ T cell infiltration.[23]

While the mechanisms of genetic predisposition remain unclear, a few genetic factors have been found to increase susceptibility to autoimmune reactions in RHD. The dominant contributors are a component of MHC class II molecules, found on lymphocytes and antigen-presenting cells, specifically the DR and DQ alleles on human chromosome 6.[24] Certain allele combinations appear to increase RHD autoimmune susceptibility. Human leukocyte antigen (HLA) class II allele DR7 (HLA-DR7) is most often associated with RHD, and its combination with certain DQ alleles is seemingly associated with the development of valvular lesions.[24] The mechanism by which MHC class II molecules increase a host's susceptibility to autoimmune reactions in RHD is unknown, but it is likely related to the role HLA molecules play in presenting antigens to T cell receptors, thus triggering an immune response. Also found on human chromosome 6 is the cytokine TNF-α which is also associated with RHD.[24] High expression levels of TNF-α may exacerbate valvular tissue inflammation, because as this cytokine circulates in the bloodstream, it triggers the activation of multiple pathways that stimulate further pro-inflammatory cytokine secretion.[25] Mannose-binding lectin (MBL) is an inflammatory protein involved in pathogen recognition. Different variants of MBL2 gene regions are associated in RHD. RHD-induced mitral valve stenosis has been associated with MBL2 alleles encoding for high production of MBL.[26] Aortic valve regurgitation in RHD patients has been associated with different MBL2 alleles that encode for low production of MBL.[27] In addition, the allele IGHV4-61, located on chromosome 14, which helps code for the immunoglobulin heavy chain (IgH) is linked to greater susceptibility to RHD because it may affect protein structure of the IgH.[28] Other genes are also being investigated to better understand the complexity of autoimmune reactions that occur in RHD.[citation needed]

Diagnosis

 
Streptococcus pyogenes bacteria (Pappenheim's stain), the trigger for rheumatic fever

The original method of diagnosing rheumatic heart disease was through heart auscultation, specifically listening for the sound of blood regurgitation from possibly dysfunctional valves. However, studies have shown that echocardiography is much more efficient in detecting RHD due to its high sensitivity. An echocardiogram has the ability to detect signs of RHD before the development of more obvious symptoms such as tissue scarring and stenosis.[29] Modified Jones criteria were first published in 1944 by T. Duckett Jones, MD.[30] They have been periodically revised by the American Heart Association in collaboration with other groups.[31] According to revised Jones criteria, the diagnosis of rheumatic fever can be made when two of the major criteria, or one major criterion plus two minor criteria, are present along with evidence of streptococcal infection: elevated or rising antistreptolysin O titre[32] or anti-DNase B.[8][33] A recurrent episode is also diagnosed when three minor criteria are present.[34] Exceptions are chorea and indolent carditis, each of which by itself can indicate rheumatic fever.[35][36][37] An April 2013 review article in the Indian Journal of Medical Research stated that echocardiographic and Doppler (E & D) studies, despite some reservations about their utility, have identified a massive burden of rheumatic heart disease, which suggests the inadequacy of the 1992 Jones' criteria. E & D studies have identified subclinical carditis in patients with rheumatic fever, as well as in follow-ups of rheumatic heart disease patients who initially presented as having isolated cases of Sydenham's chorea.[38] Signs of a preceding streptococcal infection include: recent scarlet fever, raised antistreptolysin O or other streptococcal antibody titre, or positive throat culture.[39] The last revision of 2015 suggested variable diagnostic criteria in low-risk and high-risk populations to avoid overdiagnosis in the first category and underdiagnosis in the last one.[34] Low-risk populations were defined as those with acute rheumatic fever annual incidence ≤2 per 100 000 school-aged children or all-age rheumatic heart disease prevalence of ≤1 per 1000.[34] All other populations were categorised as having a moderate or high risk.[34]

Major criteria

  1. Joint manifestations are the unique clinical signs that have different implications for different population-risk categories : Only polyarthritis[40] (a temporary migrating inflammation of the large joints, usually starting in the legs and migrating upwards) is considered as a major criterion in low-risk populations, whereas monoarthritis, polyarthritis and polyarthralgia (joint pain without swelling) are all included as major criteria in high-risk populations.[34]
  2. Carditis: Carditis can involve the pericardium (pericarditis which resolves without sequelae), some regions of the myocardium (which might not provoke systolic dysfunction), and more consistently the endocardium in the form of valvulitis.[41] Carditis is diagnosed clinically (palpitations, shortness of breath, heart failure, or a new heart murmur) or by echocardiography/Doppler studies revealing mitral or aortic valvulitis. Both of clinical and subclinical carditis are now considered a major criterion.[34][41]
  3. Subcutaneous nodules: Painless, firm collections of collagen fibers over bones or tendons. They commonly appear on the back of the wrist, the outside elbow, and the front of the knees.[citation needed]
  4. Erythema marginatum: A long-lasting reddish rash that begins on the trunk or arms as macules, which spread outward and clear in the middle to form rings, which continue to spread and coalesce with other rings, ultimately taking on a snake-like appearance. This rash typically spares the face and is made worse with heat.[citation needed]
  5. Sydenham's chorea (St. Vitus' dance): A characteristic series of involuntary rapid movements of the face and arms. This can occur very late in the disease for at least three months from onset of infection.[citation needed]

Minor criteria

  1. Arthralgia: Polyarthralgia in low-risk populations and monoarthralgia in others.[34] However, joint manifestations cannot be considered in both major and minor categories in the same patient.[34]
  2. Fever: ≥ 38.5 °C (101.3 °F) in low-incidence populations and ≥ 38 °C (100.4 °F) in high-risk populations.[34]
  3. Raised erythrocyte sedimentation rate (≥60 mm in the first hour in lox-risk populations and ≥30 mm/h in others) or C reactive protein (>3.0 mg/dL).[34]
  4. ECG showing a prolonged PR interval[34][39][42] after accounting for age variability (Cannot be included if carditis is present as a major symptom)

Prevention

Rheumatic fever can be prevented by effectively and promptly treating strep throat with antibiotics.[43]

In those who have previously had rheumatic fever, antibiotics in a preventative manner are occasionally recommended.[43] As of 2017 the evidence to support long term antibiotics in those with underlying disease is poor.[44]

The American Heart Association suggests that dental health be maintained, and that people with a history of bacterial endocarditis, a heart transplant, artificial heart valves, or "some types of congenital heart defects" may wish to consider long-term antibiotic prophylaxis.[45]

Treatment

The management of rheumatic fever is directed toward the reduction of inflammation with anti-inflammatory medications such as aspirin or corticosteroids. Individuals with positive cultures for strep throat should also be treated with antibiotics.[40]

Aspirin is the drug of choice and should be given at high doses.[46]

One should watch for side effects like gastritis and salicylate poisoning. In children and teenagers, the use of aspirin and aspirin-containing products can be associated with Reye's syndrome, a serious and potentially deadly condition. The risks, benefits, and alternative treatments must always be considered when administering aspirin and aspirin-containing products in children and teenagers. Ibuprofen for pain and discomfort and corticosteroids for moderate to severe inflammatory reactions manifested by rheumatic fever should be considered in children and teenagers.[citation needed]

Vaccine

No vaccines are currently available to protect against S. pyogenes infection, although research is underway to develop one.[47] Difficulties in developing a vaccine include the wide variety of strains of S. pyogenes present in the environment and the large amount of time and people that will be needed for appropriate trials for safety and efficacy of the vaccine.[48]

Infection

People with positive cultures for Streptococcus pyogenes should be treated with penicillin as long as allergy is not present. The use of antibiotics will not alter cardiac involvement in the development of rheumatic fever.[40] Some suggest the use of benzathine benzylpenicillin.[citation needed]

Monthly injections of long-acting penicillin must be given for a period of five years in patients having one attack of rheumatic fever. If there is evidence of carditis, the length of therapy may be up to 40 years. Another important cornerstone in treating rheumatic fever includes the continual use of low-dose antibiotics (such as penicillin, sulfadiazine, or erythromycin) to prevent recurrence.[citation needed]

Inflammation

While corticosteroids are often used, evidence to support this is poor.[1] Salicylates are useful for pain.[citation needed]

Steroids are reserved for cases where there is evidence of an involvement of the heart. The use of steroids may prevent further scarring of tissue and may prevent the development of sequelae such as mitral stenosis.[citation needed]

Heart failure

Some patients develop significant carditis which manifests as congestive heart failure. This requires the usual treatment for heart failure: ACE inhibitors, diuretics, beta blockers, and digoxin. Unlike typical heart failure, rheumatic heart failure responds well to corticosteroids.

Epidemiology

 
Deaths from rheumatic heart disease per million persons in 2012
  0–7
  8–14
  15–20
  21–25
  26–32
  33–38
  39–45
  46–52
  53–63
  64–250
 
Disability-adjusted life year for rheumatic heart disease per 100,000 inhabitants in 2004.[49]
  no data
  less than 20
  20–40
  40–60
  60–80
  80–100
  100–120
  120–140
  140–160
  160–180
  180–200
  200–330
  more than 330

About 33 million people are affected by rheumatic heart disease with an additional 47 million having asymptomatic damage to their heart valves.[44] As of 2010 globally it resulted in 345,000 deaths, down from 463,000 in 1990.[50]

In Western countries, rheumatic fever has become fairly rare since the 1960s, probably due to the widespread use of antibiotics to treat streptococcus infections. While it has been far less common in the United States since the beginning of the 20th century, there have been a few outbreaks since the 1980s.[51] The disease is most common among Indigenous Australians (particularly in central and northern Australia), Māori, and Pacific Islanders, and is also common in Sub-Saharan Africa, Latin America, the Indian Subcontinent, and North Africa.[52]

Rheumatic fever primarily affects children between ages 5 and 17 years and occurs approximately 20 days after strep throat. In up to a third of cases, the underlying strep infection may not have caused any symptoms.[citation needed]

The rate of development of rheumatic fever in individuals with untreated strep infection is estimated to be 3%. The incidence of recurrence with a subsequent untreated infection is substantially greater (about 50%).[53] The rate of development is far lower in individuals who have received antibiotic treatment. Persons who have had a case of rheumatic fever have a tendency to develop flare-ups with repeated strep infections.[citation needed]

The recurrence of rheumatic fever is relatively common in the absence of maintenance of low dose antibiotics, especially during the first three to five years after the first episode. Recurrent bouts of rheumatic fever can lead to valvular heart disease. Heart complications may be long-term and severe, particularly if valves are involved. In countries in Southeast-Asia, sub-Saharan Africa, and Oceania, the percentage of people with rheumatic heart disease detected by listening to the heart was 2.9 per 1000 children and by echocardiography it was 12.9 per 1000 children.[54][55][56][57] Echocardiographic screening among children and timely initiation of secondary antibiotic prophylaxis in children with evidence of early stages of rheumatic heart disease may be effective to reduce the burden of rheumatic heart disease in endemic regions.[58]

See also

References

  1. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac Marijon, E; Mirabel, M; Celermajer, DS; Jouven, X (10 March 2012). "Rheumatic heart disease". Lancet. 379 (9819): 953–64. doi:10.1016/S0140-6736(11)61171-9. PMID 22405798. S2CID 20197628.
  2. ^ a b c Lee, KY; Rhim, JW; Kang, JH (March 2012). "Kawasaki disease: laboratory findings and an immunopathogenesis on the premise of a "protein homeostasis system"". Yonsei Medical Journal. 53 (2): 262–75. doi:10.3349/ymj.2012.53.2.262. PMC 3282974. PMID 22318812.
  3. ^ a b "Rheumatic Fever 1997 Case Definition". cdc.gov. 3 February 2015. from the original on 19 February 2015. Retrieved 19 February 2015.
  4. ^ a b Spinks, Anneliese; Glasziou, Paul P.; Del Mar, Chris B. (9 December 2021). "Antibiotics for treatment of sore throat in children and adults". The Cochrane Database of Systematic Reviews. 2021 (12): CD000023. doi:10.1002/14651858.CD000023.pub5. ISSN 1469-493X. PMC 8655103. PMID 34881426.
  5. ^ a b GBD 2015 Mortality and Causes of Death Collaborators (8 October 2016). "Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015". Lancet. 388 (10053): 1459–1544. doi:10.1016/S0140-6736(16)31012-1. PMC 5388903. PMID 27733281.
  6. ^ Ashby, Carol Turkington, Bonnie Lee (2007). The encyclopedia of infectious diseases (3rd ed.). New York: Facts On File. p. 292. ISBN 9780816075072. from the original on 21 November 2015. The risk of severe complications is the primary concern with strep throat, and the reason why it is so important to be properly diagnosed and treated. One of the most serious complications is rheumatic fever, a disease that affects up to 3 percent of those with untreated strep infection. Rheumatic fever can lead to rheumatic heart disease.
  7. ^ GBD 2015 Disease and Injury Incidence and Prevalence Collaborators (8 October 2016). "Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015". Lancet. 388 (10053): 1545–1602. doi:10.1016/S0140-6736(16)31678-6. PMC 5055577. PMID 27733282.
  8. ^ a b Kumar, Vinay; Abbas, Abul K; Fausto, Nelson; Mitchell, Richard N (2007). Robbins Basic Pathology (8th ed.). Saunders Elsevier. pp. 403–6. ISBN 978-1-4160-2973-1.
  9. ^ GBD 2013 Mortality and Causes of Death Collaborators (17 December 2014). "Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013". Lancet. 385 (9963): 117–171. doi:10.1016/S0140-6736(14)61682-2. PMC 4340604. PMID 25530442.
  10. ^ Quinn, RW (1991). "Did scarlet fever and rheumatic fever exist in Hippocrates' time?". Reviews of Infectious Diseases. 13 (6): 1243–4. doi:10.1093/clinids/13.6.1243. PMID 1775859.
  11. ^ "" at Dorland's Medical Dictionary
  12. ^ "4.2 Biocompatibility and the Relationship to Standards: Meaning and Scope of Biomaterials Testing". Comprehensive Biomaterials II. Elsevier. 2017. pp. 7–29.
  13. ^ Abbas, Abul K.; Lichtman, Andrew H.; Baker, David L.; et al. (2004). Basic immunology: functions and disorders of the immune system (2 ed.). Philadelphia, Pennsylvania: Elsevier Saunders. ISBN 978-1-4160-2403-3.
  14. ^ "Streptococcus pyogenes – Pathogen Safety Data Sheets". Public Health Agency of Canada. 18 February 2011. from the original on 17 January 2017. Retrieved 15 April 2017.
  15. ^ Faé KC, da Silva DD, Oshiro SE, et al. (May 2006). "Mimicry in recognition of cardiac myosin peptides by heart-intralesional T cell clones from rheumatic heart disease". J. Immunol. 176 (9): 5662–70. doi:10.4049/jimmunol.176.9.5662. PMID 16622036.
  16. ^ a b Cotran, Ramzi S.; Kumar, Vinay; Fausto, Nelson; Nelso Fausto; Robbins, Stanley L.; Abbas, Abul K. (2005). . St. Louis, Mo: Elsevier Saunders. ISBN 978-0-7216-0187-8. Archived from the original on 10 September 2005.
  17. ^ Kaplan, MH; Bolande, R; Rakita, L; Blair, J (1964). "Presence of Bound Immunoglobulins and Complement in the Myocardium in Acute Rheumatic Fever. Association with Cardiac Failure". The New England Journal of Medicine. 271 (13): 637–45. doi:10.1056/NEJM196409242711301. PMID 14170842.
  18. ^ a b Brice, Edmund A. W; Commerford, Patrick J. (2005). "Rheumatic Fever and Valvular Heart Disease". In Rosendorff, Clive (ed.). Essential Cardiology: Principles and Practice. Totowa, New Jersey: Humana Press. pp. 545–563. doi:10.1007/978-1-59259-918-9_30. ISBN 978-1-59259-918-9.
  19. ^ Caldas, AM; Terreri, MT; Moises, VA; Silva, CM; Len, CA; Carvalho, AC; Hilário, MO (2008). "What is the true frequency of carditis in acute rheumatic fever? A prospective clinical and Doppler blind study of 56 children with up to 60 months of follow-up evaluation". Pediatric Cardiology. 29 (6): 1048–53. doi:10.1007/s00246-008-9242-z. PMID 18825449. S2CID 13330575.
  20. ^ Guilherme, Luiza; Kalil, Jorge; Cunningham, Madeleine (January 2006). "Molecular mimicry in the autoimmune pathogenesis of rheumatic heart disease". Autoimmunity. 39 (1): 31–39. doi:10.1080/08916930500484674. ISSN 0891-6934. PMID 16455580. S2CID 16987808.
  21. ^ Guilherme, L; Kalil, J; Cunningham, M (2006). "Molecular mimicry in the autoimmune pathogenesis of rheumatic heart disease". Autoimmunity. 39 (1): 31–9. doi:10.1080/08916930500484674. PMID 16455580. S2CID 16987808.
  22. ^ Kemeny, E; Grieve, T; Marcus, R; Sareli, P; Zabriskie, JB (1989). "Identification of mononuclear cells and T cell subsets in rheumatic valvulitis". Clinical Immunology and Immunopathology. 52 (2): 225–37. doi:10.1016/0090-1229(89)90174-8. PMID 2786783.
  23. ^ a b Roberts, S; Kosanke, S; Terrence Dunn, S; Jankelow, D; Duran, CM; Cunningham, MW (2001). "Pathogenic mechanisms in rheumatic carditis: Focus on valvular endothelium". The Journal of Infectious Diseases. 183 (3): 507–11. doi:10.1086/318076. PMID 11133385.
  24. ^ a b c Stanevicha, V; Eglite, J; Sochnevs, A; Gardovska, D; Zavadska, D; Shantere, R (2003). "HLA class II associations with rheumatic heart disease among clinically homogeneous patients in children in Latvia". Arthritis Research & Therapy. 5 (6): R340–R346. doi:10.1186/ar1000. PMC 333411. PMID 14680508.
  25. ^ Middleton, Francis M.; McGregor, Reuben; Webb, Rachel H.; Wilson, Nigel J.; Moreland, Nicole J. (1 December 2022). "Cytokine imbalance in acute rheumatic fever and rheumatic heart disease: Mechanisms and therapeutic implications". Autoimmunity Reviews. 21 (12): 103209. doi:10.1016/j.autrev.2022.103209. ISSN 1568-9972. PMID 36228998. S2CID 252865544.
  26. ^ Schafranski, MD; Pereira Ferrari, L; Scherner, D; Torres, R; Jensenius, JC; De Messias-Reason, IJ (2008). "High-producing MBL2 genotypes increase the risk of acute and chronic carditis in patients with history of rheumatic fever". Molecular Immunology. 45 (14): 3827–31. doi:10.1016/j.molimm.2008.05.013. PMID 18602696.
  27. ^ Ramasawmy, R; Spina, GS; Fae, KC; Pereira, AC; Nisihara, R; Messias Reason, IJ; Grinberg, M; Tarasoutchi, F; Kalil, J; Guilherme, L. (2008). "Association of Mannose-Binding Lectin Gene Polymorphism but Not of Mannose-Binding Serine Protease 2 with Chronic Severe Aortic Regurgitation of Rheumatic Etiology". Clinical and Vaccine Immunology. 15 (6): 932–936. doi:10.1128/CVI.00324-07. PMC 2446618. PMID 18400978.
  28. ^ Muhamed, Babu; Parks, Tom; Sliwa, Karen (March 2020). "Genetics of rheumatic fever and rheumatic heart disease". Nature Reviews Cardiology. 17 (3): 145–154. doi:10.1038/s41569-019-0258-2. hdl:10044/1/99730. ISSN 1759-5010. PMID 31519994. S2CID 202570077.
  29. ^ Dougherty, Scott; Khorsandi, Maziar; Herbst, Philip (1 January 2017). "Rheumatic heart disease screening: Current concepts and challenges". Annals of Pediatric Cardiology. 10 (1): 39–49. doi:10.4103/0974-2069.197051. ISSN 0974-2069. PMC 5241843. PMID 28163427.
  30. ^ Jones, T Duckett (1944). "The diagnosis of rheumatic fever". JAMA. 126 (8): 481–4. doi:10.1001/jama.1944.02850430015005.
  31. ^ Ferrieri, P; Jones Criteria Working, Group (2002). "Proceedings of the Jones Criteria workshop". Circulation. Jones Criteria Working Group. 106 (19): 2521–3. doi:10.1161/01.CIR.0000037745.65929.FA. PMID 12417554. from the original on 31 December 2005.
  32. ^ "Antistreptolysin O (ASO)". 24 July 2020.
  33. ^ "Anti-DNase B". 28 June 2021.
  34. ^ a b c d e f g h i j k Gewitz Michael H.; Baltimore Robert S.; Tani Lloyd Y.; Sable Craig A.; Shulman Stanford T.; Carapetis Jonathan; Remenyi Bo; Taubert Kathryn A.; Bolger Ann F.; Beerman Lee; Mayosi Bongani M. (19 May 2015). "Revision of the Jones Criteria for the Diagnosis of Acute Rheumatic Fever in the Era of Doppler Echocardiography". Circulation. 131 (20): 1806–1818. doi:10.1161/CIR.0000000000000205. PMID 25908771. S2CID 46209822.
  35. ^ Parrillo, Steven J. "Rheumatic Fever". eMedicine. DO, FACOEP, FACEP. from the original on 8 July 2007. Retrieved 14 July 2007.
  36. ^ "Guidelines for the diagnosis of rheumatic fever. Jones Criteria, 1992 update". JAMA. Special Writing Group of the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young of the American Heart Association. 268 (15): 2069–73. 1992. doi:10.1001/jama.1992.03490150121036. PMID 1404745.
  37. ^ Saxena, Anita (2000). "Diagnosis of rheumatic fever: Current status of Jones criteria and role of echocardiography". Indian Journal of Pediatrics. 67 (4): 283–6. doi:10.1007/BF02758174. PMID 11129913. S2CID 23052280.
  38. ^ Kumar, RK; Tandon, R (2013). "Rheumatic fever & rheumatic heart disease: The last 50 years". The Indian Journal of Medical Research. 137 (4): 643–658. PMC 3724245. PMID 23703332.
  39. ^ a b Ed Boon, Davidson's General Practice of Medicine, 20th edition. P. 617.
  40. ^ a b c . www.who.int. Archived from the original on 7 March 2017. Retrieved 1 February 2017.
  41. ^ a b Karthikeyan, Ganesan; Guilherme, Luiza (July 2018). "Acute rheumatic fever". The Lancet. 392 (10142): 161–174. doi:10.1016/s0140-6736(18)30999-1. ISSN 0140-6736. PMID 30025809. S2CID 51702921.
  42. ^ Aly, Ashraf (2008). "Rheumatic Fever". Core Concepts of Pediatrics. University of Texas. from the original on 24 May 2011. Retrieved 6 August 2011.
  43. ^ a b Gerber, MA; Baltimore, RS; Eaton, CB; Gewitz, M; Rowley, AH; Shulman, ST; Taubert, KA (24 March 2009). "Prevention of rheumatic fever and diagnosis and treatment of acute Streptococcal pharyngitis: a scientific statement from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee of the Council on Cardiovascular Disease in the Young, the Interdisciplinary Council on Functional Genomics and Translational Biology, and the Interdisciplinary Council on Quality of Care and Outcomes Research: endorsed by the American Academy of Pediatrics". Circulation. 119 (11): 1541–51. doi:10.1161/circulationaha.109.191959. PMID 19246689.
  44. ^ a b Nulu, S; Bukhman, G; Kwan, GF (February 2017). "Rheumatic Heart Disease: The Unfinished Global Agenda". Cardiology Clinics. 35 (1): 165–180. doi:10.1016/j.ccl.2016.08.006. PMID 27886787.
  45. ^ "What About My Child and Rheumatic Fever?" (PDF). American Heart Association. (PDF) from the original on 6 April 2013. Retrieved 23 February 2014.
  46. ^ "Aspirin Monograph for Professionals - Drugs.com". Drugs.com. American Society of Health-System Pharmacists. from the original on 25 April 2017. Retrieved 30 March 2017.
  47. ^ "Collaboration aims for rheumatic fever vaccine". sciencemediacentre.co.nz. 18 September 2014. from the original on 15 April 2017. Retrieved 16 April 2017.
  48. ^ . World Health Organization. Archived from the original on 13 May 2012. Retrieved 15 June 2012.
  49. ^ "WHO Disease and injury country estimates". World Health Organization. 2009. from the original on 2 February 2014. Retrieved 11 November 2009.
  50. ^ Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. (2012). "Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010". Lancet. 380 (9859): 2095–128. doi:10.1016/S0140-6736(12)61728-0. hdl:10536/DRO/DU:30050819. PMID 23245604. S2CID 1541253.
  51. ^ "Rheumatic fever". Medline Plus Medical Encyclopedia. NLM/NIH. from the original on 7 April 2016.
  52. ^ "Rheumatic heart disease". Menzies Institute for Medical Research. Retrieved 1 September 2018.
  53. ^ Porth, Carol (2007). Essentials of pathophysiology: concepts of altered health states. Hagerstown, MD: Lippincott Williams & Wilkins. ISBN 978-0-7817-7087-3.
  54. ^ Marijon, Eloi; Ou, Phalla; Celermajer, David S.; Ferreira, Beatriz; Mocumbi, Ana Olga; Jani, Dinesh; Paquet, Christophe; Jacob, Sophie; Sidi, Daniel (2 August 2007). "Prevalence of rheumatic heart disease detected by echocardiographic screening". The New England Journal of Medicine. 357 (5): 470–476. doi:10.1056/NEJMoa065085. ISSN 1533-4406. PMID 17671255. S2CID 28936439.
  55. ^ Rothenbühler, Martina; O'Sullivan, Crochan J.; Stortecky, Stefan; Stefanini, Giulio G.; Spitzer, Ernest; Estill, Janne; Shrestha, Nikesh R.; Keiser, Olivia; Jüni, Peter (1 December 2014). "Active surveillance for rheumatic heart disease in endemic regions: a systematic review and meta-analysis of prevalence among children and adolescents" (PDF). The Lancet Global Health. 2 (12): e717–726. doi:10.1016/S2214-109X(14)70310-9. ISSN 2214-109X. PMID 25433627.
  56. ^ Shrestha NR; Karki P; Mahto R; et al. (2 March 2016). "Prevalence of subclinical rheumatic heart disease in eastern nepal: A school-based cross-sectional study". JAMA Cardiology. 1 (1): 89–96. doi:10.1001/jamacardio.2015.0292. ISSN 2380-6583. PMID 27437661.
  57. ^ Beaton, Andrea; Okello, Emmy; Lwabi, Peter; Mondo, Charles; McCarter, Robert; Sable, Craig (26 June 2012). "Echocardiography screening for rheumatic heart disease in Ugandan schoolchildren". Circulation. 125 (25): 3127–3132. doi:10.1161/CIRCULATIONAHA.112.092312. ISSN 1524-4539. PMID 22626741.
  58. ^ Karki, Prahlad; Uranw, Surendra; Bastola, Santosh; Mahato, Rajan; Shrestha, Nikesh Raj; Sherpa, Kunjang; et al. (2021). "Effectiveness of Systematic Echocardiographic Screening for Rheumatic Heart Disease in Nepalese Schoolchildren: A Cluster Randomized Clinical Trial". JAMA Cardiology. 6 (4): 420–426. doi:10.1001/jamacardio.2020.7050. ISSN 2380-6583. PMC 7818193. PMID 33471029.

External links

  • . Archived from the original on 4 August 2017.

rheumatic, fever, inflammatory, disease, that, involve, heart, joints, skin, brain, disease, typically, develops, four, weeks, after, streptococcal, throat, infection, signs, symptoms, include, fever, multiple, painful, joints, involuntary, muscle, movements, . Rheumatic fever RF is an inflammatory disease that can involve the heart joints skin and brain 1 The disease typically develops two to four weeks after a streptococcal throat infection 2 Signs and symptoms include fever multiple painful joints involuntary muscle movements and occasionally a characteristic non itchy rash known as erythema marginatum 1 The heart is involved in about half of the cases 1 Damage to the heart valves known as rheumatic heart disease RHD usually occurs after repeated attacks but can sometimes occur after one 1 The damaged valves may result in heart failure atrial fibrillation and infection of the valves 1 Rheumatic feverOther namesAcute rheumatic fever ARF Rheumatic heart disease at autopsy with characteristic findings thickened mitral valve thickened chordae tendineae hypertrophied left ventricular myocardium SpecialtyCardiologySymptomsFever multiple painful joints involuntary muscle movements erythema marginatum 1 ComplicationsRheumatic heart disease heart failure atrial fibrillation infection of the valves 1 Usual onset2 4 weeks after a streptococcal throat infection age 5 14 years 2 CausesAutoimmune disease triggered by Streptococcus pyogenes 1 Risk factorsGenetics malnutrition poverty 1 Diagnostic methodBased on symptoms and infection history 3 PreventionAntibiotics for strep throat improved sanitation 1 4 TreatmentProlonged periods of antibiotics valve replacement surgery valve repair 1 Frequency325 000 children a year 1 Deaths319 400 2015 5 Rheumatic fever may occur following an infection of the throat by the bacterium Streptococcus pyogenes 1 If the infection is left untreated rheumatic fever occurs in up to three percent of people 6 The underlying mechanism is believed to involve the production of antibodies against a person s own tissues 1 Due to their genetics some people are more likely to get the disease when exposed to the bacteria than others 1 Other risk factors include malnutrition and poverty 1 Diagnosis of RF is often based on the presence of signs and symptoms in combination with evidence of a recent streptococcal infection 3 Treating people who have strep throat with antibiotics such as penicillin decreases the risk of developing rheumatic fever 4 In order to avoid antibiotic misuse this often involves testing people with sore throats for the infection however testing might not be available in the developing world 1 Other preventive measures include improved sanitation 1 In those with rheumatic fever and rheumatic heart disease prolonged periods of antibiotics are sometimes recommended 1 Gradual return to normal activities may occur following an attack 1 Once RHD develops treatment is more difficult 1 Occasionally valve replacement surgery or valve repair is required 1 Otherwise complications are treated as usual 1 Rheumatic fever occurs in about 325 000 children each year and about 33 4 million people currently have rheumatic heart disease 1 7 Those who develop RF are most often between the ages of 5 and 14 1 with 20 of first time attacks occurring in adults 8 The disease is most common in the developing world and among indigenous peoples in the developed world 1 In 2015 it resulted in 319 400 deaths down from 374 000 deaths in 1990 5 9 Most deaths occur in the developing world where as many as 12 5 of people affected may die each year 1 Descriptions of the condition are believed to date back to at least the 5th century BCE in the writings of Hippocrates 10 The disease is so named because its symptoms are similar to those of some rheumatic disorders 11 Contents 1 Signs and symptoms 2 Pathophysiology 2 1 Rheumatic heart disease 3 Diagnosis 3 1 Major criteria 4 Prevention 5 Treatment 5 1 Vaccine 5 2 Infection 5 3 Inflammation 5 4 Heart failure 6 Epidemiology 7 See also 8 References 9 External linksSigns and symptoms Edit A culture positive case of streptococcal pharyngitis with typical tonsillar exudate in a 16 year old The disease typically develops two to four weeks after a throat infection 2 Symptoms include fever painful joints with those joints affected changing with time involuntary muscle movements and occasionally a characteristic non itchy rash known as erythema marginatum The heart is involved in about half of the cases Damage to the heart valves usually occurs only after multiple attacks but may occasionally occur after a single case of RF The damaged valves may result in heart failure and also increase the risk of atrial fibrillation and infection of the valves 1 Pathophysiology EditRheumatic fever is a systemic disease affecting the connective tissue around arterioles and can occur after an untreated strep throat infection specifically due to group A streptococcus GAS Streptococcus pyogenes The similarity between antigens of Streptococcus pyogenes and multiple cardiac proteins can cause a life threatening type II hypersensitivity reaction 12 Usually self reactive B cells remain anergic in the periphery without T cell co stimulation During a streptococcal infection mature antigen presenting cells such as B cells present the bacterial antigen to CD4 T cells which differentiate into helper T2 cells Helper T2 cells subsequently activate the B cells to become plasma cells and induce the production of antibodies against the cell wall of Streptococcus However the antibodies may also react against the myocardium and joints 13 producing the symptoms of rheumatic fever S pyogenes is a species of aerobic cocci gram positive bacteria that are non motile non spore forming and forms chains and large colonies 14 S pyogenes has a cell wall composed of branched polymers which sometimes contain M protein a virulence factor that is highly antigenic The antibodies which the immune system generates against the M protein may cross react with heart muscle cell protein myosin 15 heart muscle glycogen and smooth muscle cells of arteries inducing cytokine release and tissue destruction However the only proven cross reaction is with perivascular connective tissue citation needed This inflammation occurs through direct attachment of complement and Fc receptor mediated recruitment of neutrophils and macrophages Characteristic Aschoff bodies composed of swollen eosinophilic collagen surrounded by lymphocytes and macrophages can be seen on light microscopy The larger macrophages may become Anitschkow cells or Aschoff giant cells Rheumatic valvular lesions may also involve a cell mediated immunity reaction as these lesions predominantly contain T helper cells and macrophages 16 In rheumatic fever these lesions can be found in any layer of the heart causing different types of carditis The inflammation may cause a serofibrinous pericardial exudate described as bread and butter pericarditis which usually resolves without sequelae Involvement of the endocardium typically results in fibrinoid necrosis and wart formation along the lines of closure of the left sided heart valves Warty projections arise from the deposition while subendocardial lesions may induce irregular thickenings called MacCallum plaques citation needed Rheumatic heart disease Edit Pathophysiology of rheumatic heart disease Micrograph showing an Aschoff body right of image as seen in rheumatic heart disease H amp E stain Chronic rheumatic heart disease RHD is characterized by repeated inflammation with fibrinous repair The cardinal anatomic changes of the valve include leaflet thickening commissural fusion and shortening and thickening of the tendinous cords 16 It is caused by an autoimmune reaction to Group A b hemolytic streptococci GAS that results in valvular damage 17 Fibrosis and scarring of valve leaflets commissures and cusps leads to abnormalities that can result in valve stenosis or regurgitation 18 The inflammation caused by rheumatic fever usually during childhood is referred to as rheumatic valvulitis About half of patients with rheumatic fever develop inflammation involving valvular endothelium 19 The majority of morbidity and mortality associated with rheumatic fever is caused by its destructive effects on cardiac valve tissue 18 The complicated pathogenesis of RHD is not fully understood though it has been observed to use molecular mimicry via group A streptococci carbohydrates and genetic predisposition involving HLA Class II genes that trigger autoimmune reactions 20 Molecular mimicry occurs when epitopes are shared between host antigens and Streptococcus antigens 21 This causes an autoimmune reaction against native tissues in the heart that are incorrectly recognized as foreign due to the cross reactivity of antibodies generated as a result of epitope sharing The valvular endothelium is a prominent site of lymphocyte induced damage CD4 T cells are the major effectors of heart tissue autoimmune reactions in RHD 22 Normally T cell activation is triggered by the presentation of bacterial antigens In RHD molecular mimicry results in incorrect T cell activation and these T lymphocytes can go on to activate B cells which will begin to produce self antigen specific antibodies This leads to an immune response attack mounted against tissues in the heart that have been misidentified as pathogens Rheumatic valves display increased expression of VCAM 1 a protein that mediates the adhesion of lymphocytes 23 Self antigen specific antibodies generated via molecular mimicry between human proteins and streptococcal antigens up regulate VCAM 1 after binding to the valvular endothelium This leads to the inflammation and valve scarring observed in rheumatic valvulitis mainly due to CD4 T cell infiltration 23 While the mechanisms of genetic predisposition remain unclear a few genetic factors have been found to increase susceptibility to autoimmune reactions in RHD The dominant contributors are a component of MHC class II molecules found on lymphocytes and antigen presenting cells specifically the DR and DQ alleles on human chromosome 6 24 Certain allele combinations appear to increase RHD autoimmune susceptibility Human leukocyte antigen HLA class II allele DR7 HLA DR7 is most often associated with RHD and its combination with certain DQ alleles is seemingly associated with the development of valvular lesions 24 The mechanism by which MHC class II molecules increase a host s susceptibility to autoimmune reactions in RHD is unknown but it is likely related to the role HLA molecules play in presenting antigens to T cell receptors thus triggering an immune response Also found on human chromosome 6 is the cytokine TNF a which is also associated with RHD 24 High expression levels of TNF a may exacerbate valvular tissue inflammation because as this cytokine circulates in the bloodstream it triggers the activation of multiple pathways that stimulate further pro inflammatory cytokine secretion 25 Mannose binding lectin MBL is an inflammatory protein involved in pathogen recognition Different variants of MBL2 gene regions are associated in RHD RHD induced mitral valve stenosis has been associated with MBL2 alleles encoding for high production of MBL 26 Aortic valve regurgitation in RHD patients has been associated with different MBL2 alleles that encode for low production of MBL 27 In addition the allele IGHV4 61 located on chromosome 14 which helps code for the immunoglobulin heavy chain IgH is linked to greater susceptibility to RHD because it may affect protein structure of the IgH 28 Other genes are also being investigated to better understand the complexity of autoimmune reactions that occur in RHD citation needed Diagnosis Edit Streptococcus pyogenes bacteria Pappenheim s stain the trigger for rheumatic fever The original method of diagnosing rheumatic heart disease was through heart auscultation specifically listening for the sound of blood regurgitation from possibly dysfunctional valves However studies have shown that echocardiography is much more efficient in detecting RHD due to its high sensitivity An echocardiogram has the ability to detect signs of RHD before the development of more obvious symptoms such as tissue scarring and stenosis 29 Modified Jones criteria were first published in 1944 by T Duckett Jones MD 30 They have been periodically revised by the American Heart Association in collaboration with other groups 31 According to revised Jones criteria the diagnosis of rheumatic fever can be made when two of the major criteria or one major criterion plus two minor criteria are present along with evidence of streptococcal infection elevated or rising antistreptolysin O titre 32 or anti DNase B 8 33 A recurrent episode is also diagnosed when three minor criteria are present 34 Exceptions are chorea and indolent carditis each of which by itself can indicate rheumatic fever 35 36 37 An April 2013 review article in the Indian Journal of Medical Research stated that echocardiographic and Doppler E amp D studies despite some reservations about their utility have identified a massive burden of rheumatic heart disease which suggests the inadequacy of the 1992 Jones criteria E amp D studies have identified subclinical carditis in patients with rheumatic fever as well as in follow ups of rheumatic heart disease patients who initially presented as having isolated cases of Sydenham s chorea 38 Signs of a preceding streptococcal infection include recent scarlet fever raised antistreptolysin O or other streptococcal antibody titre or positive throat culture 39 The last revision of 2015 suggested variable diagnostic criteria in low risk and high risk populations to avoid overdiagnosis in the first category and underdiagnosis in the last one 34 Low risk populations were defined as those with acute rheumatic fever annual incidence 2 per 100 000 school aged children or all age rheumatic heart disease prevalence of 1 per 1000 34 All other populations were categorised as having a moderate or high risk 34 Major criteria Edit Joint manifestations are the unique clinical signs that have different implications for different population risk categories Only polyarthritis 40 a temporary migrating inflammation of the large joints usually starting in the legs and migrating upwards is considered as a major criterion in low risk populations whereas monoarthritis polyarthritis and polyarthralgia joint pain without swelling are all included as major criteria in high risk populations 34 Carditis Carditis can involve the pericardium pericarditis which resolves without sequelae some regions of the myocardium which might not provoke systolic dysfunction and more consistently the endocardium in the form of valvulitis 41 Carditis is diagnosed clinically palpitations shortness of breath heart failure or a new heart murmur or by echocardiography Doppler studies revealing mitral or aortic valvulitis Both of clinical and subclinical carditis are now considered a major criterion 34 41 Subcutaneous nodules Painless firm collections of collagen fibers over bones or tendons They commonly appear on the back of the wrist the outside elbow and the front of the knees citation needed Erythema marginatum A long lasting reddish rash that begins on the trunk or arms as macules which spread outward and clear in the middle to form rings which continue to spread and coalesce with other rings ultimately taking on a snake like appearance This rash typically spares the face and is made worse with heat citation needed Sydenham s chorea St Vitus dance A characteristic series of involuntary rapid movements of the face and arms This can occur very late in the disease for at least three months from onset of infection citation needed Minor criteria Arthralgia Polyarthralgia in low risk populations and monoarthralgia in others 34 However joint manifestations cannot be considered in both major and minor categories in the same patient 34 Fever 38 5 C 101 3 F in low incidence populations and 38 C 100 4 F in high risk populations 34 Raised erythrocyte sedimentation rate 60 mm in the first hour in lox risk populations and 30 mm h in others or C reactive protein gt 3 0 mg dL 34 ECG showing a prolonged PR interval 34 39 42 after accounting for age variability Cannot be included if carditis is present as a major symptom Prevention EditRheumatic fever can be prevented by effectively and promptly treating strep throat with antibiotics 43 In those who have previously had rheumatic fever antibiotics in a preventative manner are occasionally recommended 43 As of 2017 the evidence to support long term antibiotics in those with underlying disease is poor 44 The American Heart Association suggests that dental health be maintained and that people with a history of bacterial endocarditis a heart transplant artificial heart valves or some types of congenital heart defects may wish to consider long term antibiotic prophylaxis 45 Treatment EditThe management of rheumatic fever is directed toward the reduction of inflammation with anti inflammatory medications such as aspirin or corticosteroids Individuals with positive cultures for strep throat should also be treated with antibiotics 40 Aspirin is the drug of choice and should be given at high doses 46 One should watch for side effects like gastritis and salicylate poisoning In children and teenagers the use of aspirin and aspirin containing products can be associated with Reye s syndrome a serious and potentially deadly condition The risks benefits and alternative treatments must always be considered when administering aspirin and aspirin containing products in children and teenagers Ibuprofen for pain and discomfort and corticosteroids for moderate to severe inflammatory reactions manifested by rheumatic fever should be considered in children and teenagers citation needed Vaccine Edit No vaccines are currently available to protect against S pyogenes infection although research is underway to develop one 47 Difficulties in developing a vaccine include the wide variety of strains of S pyogenes present in the environment and the large amount of time and people that will be needed for appropriate trials for safety and efficacy of the vaccine 48 Infection Edit People with positive cultures for Streptococcus pyogenes should be treated with penicillin as long as allergy is not present The use of antibiotics will not alter cardiac involvement in the development of rheumatic fever 40 Some suggest the use of benzathine benzylpenicillin citation needed Monthly injections of long acting penicillin must be given for a period of five years in patients having one attack of rheumatic fever If there is evidence of carditis the length of therapy may be up to 40 years Another important cornerstone in treating rheumatic fever includes the continual use of low dose antibiotics such as penicillin sulfadiazine or erythromycin to prevent recurrence citation needed Inflammation Edit While corticosteroids are often used evidence to support this is poor 1 Salicylates are useful for pain citation needed Steroids are reserved for cases where there is evidence of an involvement of the heart The use of steroids may prevent further scarring of tissue and may prevent the development of sequelae such as mitral stenosis citation needed Heart failure Edit Some patients develop significant carditis which manifests as congestive heart failure This requires the usual treatment for heart failure ACE inhibitors diuretics beta blockers and digoxin Unlike typical heart failure rheumatic heart failure responds well to corticosteroids Epidemiology Edit Deaths from rheumatic heart disease per million persons in 2012 0 7 8 14 15 20 21 25 26 32 33 38 39 45 46 52 53 63 64 250 Disability adjusted life year for rheumatic heart disease per 100 000 inhabitants in 2004 49 no data less than 20 20 40 40 60 60 80 80 100 100 120 120 140 140 160 160 180 180 200 200 330 more than 330 About 33 million people are affected by rheumatic heart disease with an additional 47 million having asymptomatic damage to their heart valves 44 As of 2010 globally it resulted in 345 000 deaths down from 463 000 in 1990 50 In Western countries rheumatic fever has become fairly rare since the 1960s probably due to the widespread use of antibiotics to treat streptococcus infections While it has been far less common in the United States since the beginning of the 20th century there have been a few outbreaks since the 1980s 51 The disease is most common among Indigenous Australians particularly in central and northern Australia Maori and Pacific Islanders and is also common in Sub Saharan Africa Latin America the Indian Subcontinent and North Africa 52 Rheumatic fever primarily affects children between ages 5 and 17 years and occurs approximately 20 days after strep throat In up to a third of cases the underlying strep infection may not have caused any symptoms citation needed The rate of development of rheumatic fever in individuals with untreated strep infection is estimated to be 3 The incidence of recurrence with a subsequent untreated infection is substantially greater about 50 53 The rate of development is far lower in individuals who have received antibiotic treatment Persons who have had a case of rheumatic fever have a tendency to develop flare ups with repeated strep infections citation needed The recurrence of rheumatic fever is relatively common in the absence of maintenance of low dose antibiotics especially during the first three to five years after the first episode Recurrent bouts of rheumatic fever can lead to valvular heart disease Heart complications may be long term and severe particularly if valves are involved In countries in Southeast Asia sub Saharan Africa and Oceania the percentage of people with rheumatic heart disease detected by listening to the heart was 2 9 per 1000 children and by echocardiography it was 12 9 per 1000 children 54 55 56 57 Echocardiographic screening among children and timely initiation of secondary antibiotic prophylaxis in children with evidence of early stages of rheumatic heart disease may be effective to reduce the burden of rheumatic heart disease in endemic regions 58 See also EditRapid strep testReferences Edit a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac Marijon E Mirabel M Celermajer DS Jouven X 10 March 2012 Rheumatic heart disease Lancet 379 9819 953 64 doi 10 1016 S0140 6736 11 61171 9 PMID 22405798 S2CID 20197628 a b c Lee KY Rhim JW Kang JH March 2012 Kawasaki disease laboratory findings and an immunopathogenesis on the premise of a protein homeostasis system Yonsei Medical Journal 53 2 262 75 doi 10 3349 ymj 2012 53 2 262 PMC 3282974 PMID 22318812 a b Rheumatic Fever 1997 Case Definition cdc gov 3 February 2015 Archived from the original on 19 February 2015 Retrieved 19 February 2015 a b Spinks Anneliese Glasziou Paul P Del Mar Chris B 9 December 2021 Antibiotics for treatment of sore throat in children and adults The Cochrane Database of Systematic Reviews 2021 12 CD000023 doi 10 1002 14651858 CD000023 pub5 ISSN 1469 493X PMC 8655103 PMID 34881426 a b GBD 2015 Mortality and Causes of Death Collaborators 8 October 2016 Global regional and national life expectancy all cause mortality and cause specific mortality for 249 causes of death 1980 2015 a systematic analysis for the Global Burden of Disease Study 2015 Lancet 388 10053 1459 1544 doi 10 1016 S0140 6736 16 31012 1 PMC 5388903 PMID 27733281 Ashby Carol Turkington Bonnie Lee 2007 The encyclopedia of infectious diseases 3rd ed New York Facts On File p 292 ISBN 9780816075072 Archived from the original on 21 November 2015 The risk of severe complications is the primary concern with strep throat and the reason why it is so important to be properly diagnosed and treated One of the most serious complications is rheumatic fever a disease that affects up to 3 percent of those with untreated strep infection Rheumatic fever can lead to rheumatic heart disease GBD 2015 Disease and Injury Incidence and Prevalence Collaborators 8 October 2016 Global regional and national incidence prevalence and years lived with disability for 310 diseases and injuries 1990 2015 a systematic analysis for the Global Burden of Disease Study 2015 Lancet 388 10053 1545 1602 doi 10 1016 S0140 6736 16 31678 6 PMC 5055577 PMID 27733282 a b Kumar Vinay Abbas Abul K Fausto Nelson Mitchell Richard N 2007 Robbins Basic Pathology 8th ed Saunders Elsevier pp 403 6 ISBN 978 1 4160 2973 1 GBD 2013 Mortality and Causes of Death Collaborators 17 December 2014 Global regional and national age sex specific all cause and cause specific mortality for 240 causes of death 1990 2013 a systematic analysis for the Global Burden of Disease Study 2013 Lancet 385 9963 117 171 doi 10 1016 S0140 6736 14 61682 2 PMC 4340604 PMID 25530442 Quinn RW 1991 Did scarlet fever and rheumatic fever exist in Hippocrates time Reviews of Infectious Diseases 13 6 1243 4 doi 10 1093 clinids 13 6 1243 PMID 1775859 rheumatic fever at Dorland s Medical Dictionary 4 2 Biocompatibility and the Relationship to Standards Meaning and Scope of Biomaterials Testing Comprehensive Biomaterials II Elsevier 2017 pp 7 29 Abbas Abul K Lichtman Andrew H Baker David L et al 2004 Basic immunology functions and disorders of the immune system 2 ed Philadelphia Pennsylvania Elsevier Saunders ISBN 978 1 4160 2403 3 Streptococcus pyogenes Pathogen Safety Data Sheets Public Health Agency of Canada 18 February 2011 Archived from the original on 17 January 2017 Retrieved 15 April 2017 Fae KC da Silva DD Oshiro SE et al May 2006 Mimicry in recognition of cardiac myosin peptides by heart intralesional T cell clones from rheumatic heart disease J Immunol 176 9 5662 70 doi 10 4049 jimmunol 176 9 5662 PMID 16622036 a b Cotran Ramzi S Kumar Vinay Fausto Nelson Nelso Fausto Robbins Stanley L Abbas Abul K 2005 Robbins and Cotran pathologic basis of disease St Louis Mo Elsevier Saunders ISBN 978 0 7216 0187 8 Archived from the original on 10 September 2005 Kaplan MH Bolande R Rakita L Blair J 1964 Presence of Bound Immunoglobulins and Complement in the Myocardium in Acute Rheumatic Fever Association with Cardiac Failure The New England Journal of Medicine 271 13 637 45 doi 10 1056 NEJM196409242711301 PMID 14170842 a b Brice Edmund A W Commerford Patrick J 2005 Rheumatic Fever and Valvular Heart Disease In Rosendorff Clive ed Essential Cardiology Principles and Practice Totowa New Jersey Humana Press pp 545 563 doi 10 1007 978 1 59259 918 9 30 ISBN 978 1 59259 918 9 Caldas AM Terreri MT Moises VA Silva CM Len CA Carvalho AC Hilario MO 2008 What is the true frequency of carditis in acute rheumatic fever A prospective clinical and Doppler blind study of 56 children with up to 60 months of follow up evaluation Pediatric Cardiology 29 6 1048 53 doi 10 1007 s00246 008 9242 z PMID 18825449 S2CID 13330575 Guilherme Luiza Kalil Jorge Cunningham Madeleine January 2006 Molecular mimicry in the autoimmune pathogenesis of rheumatic heart disease Autoimmunity 39 1 31 39 doi 10 1080 08916930500484674 ISSN 0891 6934 PMID 16455580 S2CID 16987808 Guilherme L Kalil J Cunningham M 2006 Molecular mimicry in the autoimmune pathogenesis of rheumatic heart disease Autoimmunity 39 1 31 9 doi 10 1080 08916930500484674 PMID 16455580 S2CID 16987808 Kemeny E Grieve T Marcus R Sareli P Zabriskie JB 1989 Identification of mononuclear cells and T cell subsets in rheumatic valvulitis Clinical Immunology and Immunopathology 52 2 225 37 doi 10 1016 0090 1229 89 90174 8 PMID 2786783 a b Roberts S Kosanke S Terrence Dunn S Jankelow D Duran CM Cunningham MW 2001 Pathogenic mechanisms in rheumatic carditis Focus on valvular endothelium The Journal of Infectious Diseases 183 3 507 11 doi 10 1086 318076 PMID 11133385 a b c Stanevicha V Eglite J Sochnevs A Gardovska D Zavadska D Shantere R 2003 HLA class II associations with rheumatic heart disease among clinically homogeneous patients in children in Latvia Arthritis Research amp Therapy 5 6 R340 R346 doi 10 1186 ar1000 PMC 333411 PMID 14680508 Middleton Francis M McGregor Reuben Webb Rachel H Wilson Nigel J Moreland Nicole J 1 December 2022 Cytokine imbalance in acute rheumatic fever and rheumatic heart disease Mechanisms and therapeutic implications Autoimmunity Reviews 21 12 103209 doi 10 1016 j autrev 2022 103209 ISSN 1568 9972 PMID 36228998 S2CID 252865544 Schafranski MD Pereira Ferrari L Scherner D Torres R Jensenius JC De Messias Reason IJ 2008 High producing MBL2 genotypes increase the risk of acute and chronic carditis in patients with history of rheumatic fever Molecular Immunology 45 14 3827 31 doi 10 1016 j molimm 2008 05 013 PMID 18602696 Ramasawmy R Spina GS Fae KC Pereira AC Nisihara R Messias Reason IJ Grinberg M Tarasoutchi F Kalil J Guilherme L 2008 Association of Mannose Binding Lectin Gene Polymorphism but Not of Mannose Binding Serine Protease 2 with Chronic Severe Aortic Regurgitation of Rheumatic Etiology Clinical and Vaccine Immunology 15 6 932 936 doi 10 1128 CVI 00324 07 PMC 2446618 PMID 18400978 Muhamed Babu Parks Tom Sliwa Karen March 2020 Genetics of rheumatic fever and rheumatic heart disease Nature Reviews Cardiology 17 3 145 154 doi 10 1038 s41569 019 0258 2 hdl 10044 1 99730 ISSN 1759 5010 PMID 31519994 S2CID 202570077 Dougherty Scott Khorsandi Maziar Herbst Philip 1 January 2017 Rheumatic heart disease screening Current concepts and challenges Annals of Pediatric Cardiology 10 1 39 49 doi 10 4103 0974 2069 197051 ISSN 0974 2069 PMC 5241843 PMID 28163427 Jones T Duckett 1944 The diagnosis of rheumatic fever JAMA 126 8 481 4 doi 10 1001 jama 1944 02850430015005 Ferrieri P Jones Criteria Working Group 2002 Proceedings of the Jones Criteria workshop Circulation Jones Criteria Working Group 106 19 2521 3 doi 10 1161 01 CIR 0000037745 65929 FA PMID 12417554 Archived from the original on 31 December 2005 Antistreptolysin O ASO 24 July 2020 Anti DNase B 28 June 2021 a b c d e f g h i j k Gewitz Michael H Baltimore Robert S Tani Lloyd Y Sable Craig A Shulman Stanford T Carapetis Jonathan Remenyi Bo Taubert Kathryn A Bolger Ann F Beerman Lee Mayosi Bongani M 19 May 2015 Revision of the Jones Criteria for the Diagnosis of Acute Rheumatic Fever in the Era of Doppler Echocardiography Circulation 131 20 1806 1818 doi 10 1161 CIR 0000000000000205 PMID 25908771 S2CID 46209822 Parrillo Steven J Rheumatic Fever eMedicine DO FACOEP FACEP Archived from the original on 8 July 2007 Retrieved 14 July 2007 Guidelines for the diagnosis of rheumatic fever Jones Criteria 1992 update JAMA Special Writing Group of the Committee on Rheumatic Fever Endocarditis and Kawasaki Disease of the Council on Cardiovascular Disease in the Young of the American Heart Association 268 15 2069 73 1992 doi 10 1001 jama 1992 03490150121036 PMID 1404745 Saxena Anita 2000 Diagnosis of rheumatic fever Current status of Jones criteria and role of echocardiography Indian Journal of Pediatrics 67 4 283 6 doi 10 1007 BF02758174 PMID 11129913 S2CID 23052280 Kumar RK Tandon R 2013 Rheumatic fever amp rheumatic heart disease The last 50 years The Indian Journal of Medical Research 137 4 643 658 PMC 3724245 PMID 23703332 a b Ed Boon Davidson s General Practice of Medicine 20th edition P 617 a b c WHO Rheumatic fever and rheumatic heart disease www who int Archived from the original on 7 March 2017 Retrieved 1 February 2017 a b Karthikeyan Ganesan Guilherme Luiza July 2018 Acute rheumatic fever The Lancet 392 10142 161 174 doi 10 1016 s0140 6736 18 30999 1 ISSN 0140 6736 PMID 30025809 S2CID 51702921 Aly Ashraf 2008 Rheumatic Fever Core Concepts of Pediatrics University of Texas Archived from the original on 24 May 2011 Retrieved 6 August 2011 a b Gerber MA Baltimore RS Eaton CB Gewitz M Rowley AH Shulman ST Taubert KA 24 March 2009 Prevention of rheumatic fever and diagnosis and treatment of acute Streptococcal pharyngitis a scientific statement from the American Heart Association Rheumatic Fever Endocarditis and Kawasaki Disease Committee of the Council on Cardiovascular Disease in the Young the Interdisciplinary Council on Functional Genomics and Translational Biology and the Interdisciplinary Council on Quality of Care and Outcomes Research endorsed by the American Academy of Pediatrics Circulation 119 11 1541 51 doi 10 1161 circulationaha 109 191959 PMID 19246689 a b Nulu S Bukhman G Kwan GF February 2017 Rheumatic Heart Disease The Unfinished Global Agenda Cardiology Clinics 35 1 165 180 doi 10 1016 j ccl 2016 08 006 PMID 27886787 What About My Child and Rheumatic Fever PDF American Heart Association Archived PDF from the original on 6 April 2013 Retrieved 23 February 2014 Aspirin Monograph for Professionals Drugs com Drugs com American Society of Health System Pharmacists Archived from the original on 25 April 2017 Retrieved 30 March 2017 Collaboration aims for rheumatic fever vaccine sciencemediacentre co nz 18 September 2014 Archived from the original on 15 April 2017 Retrieved 16 April 2017 Initiative for Vaccine Research IVR Group A Streptococcus World Health Organization Archived from the original on 13 May 2012 Retrieved 15 June 2012 WHO Disease and injury country estimates World Health Organization 2009 Archived from the original on 2 February 2014 Retrieved 11 November 2009 Lozano R Naghavi M Foreman K Lim S Shibuya K Aboyans V et al 2012 Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010 a systematic analysis for the Global Burden of Disease Study 2010 Lancet 380 9859 2095 128 doi 10 1016 S0140 6736 12 61728 0 hdl 10536 DRO DU 30050819 PMID 23245604 S2CID 1541253 Rheumatic fever Medline Plus Medical Encyclopedia NLM NIH Archived from the original on 7 April 2016 Rheumatic heart disease Menzies Institute for Medical Research Retrieved 1 September 2018 Porth Carol 2007 Essentials of pathophysiology concepts of altered health states Hagerstown MD Lippincott Williams amp Wilkins ISBN 978 0 7817 7087 3 Marijon Eloi Ou Phalla Celermajer David S Ferreira Beatriz Mocumbi Ana Olga Jani Dinesh Paquet Christophe Jacob Sophie Sidi Daniel 2 August 2007 Prevalence of rheumatic heart disease detected by echocardiographic screening The New England Journal of Medicine 357 5 470 476 doi 10 1056 NEJMoa065085 ISSN 1533 4406 PMID 17671255 S2CID 28936439 Rothenbuhler Martina O Sullivan Crochan J Stortecky Stefan Stefanini Giulio G Spitzer Ernest Estill Janne Shrestha Nikesh R Keiser Olivia Juni Peter 1 December 2014 Active surveillance for rheumatic heart disease in endemic regions a systematic review and meta analysis of prevalence among children and adolescents PDF The Lancet Global Health 2 12 e717 726 doi 10 1016 S2214 109X 14 70310 9 ISSN 2214 109X PMID 25433627 Shrestha NR Karki P Mahto R et al 2 March 2016 Prevalence of subclinical rheumatic heart disease in eastern nepal A school based cross sectional study JAMA Cardiology 1 1 89 96 doi 10 1001 jamacardio 2015 0292 ISSN 2380 6583 PMID 27437661 Beaton Andrea Okello Emmy Lwabi Peter Mondo Charles McCarter Robert Sable Craig 26 June 2012 Echocardiography screening for rheumatic heart disease in Ugandan schoolchildren Circulation 125 25 3127 3132 doi 10 1161 CIRCULATIONAHA 112 092312 ISSN 1524 4539 PMID 22626741 Karki Prahlad Uranw Surendra Bastola Santosh Mahato Rajan Shrestha Nikesh Raj Sherpa Kunjang et al 2021 Effectiveness of Systematic Echocardiographic Screening for Rheumatic Heart Disease in Nepalese Schoolchildren A Cluster Randomized Clinical Trial JAMA Cardiology 6 4 420 426 doi 10 1001 jamacardio 2020 7050 ISSN 2380 6583 PMC 7818193 PMID 33471029 External links Edit Jones major criteria Archived from the original on 4 August 2017 Retrieved from https en wikipedia org w index php title Rheumatic fever amp oldid 1128925421, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.