fbpx
Wikipedia

Paraboloidal coordinates

Paraboloidal coordinates are three-dimensional orthogonal coordinates that generalize two-dimensional parabolic coordinates. They possess elliptic paraboloids as one-coordinate surfaces. As such, they should be distinguished from parabolic cylindrical coordinates and parabolic rotational coordinates, both of which are also generalizations of two-dimensional parabolic coordinates. The coordinate surfaces of the former are parabolic cylinders, and the coordinate surfaces of the latter are circular paraboloids.

Differently from cylindrical and rotational parabolic coordinates, but similarly to the related ellipsoidal coordinates, the coordinate surfaces of the paraboloidal coordinate system are not produced by rotating or projecting any two-dimensional orthogonal coordinate system.

Coordinate surfaces of the three-dimensional paraboloidal coordinates.

Basic formulas

The Cartesian coordinates   can be produced from the ellipsoidal coordinates   by the equations[1]

 
 
 

with

 

Consequently, surfaces of constant   are downward opening elliptic paraboloids:

 

Similarly, surfaces of constant   are upward opening elliptic paraboloids,

 

whereas surfaces of constant   are hyperbolic paraboloids:

 

Scale factors

The scale factors for the paraboloidal coordinates   are[2]

 
 
 

Hence, the infinitesimal volume element is

 

Differential operators

Common differential operators can be expressed in the coordinates   by substituting the scale factors into the general formulas for these operators, which are applicable to any three-dimensional orthogonal coordinates. For instance, the gradient operator is

 

and the Laplacian is

 

Applications

Paraboloidal coordinates can be useful for solving certain partial differential equations. For instance, the Laplace equation and Helmholtz equation are both separable in paraboloidal coordinates. Hence, the coordinates can be used to solve these equations in geometries with paraboloidal symmetry, i.e. with boundary conditions specified on sections of paraboloids.

The Helmholtz equation is  . Taking  , the separated equations are[3]

 

where   and   are the two separation constants. Similarly, the separated equations for the Laplace equation can be obtained by setting   in the above.

Each of the separated equations can be cast in the form of the Baer equation. Direct solution of the equations is difficult, however, in part because the separation constants   and   appear simultaneously in all three equations.

Following the above approach, paraboloidal coordinates have been used to solve for the electric field surrounding a conducting paraboloid.[4]

References

  1. ^ Yoon, LCLY; M, Willatzen (2011), Separable Boundary-Value Problems in Physics, Wiley-VCH, p. 217, ISBN 978-3-527-63492-7
  2. ^ Willatzen and Yoon (2011), p. 219
  3. ^ Willatzen and Yoon (2011), p. 227
  4. ^ Duggen, L; Willatzen, M; Voon, L C Lew Yan (2012), "Laplace boundary-value problem in paraboloidal coordinates", European Journal of Physics, 33 (3): 689--696, doi:10.1088/0143-0807/33/3/689

Bibliography

  • Lew Yan Voon LC, Willatzen M (2011). Separable Boundary-Value Problems in Physics. Wiley-VCH. ISBN 978-3-527-41020-0.
  • Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill. p. 664. ISBN 0-07-043316-X. LCCN 52011515.
  • Margenau H, Murphy GM (1956). The Mathematics of Physics and Chemistry. New York: D. van Nostrand. pp. 184–185. LCCN 55010911.
  • Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. p. 180. LCCN 59014456. ASIN B0000CKZX7.
  • Arfken G (1970). Mathematical Methods for Physicists (2nd ed.). Orlando, FL: Academic Press. pp. 119–120.
  • Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. p. 98. LCCN 67025285.
  • Zwillinger D (1992). Handbook of Integration. Boston, MA: Jones and Bartlett. p. 114. ISBN 0-86720-293-9. Same as Morse & Feshbach (1953), substituting uk for ξk.
  • Moon P, Spencer DE (1988). "Paraboloidal Coordinates (μ, ν, λ)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print ed.). New York: Springer-Verlag. pp. 44–48 (Table 1.11). ISBN 978-0-387-18430-2.

External links

  • MathWorld description of confocal paraboloidal coordinates

paraboloidal, coordinates, three, dimensional, orthogonal, coordinates, displaystyle, lambda, that, generalize, dimensional, parabolic, coordinates, they, possess, elliptic, paraboloids, coordinate, surfaces, such, they, should, distinguished, from, parabolic,. Paraboloidal coordinates are three dimensional orthogonal coordinates m n l displaystyle mu nu lambda that generalize two dimensional parabolic coordinates They possess elliptic paraboloids as one coordinate surfaces As such they should be distinguished from parabolic cylindrical coordinates and parabolic rotational coordinates both of which are also generalizations of two dimensional parabolic coordinates The coordinate surfaces of the former are parabolic cylinders and the coordinate surfaces of the latter are circular paraboloids Differently from cylindrical and rotational parabolic coordinates but similarly to the related ellipsoidal coordinates the coordinate surfaces of the paraboloidal coordinate system are not produced by rotating or projecting any two dimensional orthogonal coordinate system Coordinate surfaces of the three dimensional paraboloidal coordinates Contents 1 Basic formulas 2 Scale factors 3 Differential operators 4 Applications 5 References 6 Bibliography 7 External linksBasic formulas EditThe Cartesian coordinates x y z displaystyle x y z can be produced from the ellipsoidal coordinates m n l displaystyle mu nu lambda by the equations 1 x 2 4 b c m b b n b l displaystyle x 2 frac 4 b c mu b b nu b lambda y 2 4 b c m c c n l c displaystyle y 2 frac 4 b c mu c c nu lambda c z m n l b c displaystyle z mu nu lambda b c with m gt b gt l gt c gt n gt 0 displaystyle mu gt b gt lambda gt c gt nu gt 0 Consequently surfaces of constant m displaystyle mu are downward opening elliptic paraboloids x 2 m b y 2 m c 4 z m displaystyle frac x 2 mu b frac y 2 mu c 4 z mu Similarly surfaces of constant n displaystyle nu are upward opening elliptic paraboloids x 2 b n y 2 c n 4 z n displaystyle frac x 2 b nu frac y 2 c nu 4 z nu whereas surfaces of constant l displaystyle lambda are hyperbolic paraboloids x 2 b l y 2 l c 4 z l displaystyle frac x 2 b lambda frac y 2 lambda c 4 z lambda Scale factors EditThe scale factors for the paraboloidal coordinates m n l displaystyle mu nu lambda are 2 h m m n m l m b m c 1 2 displaystyle h mu left frac left mu nu right left mu lambda right left mu b right left mu c right right 1 2 h n m n l n b n c n 1 2 displaystyle h nu left frac left mu nu right left lambda nu right left b nu right left c nu right right 1 2 h l l n m l b l l c 1 2 displaystyle h lambda left frac left lambda nu right left mu lambda right left b lambda right left lambda c right right 1 2 Hence the infinitesimal volume element is d V m n m l l n m b m c b n c n b l l c 1 2 d l d m d n displaystyle dV frac mu nu mu lambda lambda nu left mu b mu c b nu c nu b lambda lambda c right 1 2 d lambda d mu d nu Differential operators EditCommon differential operators can be expressed in the coordinates m n l displaystyle mu nu lambda by substituting the scale factors into the general formulas for these operators which are applicable to any three dimensional orthogonal coordinates For instance the gradient operator is m b m c m n m l 1 2 e m m b n c n m n l n 1 2 e n n b l l c l n m l 1 2 e l l displaystyle nabla left frac left mu b right left mu c right left mu nu right left mu lambda right right 1 2 mathbf e mu frac partial partial mu left frac left b nu right left c nu right left mu nu right left lambda nu right right 1 2 mathbf e nu frac partial partial nu left frac left b lambda right left lambda c right left lambda nu right left mu lambda right right 1 2 mathbf e lambda frac partial partial lambda and the Laplacian is 2 m b m c m n m l 1 2 m m b 1 2 m c 1 2 m b n c n m n l n 1 2 n b n 1 2 c n 1 2 n b l l c l n m l 1 2 l b l 1 2 l c 1 2 l displaystyle begin aligned nabla 2 amp left frac left mu b right left mu c right left mu nu right left mu lambda right right 1 2 frac partial partial mu left mu b 1 2 mu c 1 2 frac partial partial mu right amp left frac left b nu right left c nu right left mu nu right left lambda nu right right 1 2 frac partial partial nu left b nu 1 2 c nu 1 2 frac partial partial nu right amp left frac left b lambda right left lambda c right left lambda nu right left mu lambda right right 1 2 frac partial partial lambda left b lambda 1 2 lambda c 1 2 frac partial partial lambda right end aligned Applications EditParaboloidal coordinates can be useful for solving certain partial differential equations For instance the Laplace equation and Helmholtz equation are both separable in paraboloidal coordinates Hence the coordinates can be used to solve these equations in geometries with paraboloidal symmetry i e with boundary conditions specified on sections of paraboloids The Helmholtz equation is 2 k 2 ps 0 displaystyle nabla 2 k 2 psi 0 Taking ps M m N n L l displaystyle psi M mu N nu Lambda lambda the separated equations are 3 m b m c d 2 M d m 2 1 2 2 m b c d M d m k 2 m 2 a 3 m a 2 M 0 b n c n d 2 N d n 2 1 2 2 n b c d N d n k 2 n 2 a 3 n a 2 N 0 b l l c d 2 L d l 2 1 2 2 l b c d L d l k 2 l 2 a 3 l a 2 L 0 displaystyle begin aligned amp mu b mu c frac d 2 M d mu 2 frac 1 2 left 2 mu b c right frac dM d mu left k 2 mu 2 alpha 3 mu alpha 2 right M 0 amp b nu c nu frac d 2 N d nu 2 frac 1 2 left 2 nu b c right frac dN d nu left k 2 nu 2 alpha 3 nu alpha 2 right N 0 amp b lambda lambda c frac d 2 Lambda d lambda 2 frac 1 2 left 2 lambda b c right frac d Lambda d lambda left k 2 lambda 2 alpha 3 lambda alpha 2 right Lambda 0 end aligned where a 2 displaystyle alpha 2 and a 3 displaystyle alpha 3 are the two separation constants Similarly the separated equations for the Laplace equation can be obtained by setting k 0 displaystyle k 0 in the above Each of the separated equations can be cast in the form of the Baer equation Direct solution of the equations is difficult however in part because the separation constants a 2 displaystyle alpha 2 and a 3 displaystyle alpha 3 appear simultaneously in all three equations Following the above approach paraboloidal coordinates have been used to solve for the electric field surrounding a conducting paraboloid 4 References Edit Yoon LCLY M Willatzen 2011 Separable Boundary Value Problems in Physics Wiley VCH p 217 ISBN 978 3 527 63492 7 Willatzen and Yoon 2011 p 219 Willatzen and Yoon 2011 p 227 Duggen L Willatzen M Voon L C Lew Yan 2012 Laplace boundary value problem in paraboloidal coordinates European Journal of Physics 33 3 689 696 doi 10 1088 0143 0807 33 3 689Bibliography EditLew Yan Voon LC Willatzen M 2011 Separable Boundary Value Problems in Physics Wiley VCH ISBN 978 3 527 41020 0 Morse PM Feshbach H 1953 Methods of Theoretical Physics Part I New York McGraw Hill p 664 ISBN 0 07 043316 X LCCN 52011515 Margenau H Murphy GM 1956 The Mathematics of Physics and Chemistry New York D van Nostrand pp 184 185 LCCN 55010911 Korn GA Korn TM 1961 Mathematical Handbook for Scientists and Engineers New York McGraw Hill p 180 LCCN 59014456 ASIN B0000CKZX7 Arfken G 1970 Mathematical Methods for Physicists 2nd ed Orlando FL Academic Press pp 119 120 Sauer R Szabo I 1967 Mathematische Hilfsmittel des Ingenieurs New York Springer Verlag p 98 LCCN 67025285 Zwillinger D 1992 Handbook of Integration Boston MA Jones and Bartlett p 114 ISBN 0 86720 293 9 Same as Morse amp Feshbach 1953 substituting uk for 3k Moon P Spencer DE 1988 Paraboloidal Coordinates m n l Field Theory Handbook Including Coordinate Systems Differential Equations and Their Solutions corrected 2nd ed 3rd print ed New York Springer Verlag pp 44 48 Table 1 11 ISBN 978 0 387 18430 2 External links EditMathWorld description of confocal paraboloidal coordinates Retrieved from https en wikipedia org w index php title Paraboloidal coordinates amp oldid 1014433480, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.