fbpx
Wikipedia

Pauling's rules

Pauling's rules are five rules published by Linus Pauling in 1929 for predicting and rationalizing the crystal structures of ionic compounds.[1][2]

First rule: the radius ratio rule edit

For typical ionic solids, the cations are smaller than the anions, and each cation is surrounded by coordinated anions which form a polyhedron. The sum of the ionic radii determines the cation-anion distance, while the cation-anion radius ratio   (or  ) determines the coordination number (C.N.) of the cation, as well as the shape of the coordinated polyhedron of anions.[2]: 524 [3]

For the coordination numbers and corresponding polyhedra in the table below, Pauling mathematically derived the minimum radius ratio for which the cation is in contact with the given number of anions (considering the ions as rigid spheres). If the cation is smaller, it will not be in contact with the anions which results in instability leading to a lower coordination number.

 
Critical Radius Ratio. This diagram is for coordination number six: 4 anions in the plane shown, 1 above the plane and 1 below. The stability limit is at rC/rA = 0.414
Polyhedron and minimum radius ratio for each coordination number
C.N. Polyhedron Radius ratio
3 triangular 0.155
4 tetrahedron 0.225
6 octahedron 0.414
7 capped octahedron 0.592
8 square antiprism (anticube) 0.645
8 cube 0.732
9 triaugmented triangular prism 0.732
12 cuboctahedron 1.00

The three diagrams at right correspond to octahedral coordination with a coordination number of six: four anions in the plane of the diagrams, and two (not shown) above and below this plane. The central diagram shows the minimal radius ratio. The cation and any two anions form a right triangle, with  , or  . Then  . Similar geometrical proofs yield the minimum radius ratios for the highly symmetrical cases C.N. = 3, 4 and 8.[4]

 
The NaCl crystal structure. Each Na atom has six nearest neighbors, with octahedral geometry.
 
The CsCl unit cell. Each Cs atom has eight nearest neighbors, with cubic geometry.

For C.N. = 6 and a radius ratio greater than the minimum, the crystal is more stable since the cation is still in contact with six anions, but the anions are further from each other so that their mutual repulsion is reduced. An octahedron may then form with a radius ratio greater than or equal to 0.414, but as the ratio rises above 0.732, a cubic geometry becomes more stable. This explains why Na+ in NaCl with a radius ratio of 0.55 has octahedral coordination, whereas Cs+ in CsCl with a radius ratio of 0.93 has cubic coordination.[5]

If the radius ratio is less than the minimum, two anions will tend to depart and the remaining four will rearrange into a tetrahedral geometry where they are all in contact with the cation.

The radius ratio rules are a first approximation which have some success in predicting coordination numbers, but many exceptions do exist.[3] In a set of over 5000 oxides, only 66% of coordination environments agree with Pauling's first rule. Oxides formed with alkali or alkali-earth metal cations that contain multiple cation coordinations are common deviations from this rule.[6]

Second rule: the electrostatic valence rule edit

For a given cation, Pauling defined[2] the electrostatic bond strength to each coordinated anion as  , where z is the cation charge and ν is the cation coordination number. A stable ionic structure is arranged to preserve local electroneutrality, so that the sum of the strengths of the electrostatic bonds to an anion equals the charge on that anion.

 

where   is the anion charge and the summation is over the adjacent cations. For simple solids, the   are equal for all cations coordinated to a given anion, so that the anion coordination number is the anion charge divided by each electrostatic bond strength. Some examples are given in the table.

Cations with oxide O2− ion
Cation Radius ratio Cation C.N. Electrostatic
bond strength
Anion C.N.
Li+ 0.34 4 0.25 8
Mg2+ 0.47 6 0.33 6
Sc3+ 0.60 6 0.5 4

Pauling showed that this rule is useful in limiting the possible structures to consider for more complex crystals such as the aluminosilicate mineral orthoclase, KAlSi3O8, with three different cations.[2] However, from data analysis of oxides from the Inorganic Crystal Structure Database (ICSD), the result showed that only 20% of all oxygen atoms matched with the prediction from second rule (using a cutoff of 0.01).[6]

Third rule: sharing of polyhedron corners, edges and faces edit

The sharing of edges and particularly faces by two anion polyhedra decreases the stability of an ionic structure. Sharing of corners does not decrease stability as much, so (for example) octahedra may share corners with one another.[2]: 559 

The decrease in stability is due to the fact that sharing edges and faces places cations in closer proximity to each other, so that cation-cation electrostatic repulsion is increased. The effect is largest for cations with high charge and low C.N. (especially when r+/r- approaches the lower limit of the polyhedral stability). Generally, smaller elements fulfill the rule better.[6]

As one example, Pauling considered the three mineral forms of titanium dioxide, each with a coordination number of 6 for the Ti4+ cations. The most stable (and most abundant) form is rutile, in which the coordination octahedra are arranged so that each one shares only two edges (and no faces) with adjoining octahedra. The other two, less stable, forms are brookite and anatase, in which each octahedron shares three and four edges respectively with adjoining octahedra.[2]: 559 

Fourth rule: crystals containing different cations edit

 
Structure of olivine. M (Mg or Fe) = blue spheres, Si = pink tetrahedra, O = red spheres.

In a crystal containing different cations, those of high valency and small coordination number tend not to share polyhedron elements with one another.[2]: 561  This rule tends to increase the distance between highly charged cations, so as to reduce the electrostatic repulsion between them.

One of Pauling's examples is olivine, M2SiO4, where M is a mixture of Mg2+ at some sites and Fe2+ at others. The structure contains distinct SiO4 tetrahedra which do not share any oxygens (at corners, edges or faces) with each other. The lower-valence Mg2+ and Fe2+ cations are surrounded by polyhedra which do share oxygens.

Fifth rule: the rule of parsimony edit

The number of essentially different kinds of constituents in a crystal tends to be small.[2] The repeating units will tend to be identical because each atom in the structure is most stable in a specific environment. There may be two or three types of polyhedra, such as tetrahedra or octahedra, but there will not be many different types.

Limitation edit

In a study of 5000 oxides, only 13% of them satisfy all of the last 4 rules, indicating limited universality of Pauling's rules.[6]

See also edit

References edit

  1. ^ Pauling, Linus (1929). "The principles determining the structure of complex ionic crystals". J. Am. Chem. Soc. 51 (4): 1010–1026. doi:10.1021/ja01379a006.
  2. ^ a b c d e f g h Pauling, Linus (1960). The nature of the chemical bond and the structure of molecules and crystals; an introduction to modern structural chemistry (3rd ed.). Ithaca (NY): Cornell University Press. pp. 543–562. ISBN 0-8014-0333-2.
  3. ^ a b Housecroft, Catherine E.; Sharpe, Alan G. (2005). Inorganic chemistry (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall. p. 145. ISBN 9780130399137.
  4. ^ Toofan, Jahansooz (February 1994). "A Simple Expression between Critical Radius Ratio and Coordination Number". Journal of Chemical Education. 71 (2): 147. doi:10.1021/ed071p147. Following the erratum, equations should read   and  , (where   bond angle)
  5. ^ Petrucci, Ralph H.; Harwood, William S.; Herring, F. Geoffrey (2002). General chemistry: principles and modern applications (8th ed.). Upper Saddle River, NJ: Prentice Hall. p. 518. ISBN 0-13-014329-4.
  6. ^ a b c d George, Janine; Waroquiers, David; Di Stefano, Davide; Petretto, Guido; Rignanese, Gian‐Marco; Hautier, Geoffroy (2020-05-04). "The Limited Predictive Power of the Pauling Rules". Angewandte Chemie International Edition. 59 (19): 7569–7575. doi:10.1002/anie.202000829. ISSN 1433-7851. PMC 7217010. PMID 32065708.

pauling, rules, this, article, about, crystal, structures, oxoacid, strengths, acid, dissociation, constant, five, rules, published, linus, pauling, 1929, predicting, rationalizing, crystal, structures, ionic, compounds, contents, first, rule, radius, ratio, r. This article is about Pauling s rules on crystal structures For Pauling s rules on oxoacid strengths see Acid dissociation constant Pauling s rules are five rules published by Linus Pauling in 1929 for predicting and rationalizing the crystal structures of ionic compounds 1 2 Contents 1 First rule the radius ratio rule 2 Second rule the electrostatic valence rule 3 Third rule sharing of polyhedron corners edges and faces 4 Fourth rule crystals containing different cations 5 Fifth rule the rule of parsimony 6 Limitation 7 See also 8 ReferencesFirst rule the radius ratio rule editMain article Cation anion radius ratio For typical ionic solids the cations are smaller than the anions and each cation is surrounded by coordinated anions which form a polyhedron The sum of the ionic radii determines the cation anion distance while the cation anion radius ratio r r displaystyle r r nbsp or r c r a displaystyle r c r a nbsp determines the coordination number C N of the cation as well as the shape of the coordinated polyhedron of anions 2 524 3 For the coordination numbers and corresponding polyhedra in the table below Pauling mathematically derived the minimum radius ratio for which the cation is in contact with the given number of anions considering the ions as rigid spheres If the cation is smaller it will not be in contact with the anions which results in instability leading to a lower coordination number nbsp Critical Radius Ratio This diagram is for coordination number six 4 anions in the plane shown 1 above the plane and 1 below The stability limit is at rC rA 0 414Polyhedron and minimum radius ratio for each coordination number C N Polyhedron Radius ratio3 triangular 0 1554 tetrahedron 0 2256 octahedron 0 4147 capped octahedron 0 5928 square antiprism anticube 0 6458 cube 0 7329 triaugmented triangular prism 0 73212 cuboctahedron 1 00The three diagrams at right correspond to octahedral coordination with a coordination number of six four anions in the plane of the diagrams and two not shown above and below this plane The central diagram shows the minimal radius ratio The cation and any two anions form a right triangle with 2 r 2 r r displaystyle 2r sqrt 2 r r nbsp or 2 r r r displaystyle sqrt 2 r r r nbsp Then r 2 1 r 0 414 r displaystyle r sqrt 2 1 r 0 414r nbsp Similar geometrical proofs yield the minimum radius ratios for the highly symmetrical cases C N 3 4 and 8 4 nbsp The NaCl crystal structure Each Na atom has six nearest neighbors with octahedral geometry nbsp The CsCl unit cell Each Cs atom has eight nearest neighbors with cubic geometry For C N 6 and a radius ratio greater than the minimum the crystal is more stable since the cation is still in contact with six anions but the anions are further from each other so that their mutual repulsion is reduced An octahedron may then form with a radius ratio greater than or equal to 0 414 but as the ratio rises above 0 732 a cubic geometry becomes more stable This explains why Na in NaCl with a radius ratio of 0 55 has octahedral coordination whereas Cs in CsCl with a radius ratio of 0 93 has cubic coordination 5 If the radius ratio is less than the minimum two anions will tend to depart and the remaining four will rearrange into a tetrahedral geometry where they are all in contact with the cation The radius ratio rules are a first approximation which have some success in predicting coordination numbers but many exceptions do exist 3 In a set of over 5000 oxides only 66 of coordination environments agree with Pauling s first rule Oxides formed with alkali or alkali earth metal cations that contain multiple cation coordinations are common deviations from this rule 6 Second rule the electrostatic valence rule editFor a given cation Pauling defined 2 the electrostatic bond strength to each coordinated anion as s z n displaystyle s frac z nu nbsp where z is the cation charge and n is the cation coordination number A stable ionic structure is arranged to preserve local electroneutrality so that the sum of the strengths of the electrostatic bonds to an anion equals the charge on that anion 3 i s i displaystyle xi sum i s i nbsp where 3 displaystyle xi nbsp is the anion charge and the summation is over the adjacent cations For simple solids the s i displaystyle s i nbsp are equal for all cations coordinated to a given anion so that the anion coordination number is the anion charge divided by each electrostatic bond strength Some examples are given in the table Cations with oxide O2 ion Cation Radius ratio Cation C N Electrostatic bond strength Anion C N Li 0 34 4 0 25 8Mg2 0 47 6 0 33 6Sc3 0 60 6 0 5 4Pauling showed that this rule is useful in limiting the possible structures to consider for more complex crystals such as the aluminosilicate mineral orthoclase KAlSi3O8 with three different cations 2 However from data analysis of oxides from the Inorganic Crystal Structure Database ICSD the result showed that only 20 of all oxygen atoms matched with the prediction from second rule using a cutoff of 0 01 6 Third rule sharing of polyhedron corners edges and faces editThe sharing of edges and particularly faces by two anion polyhedra decreases the stability of an ionic structure Sharing of corners does not decrease stability as much so for example octahedra may share corners with one another 2 559 The decrease in stability is due to the fact that sharing edges and faces places cations in closer proximity to each other so that cation cation electrostatic repulsion is increased The effect is largest for cations with high charge and low C N especially when r r approaches the lower limit of the polyhedral stability Generally smaller elements fulfill the rule better 6 As one example Pauling considered the three mineral forms of titanium dioxide each with a coordination number of 6 for the Ti4 cations The most stable and most abundant form is rutile in which the coordination octahedra are arranged so that each one shares only two edges and no faces with adjoining octahedra The other two less stable forms are brookite and anatase in which each octahedron shares three and four edges respectively with adjoining octahedra 2 559 Fourth rule crystals containing different cations edit nbsp Structure of olivine M Mg or Fe blue spheres Si pink tetrahedra O red spheres In a crystal containing different cations those of high valency and small coordination number tend not to share polyhedron elements with one another 2 561 This rule tends to increase the distance between highly charged cations so as to reduce the electrostatic repulsion between them One of Pauling s examples is olivine M2SiO4 where M is a mixture of Mg2 at some sites and Fe2 at others The structure contains distinct SiO4 tetrahedra which do not share any oxygens at corners edges or faces with each other The lower valence Mg2 and Fe2 cations are surrounded by polyhedra which do share oxygens Fifth rule the rule of parsimony editThe number of essentially different kinds of constituents in a crystal tends to be small 2 The repeating units will tend to be identical because each atom in the structure is most stable in a specific environment There may be two or three types of polyhedra such as tetrahedra or octahedra but there will not be many different types Limitation editIn a study of 5000 oxides only 13 of them satisfy all of the last 4 rules indicating limited universality of Pauling s rules 6 See also editGoldschmidt tolerance factor Octet ruleReferences edit Pauling Linus 1929 The principles determining the structure of complex ionic crystals J Am Chem Soc 51 4 1010 1026 doi 10 1021 ja01379a006 a b c d e f g h Pauling Linus 1960 The nature of the chemical bond and the structure of molecules and crystals an introduction to modern structural chemistry 3rd ed Ithaca NY Cornell University Press pp 543 562 ISBN 0 8014 0333 2 a b Housecroft Catherine E Sharpe Alan G 2005 Inorganic chemistry 2nd ed Upper Saddle River NJ Pearson Prentice Hall p 145 ISBN 9780130399137 Toofan Jahansooz February 1994 A Simple Expression between Critical Radius Ratio and Coordination Number Journal of Chemical Education 71 2 147 doi 10 1021 ed071p147 Following the erratum equations should read a arcsin 12 C N 12 1 2 displaystyle alpha arcsin tfrac 12 CN 12 tfrac 1 2 nbsp and R 12 12 C N 1 2 1 displaystyle R tfrac 12 12 CN tfrac 1 2 1 nbsp where 2 a displaystyle 2 alpha nbsp bond angle Petrucci Ralph H Harwood William S Herring F Geoffrey 2002 General chemistry principles and modern applications 8th ed Upper Saddle River NJ Prentice Hall p 518 ISBN 0 13 014329 4 a b c d George Janine Waroquiers David Di Stefano Davide Petretto Guido Rignanese Gian Marco Hautier Geoffroy 2020 05 04 The Limited Predictive Power of the Pauling Rules Angewandte Chemie International Edition 59 19 7569 7575 doi 10 1002 anie 202000829 ISSN 1433 7851 PMC 7217010 PMID 32065708 Retrieved from https en wikipedia org w index php title Pauling 27s rules amp oldid 1182191886, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.