fbpx
Wikipedia

Polymer-bonded explosive

Polymer-bonded explosives, also called PBX or plastic-bonded explosives, are explosive materials in which explosive powder is bound together in a matrix using small quantities (typically 5–10% by weight) of a synthetic polymer. PBXs are normally used for explosive materials that are not easily melted into a casting, or are otherwise difficult to form.

PBX was first developed in 1952 at Los Alamos National Laboratory, as RDX embedded in polystyrene with dioctyl phthalate plasticizer. HMX compositions with teflon-based binders were developed in 1960s and 1970s for gun shells and for Apollo Lunar Surface Experiments Package (ALSEP) seismic experiments,[1] although the latter experiments are usually cited as using hexanitrostilbene (HNS).[2]

Potential advantages edit

Polymer-bonded explosives have several potential advantages:

  • If the polymer matrix is an elastomer (rubbery material), it tends to absorb shocks, making the PBX very insensitive to accidental detonation, and thus ideal for insensitive munitions.
  • Hard polymers can produce PBX that is very rigid and maintains a precise engineering shape even under severe stress.
  • PBX powders can be pressed into a desired shape at room temperature; casting normally requires hazardous melting of the explosive. High pressure pressing can achieve density for the material very close to the theoretical crystal density of the base explosive material.
  • Many PBXes are safe to machine; turning solid blocks into complex three-dimensional shapes. For example, a billet of PBX can be precisely shaped on a lathe or CNC machine. This technique is used to machine explosive lenses necessary for modern nuclear weapons.[3]

Binders edit

Fluoropolymers edit

Fluoropolymers are advantageous as binders due to their high density (yielding high detonation velocity) and inert chemical behavior (yielding long shelf stability and low aging). They are somewhat brittle, as their glass transition temperature is at room temperature or above. This limits their use to insensitive explosives (e.g. TATB) where the brittleness does not have detrimental effects on safety. They are also difficult to process.[4]

Elastomers edit

Elastomers have to be used with more mechanically sensitive explosives like HMX. The elasticity of the matrix lowers sensitivity of the bulk material to shock and friction; their glass transition temperature is chosen to be below the lower boundary of the temperature working range (typically below -55 °C). Crosslinked rubber polymers are however sensitive to aging, mostly by action of free radicals and by hydrolysis of the bonds by traces of water vapor. Rubbers like Estane or hydroxyl-terminated polybutadiene (HTPB) are used for these applications extensively. Silicone rubbers and thermoplastic polyurethanes are also in use.[4]

Fluoroelastomers, e.g. Viton, combine the advantages of both.

Energetic polymers edit

Energetic polymers (e.g. nitro or azido derivates of polymers) can be used as a binder to increase the explosive power in comparison with inert binders. Energetic plasticizers can be also used. The addition of a plasticizer lowers the sensitivity of the explosive and improves its processibility.[1]

Insults (potential explosive inhibitors) edit

Explosive yields can be affected by the introduction of mechanical loads or the application of temperature; such damages are called insults. The mechanism of a thermal insult at low temperatures on an explosive is primarily thermomechanical, at higher temperatures it is primarily thermochemical.

Thermomechanical edit

Thermomechanical mechanisms involve stresses by thermal expansion (namely differential thermal expansions, as thermal gradients tend to be involved), melting/freezing or sublimation/condensation of components, and phase transitions of crystals (e.g. transition of HMX from beta phase to delta phase at 175 °C involves a large change in volume and causes extensive cracking of its crystals).

Thermochemical edit

Thermochemical changes involve decomposition of the explosives and binders, loss of strength of binder as it softens or melts, or stiffening of the binder if the increased temperature causes crosslinking of the polymer chains. The changes can also significantly alter the porosity of the material, whether by increasing it (fracturing of crystals, vaporization of components) or decreasing it (melting of components). The size distribution of the crystals can be also altered, e.g. by Ostwald ripening. Thermochemical decomposition starts to occur at the crystal nonhomogeneities, e.g. intragranular interfaces between crystal growth zones, on damaged parts of the crystals, or on interfaces of different materials (e.g. crystal/binder). Presence of defects in crystals (cracks, voids, solvent inclusions...) may increase the explosive's sensitivity to mechanical shocks.[4]

Some example PBXs edit

Some example PBXs
Name Explosive ingredients Inert ingredients Usage
AFX-757 RDX 25%, ammonium perchlorate 30%, aluminium 33% HTPB 4.44%, dioctyl adipate 6.56% Used in warheads for JASSM, GBU-39 Small Diameter Bomb and similar weapons.[5] Has high air blast equivalent, 1.39 times more than Composition B, but low brisance due to low high explosive content.[6] [7]
EDC-8 PETN 76% RTV silicone 24% [8]
EDC-28 RDX 94% FPC 461 6% [9]
EDC-29 β-HMX 95% HTPB 5% UK composition[4]
EDC-32 HMX 85% 15% Viton A 15% [9]
EDC-37 HMX 91%, NC 1% K-10 liquid 8% [9]
LX-04 HMX 85% Viton-A 15% High-velocity; nuclear weapons (W62, W70)[9]
LX-07 HMX 90% Viton-A 10% High-velocity; nuclear weapons (W71)[9]
LX-08 PETN 63.7% Sylgard 182 (silicone rubber) 34.3%, 2% Cab-O-Sil [10]
LX-09-0 HMX 93% 2,2-dinitropropyl acrylate (pDNPA) 4.6%; FEFO 2.4% High-velocity; nuclear weapons (W68). Prone to deterioration and separation of the plasticizer and binder. Caused serious safety problems. FEFO is 1,1-[methylenebis(oxy)]-bis-[2-fluoro-2,2-dinitroethane], liquid explosive.[3]
LX-09-1 HMX 93.3% pDNPA 4.4%; FEFO 2.3%
LX-10-0 HMX 95% Viton-A 5% High-velocity; nuclear weapons (W68 (replaced LX-09), W70, W79, W82)[9]
LX-10-1 HMX 94.5% Viton-A 5.5%
LX-11-0 HMX 80% Viton-A 20% High-velocity; nuclear weapons (W71)
LX-14-0 HMX 95.5% Estane & 5702-Fl 4.5% [9]
LX-15 HNS 95% Kel-F 800 5%
LX-16 PETN 96% FPC461 4% FPC461 is a vinyl chloride:chlorotrifluoroethylene copolymer and its response to gamma rays has been studied.[11]
LX-17-0 TATB 92.5% Kel-F 800 7.5% High-velocity, insensitive; nuclear weapons (B83, W84, W87, W89)
PBX 9007 RDX 90% Polystyrene 9.1%; DOP 0.5%; rosin 0.4% [9]
PBX 9010 RDX 90% Kel-F 3700 10% High-velocity; nuclear weapons (W50, B43)[9]
PBX 9011 HMX 90% Estane and 5703-Fl 10% High-velocity; nuclear weapons (B57 mods 1 and 2)[9]
PBX 9205 RDX 92% Polystyrene 6%; DOP 2% Created in 1947 at Los Alamos, later given the PBX 9205 designation.[12]
PBX 9404 HMX 94%, NC 3% Tris(b-chloroethyl)phosphate (CEF) 3% High-velocity; nuclear weapons, widely used (B43, W48, W50, W55, W56, B57 mod 2, B61 mods 0, 1, 2, 5, W69). Serious safety problems related to aging and decomposition of the nitrocellulose binder.[13]
PBX 9407 RDX 94% FPC461 6% [9]
PBX 9501 HMX 95%, BDNPA-F 2.5% Estane 2.5% High-velocity; nuclear weapons (W76, W78, W88). One of the most extensively studied high explosive formulations.[4] BDNPA-F is 1:1 mixture of bis(2,2-dinitropropyl) acetal and bis(2,2-dinitropropyl) formal.[3]
PBS 9501 - Estane 2.5%; BDNPA-F 2.5%; sieved white sugar 95% Inert simulant of mechanical properties of PBX 9501[4]
PBX 9502 TATB 95% Kel-F 800 5% High-velocity, insensitive; principal in recent US nuclear weapons (B61 mods 3, 4, 6–10, W80, W85, B90, W91), backfitted to earlier warheads to replace less safe explosives.[9]
PBX 9503 TATB 80%; HMX 15% Kel-F 800 5% Also known as X-0351.[9]
PBX 9604 RDX 96% Kel-F 800 4%
PBXN-101 HMX 82%
PBXN-102 HMX 59%, Aluminum 23%
PBXN-103 Ammonium perchlorate (AP) 40%, Aluminum 27%, TMETN 23% TEGDN 2.5% Mk 48 torpedoes
PBXN-104 HMX 70%
PBXN-105 RDX 7%, AP 49.8%, Aluminum 25.8%
PBXN-106 RDX 75% polyethylene glycol/BDNPA-F binder Naval shells
PBXN-107 RDX 86% polyacrylate binder BGM-109 Tomahawk missiles
PBXN-109 RDX 64%, Aluminum 20% HTPB, DOA (dioctyladipate), and IPDI (isophorone diisocyanate) Used in some versions of the Mark 82, Mark 83 and Mark 84 general-purpose bombs.[14]
PBXN-110 HMX 88% 5.4% Polybutadiene, 5% Isodecylpelargonate [15]
PBXN-111 RDX 20%, AP 43%, Aluminum 25%
PBXW-114 HMX 78%, Aluminum 10%
PBXW-115 RDX 20%, AP 43%, Aluminum 25%
PBXN-1 RDX 68%, Aluminum 20%
PBXN-3 RDX 85% Nylon AIM-9X Sidewinder Missile
PBXN-4 Diaminotrinitrobenzene (DATB) 94%
PBXN-5 HMX 95% fluoroelastomer 5% Naval shells
PBXN-6 RDX 95%
PBXN-7 RDX 35%, TATB 60%
PBXN-9 HMX 92% HYTEMP 4454 2%, Diisooctyl adipate (DOA) 6%
XTX 8003 PETN 80% Sylgard 182 (silicone rubber) 20% High-velocity, extrudable; nuclear weapons (W68, W76) [15]
XTX 8004 RDX 80% Sylgard 182 (silicone rubber) 20% [15]

References edit

  1. ^ a b Akhavan, Jacqueline (2004-01-01). The Chemistry of Explosives (2nd ed.). Royal Society of Chemistry. ISBN 978-0-85404-640-9. from the original on 2023-02-15. Retrieved 2021-12-13.
  2. ^ James R.Bates; W.W.Lauderdale; Harold Kernaghan (April 1979). "ALSEP (Apollo Lunar Surface Experiments Package) Termination Report" (pdf-8.81 mb). NASA-Scientific and Technical Information Office. (PDF) from the original on 2010-01-13. Retrieved 2014-06-29.
  3. ^ a b c Carey Sublette (1999-02-20). "4.1.6.2.2.5 Explosives". 4. Engineering and Design of Nuclear Weapons: 4.1 Elements of Fission Weapon Design. Retrieved 2010-02-08.
  4. ^ a b c d e f Blaine Asay, ed. (2009). Non-Shock Initiation of Explosives. Springer Berlin Heidelberg. ISBN 978-3-540-88089-9.
  5. ^ . S2CID 115831591. {{cite journal}}: Cite journal requires |journal= (help); Missing or empty |title= (help)
  6. ^ Kolev, Stefan K.; Tsonev, Tsvetomir T. (2022). "Aluminized Enhanced Blast Explosive Based on Polysiloxane Binder". Propellants, Explosives, Pyrotechnics. 47 (2). doi:10.1002/prep.202100195. S2CID 244902961.
  7. ^ US patent 6523477B1, George W. Brooks & Eric E. Roach, "Enhanced Performance Insensitive Penetrator Warhead", issued 2003-02-25, assigned to Lockheed Martin Corporation 
  8. ^ Technical Area 36 Open Detonation Unit — SUPPLEMENT 2-1 Waste Explosives Detonated at Technical Area 36 (PDF) (Report). September 1999. p. 2. (PDF) from the original on 2022-10-01.
  9. ^ a b c d e f g h i j k l m Technical Area 36 Open Detonation Unit — SUPPLEMENT 2-1 Waste Explosives Detonated at Technical Area 36, p. 2.
  10. ^ H K Otsuki; E Eagan-McNeill (May 1997). A Blue Print for Building a Risk Assessment (Report). Lawrence Livermore National Laboratory. p. 6. UCRL-JC-127467. from the original on 2022-09-29.
  11. ^ Sarah C. Chinn; Thomas S. Wilson; Robert S. Maxwell (March 2006). "Analysis of radiation induced degradation in FPC-461 fluoropolymers by variable temperature multinuclear NMR". Polymer Degradation and Stability. 91 (3): 541–547. doi:10.1016/j.polymdegradstab.2005.01.058. from the original on 2022-04-17. Retrieved 2019-09-09.
  12. ^ Anders W. Lundberg. "High Explosives in Stockpile Surveillance Indicate Constancy" (PDF). Lawrence Livermore National Laboratory (LLNL). (PDF) from the original on 2012-10-10. Retrieved 2014-03-02.
  13. ^ Kinetics of PBX 9404 Aging 2017-02-11 at the Wayback Machine Alan K. Burnhamn; Laurence E. Fried. LLNL, Unclassified, 2007-04-24 (pdf)
  14. ^ Janes (26 July 2022), "Mk 80 general‐purpose bombs (BLU‐110/111/117/126/129)", Janes Weapons: Air Launched, Coulsdon, Surrey: Jane's Group UK Limited., retrieved 29 May 2023
  15. ^ a b c Technical Area 36 Open Detonation Unit — SUPPLEMENT 2-1 Waste Explosives Detonated at Technical Area 36, p. 3.

polymer, bonded, explosive, confused, with, plastic, explosive, also, called, plastic, bonded, explosives, explosive, materials, which, explosive, powder, bound, together, matrix, using, small, quantities, typically, weight, synthetic, polymer, pbxs, normally,. Not to be confused with plastic explosive Polymer bonded explosives also called PBX or plastic bonded explosives are explosive materials in which explosive powder is bound together in a matrix using small quantities typically 5 10 by weight of a synthetic polymer PBXs are normally used for explosive materials that are not easily melted into a casting or are otherwise difficult to form PBX was first developed in 1952 at Los Alamos National Laboratory as RDX embedded in polystyrene with dioctyl phthalate plasticizer HMX compositions with teflon based binders were developed in 1960s and 1970s for gun shells and for Apollo Lunar Surface Experiments Package ALSEP seismic experiments 1 although the latter experiments are usually cited as using hexanitrostilbene HNS 2 Contents 1 Potential advantages 2 Binders 2 1 Fluoropolymers 2 2 Elastomers 2 3 Energetic polymers 3 Insults potential explosive inhibitors 3 1 Thermomechanical 3 2 Thermochemical 4 Some example PBXs 5 ReferencesPotential advantages editPolymer bonded explosives have several potential advantages If the polymer matrix is an elastomer rubbery material it tends to absorb shocks making the PBX very insensitive to accidental detonation and thus ideal for insensitive munitions Hard polymers can produce PBX that is very rigid and maintains a precise engineering shape even under severe stress PBX powders can be pressed into a desired shape at room temperature casting normally requires hazardous melting of the explosive High pressure pressing can achieve density for the material very close to the theoretical crystal density of the base explosive material Many PBXes are safe to machine turning solid blocks into complex three dimensional shapes For example a billet of PBX can be precisely shaped on a lathe or CNC machine This technique is used to machine explosive lenses necessary for modern nuclear weapons 3 Binders editFluoropolymers edit Main article Fluoropolymer Fluoropolymers are advantageous as binders due to their high density yielding high detonation velocity and inert chemical behavior yielding long shelf stability and low aging They are somewhat brittle as their glass transition temperature is at room temperature or above This limits their use to insensitive explosives e g TATB where the brittleness does not have detrimental effects on safety They are also difficult to process 4 Elastomers edit Main article Elastomer Elastomers have to be used with more mechanically sensitive explosives like HMX The elasticity of the matrix lowers sensitivity of the bulk material to shock and friction their glass transition temperature is chosen to be below the lower boundary of the temperature working range typically below 55 C Crosslinked rubber polymers are however sensitive to aging mostly by action of free radicals and by hydrolysis of the bonds by traces of water vapor Rubbers like Estane or hydroxyl terminated polybutadiene HTPB are used for these applications extensively Silicone rubbers and thermoplastic polyurethanes are also in use 4 Fluoroelastomers e g Viton combine the advantages of both Energetic polymers edit Energetic polymers e g nitro or azido derivates of polymers can be used as a binder to increase the explosive power in comparison with inert binders Energetic plasticizers can be also used The addition of a plasticizer lowers the sensitivity of the explosive and improves its processibility 1 Insults potential explosive inhibitors editExplosive yields can be affected by the introduction of mechanical loads or the application of temperature such damages are called insults The mechanism of a thermal insult at low temperatures on an explosive is primarily thermomechanical at higher temperatures it is primarily thermochemical Thermomechanical edit Thermomechanical mechanisms involve stresses by thermal expansion namely differential thermal expansions as thermal gradients tend to be involved melting freezing or sublimation condensation of components and phase transitions of crystals e g transition of HMX from beta phase to delta phase at 175 C involves a large change in volume and causes extensive cracking of its crystals Thermochemical edit Thermochemical changes involve decomposition of the explosives and binders loss of strength of binder as it softens or melts or stiffening of the binder if the increased temperature causes crosslinking of the polymer chains The changes can also significantly alter the porosity of the material whether by increasing it fracturing of crystals vaporization of components or decreasing it melting of components The size distribution of the crystals can be also altered e g by Ostwald ripening Thermochemical decomposition starts to occur at the crystal nonhomogeneities e g intragranular interfaces between crystal growth zones on damaged parts of the crystals or on interfaces of different materials e g crystal binder Presence of defects in crystals cracks voids solvent inclusions may increase the explosive s sensitivity to mechanical shocks 4 Some example PBXs editSome example PBXs Name Explosive ingredients Inert ingredients UsageAFX 757 RDX 25 ammonium perchlorate 30 aluminium 33 HTPB 4 44 dioctyl adipate 6 56 Used in warheads for JASSM GBU 39 Small Diameter Bomb and similar weapons 5 Has high air blast equivalent 1 39 times more than Composition B but low brisance due to low high explosive content 6 7 EDC 8 PETN 76 RTV silicone 24 8 EDC 28 RDX 94 FPC 461 6 9 EDC 29 b HMX 95 HTPB 5 UK composition 4 EDC 32 HMX 85 15 Viton A 15 9 EDC 37 HMX 91 NC 1 K 10 liquid 8 9 LX 04 HMX 85 Viton A 15 High velocity nuclear weapons W62 W70 9 LX 07 HMX 90 Viton A 10 High velocity nuclear weapons W71 9 LX 08 PETN 63 7 Sylgard 182 silicone rubber 34 3 2 Cab O Sil 10 LX 09 0 HMX 93 2 2 dinitropropyl acrylate pDNPA 4 6 FEFO 2 4 High velocity nuclear weapons W68 Prone to deterioration and separation of the plasticizer and binder Caused serious safety problems FEFO is 1 1 methylenebis oxy bis 2 fluoro 2 2 dinitroethane liquid explosive 3 LX 09 1 HMX 93 3 pDNPA 4 4 FEFO 2 3 LX 10 0 HMX 95 Viton A 5 High velocity nuclear weapons W68 replaced LX 09 W70 W79 W82 9 LX 10 1 HMX 94 5 Viton A 5 5 LX 11 0 HMX 80 Viton A 20 High velocity nuclear weapons W71 LX 14 0 HMX 95 5 Estane amp 5702 Fl 4 5 9 LX 15 HNS 95 Kel F 800 5 LX 16 PETN 96 FPC461 4 FPC461 is a vinyl chloride chlorotrifluoroethylene copolymer and its response to gamma rays has been studied 11 LX 17 0 TATB 92 5 Kel F 800 7 5 High velocity insensitive nuclear weapons B83 W84 W87 W89 PBX 9007 RDX 90 Polystyrene 9 1 DOP 0 5 rosin 0 4 9 PBX 9010 RDX 90 Kel F 3700 10 High velocity nuclear weapons W50 B43 9 PBX 9011 HMX 90 Estane and 5703 Fl 10 High velocity nuclear weapons B57 mods 1 and 2 9 PBX 9205 RDX 92 Polystyrene 6 DOP 2 Created in 1947 at Los Alamos later given the PBX 9205 designation 12 PBX 9404 HMX 94 NC 3 Tris b chloroethyl phosphate CEF 3 High velocity nuclear weapons widely used B43 W48 W50 W55 W56 B57 mod 2 B61 mods 0 1 2 5 W69 Serious safety problems related to aging and decomposition of the nitrocellulose binder 13 PBX 9407 RDX 94 FPC461 6 9 PBX 9501 HMX 95 BDNPA F 2 5 Estane 2 5 High velocity nuclear weapons W76 W78 W88 One of the most extensively studied high explosive formulations 4 BDNPA F is 1 1 mixture of bis 2 2 dinitropropyl acetal and bis 2 2 dinitropropyl formal 3 PBS 9501 Estane 2 5 BDNPA F 2 5 sieved white sugar 95 Inert simulant of mechanical properties of PBX 9501 4 PBX 9502 TATB 95 Kel F 800 5 High velocity insensitive principal in recent US nuclear weapons B61 mods 3 4 6 10 W80 W85 B90 W91 backfitted to earlier warheads to replace less safe explosives 9 PBX 9503 TATB 80 HMX 15 Kel F 800 5 Also known as X 0351 9 PBX 9604 RDX 96 Kel F 800 4 PBXN 101 HMX 82 PBXN 102 HMX 59 Aluminum 23 PBXN 103 Ammonium perchlorate AP 40 Aluminum 27 TMETN 23 TEGDN 2 5 Mk 48 torpedoesPBXN 104 HMX 70 PBXN 105 RDX 7 AP 49 8 Aluminum 25 8 PBXN 106 RDX 75 polyethylene glycol BDNPA F binder Naval shellsPBXN 107 RDX 86 polyacrylate binder BGM 109 Tomahawk missilesPBXN 109 RDX 64 Aluminum 20 HTPB DOA dioctyladipate and IPDI isophorone diisocyanate Used in some versions of the Mark 82 Mark 83 and Mark 84 general purpose bombs 14 PBXN 110 HMX 88 5 4 Polybutadiene 5 Isodecylpelargonate 15 PBXN 111 RDX 20 AP 43 Aluminum 25 PBXW 114 HMX 78 Aluminum 10 PBXW 115 RDX 20 AP 43 Aluminum 25 PBXN 1 RDX 68 Aluminum 20 PBXN 3 RDX 85 Nylon AIM 9X Sidewinder MissilePBXN 4 Diaminotrinitrobenzene DATB 94 PBXN 5 HMX 95 fluoroelastomer 5 Naval shellsPBXN 6 RDX 95 PBXN 7 RDX 35 TATB 60 PBXN 9 HMX 92 HYTEMP 4454 2 Diisooctyl adipate DOA 6 XTX 8003 PETN 80 Sylgard 182 silicone rubber 20 High velocity extrudable nuclear weapons W68 W76 15 XTX 8004 RDX 80 Sylgard 182 silicone rubber 20 15 References edit a b Akhavan Jacqueline 2004 01 01 The Chemistry of Explosives 2nd ed Royal Society of Chemistry ISBN 978 0 85404 640 9 Archived from the original on 2023 02 15 Retrieved 2021 12 13 James R Bates W W Lauderdale Harold Kernaghan April 1979 ALSEP Apollo Lunar Surface Experiments Package Termination Report pdf 8 81 mb NASA Scientific and Technical Information Office Archived PDF from the original on 2010 01 13 Retrieved 2014 06 29 a b c Carey Sublette 1999 02 20 4 1 6 2 2 5 Explosives 4 Engineering and Design of Nuclear Weapons 4 1 Elements of Fission Weapon Design Retrieved 2010 02 08 a b c d e f Blaine Asay ed 2009 Non Shock Initiation of Explosives Springer Berlin Heidelberg ISBN 978 3 540 88089 9 S2CID 115831591 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Missing or empty title help Kolev Stefan K Tsonev Tsvetomir T 2022 Aluminized Enhanced Blast Explosive Based on Polysiloxane Binder Propellants Explosives Pyrotechnics 47 2 doi 10 1002 prep 202100195 S2CID 244902961 US patent 6523477B1 George W Brooks amp Eric E Roach Enhanced Performance Insensitive Penetrator Warhead issued 2003 02 25 assigned to Lockheed Martin Corporation Technical Area 36 Open Detonation Unit SUPPLEMENT 2 1 Waste Explosives Detonated at Technical Area 36 PDF Report September 1999 p 2 Archived PDF from the original on 2022 10 01 a b c d e f g h i j k l m Technical Area 36 Open Detonation Unit SUPPLEMENT 2 1 Waste Explosives Detonated at Technical Area 36 p 2 H K Otsuki E Eagan McNeill May 1997 A Blue Print for Building a Risk Assessment Report Lawrence Livermore National Laboratory p 6 UCRL JC 127467 Archived from the original on 2022 09 29 Sarah C Chinn Thomas S Wilson Robert S Maxwell March 2006 Analysis of radiation induced degradation in FPC 461 fluoropolymers by variable temperature multinuclear NMR Polymer Degradation and Stability 91 3 541 547 doi 10 1016 j polymdegradstab 2005 01 058 Archived from the original on 2022 04 17 Retrieved 2019 09 09 Anders W Lundberg High Explosives in Stockpile Surveillance Indicate Constancy PDF Lawrence Livermore National Laboratory LLNL Archived PDF from the original on 2012 10 10 Retrieved 2014 03 02 Kinetics of PBX 9404 Aging Archived 2017 02 11 at the Wayback Machine Alan K Burnhamn Laurence E Fried LLNL Unclassified 2007 04 24 pdf Janes 26 July 2022 Mk 80 general purpose bombs BLU 110 111 117 126 129 Janes Weapons Air Launched Coulsdon Surrey Jane s Group UK Limited retrieved 29 May 2023 a b c Technical Area 36 Open Detonation Unit SUPPLEMENT 2 1 Waste Explosives Detonated at Technical Area 36 p 3 Cooper Paul W Explosives Engineering New York Wiley VCH 1996 ISBN 0 471 18636 8 Norris Robert S Hans M Kristensen and Joshua Handler The B61 family of bombs permanent dead link http thebulletin org The Bulletin of the Atomic Scientists Jan Feb 2003 Retrieved from https en wikipedia org w index php title Polymer bonded explosive amp oldid 1206154947, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.