fbpx
Wikipedia

Orthonormal basis

In mathematics, particularly linear algebra, an orthonormal basis for an inner product space V with finite dimension is a basis for whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other.[1][2][3] For example, the standard basis for a Euclidean space is an orthonormal basis, where the relevant inner product is the dot product of vectors. The image of the standard basis under a rotation or reflection (or any orthogonal transformation) is also orthonormal, and every orthonormal basis for arises in this fashion.

For a general inner product space an orthonormal basis can be used to define normalized orthogonal coordinates on Under these coordinates, the inner product becomes a dot product of vectors. Thus the presence of an orthonormal basis reduces the study of a finite-dimensional inner product space to the study of under dot product. Every finite-dimensional inner product space has an orthonormal basis, which may be obtained from an arbitrary basis using the Gram–Schmidt process.

In functional analysis, the concept of an orthonormal basis can be generalized to arbitrary (infinite-dimensional) inner product spaces.[4] Given a pre-Hilbert space an orthonormal basis for is an orthonormal set of vectors with the property that every vector in can be written as an infinite linear combination of the vectors in the basis. In this case, the orthonormal basis is sometimes called a Hilbert basis for Note that an orthonormal basis in this sense is not generally a Hamel basis, since infinite linear combinations are required.[5] Specifically, the linear span of the basis must be dense in although not necessarily the entire space.

If we go on to Hilbert spaces, a non-orthonormal set of vectors having the same linear span as an orthonormal basis may not be a basis at all. For instance, any square-integrable function on the interval can be expressed (almost everywhere) as an infinite sum of Legendre polynomials (an orthonormal basis), but not necessarily as an infinite sum of the monomials

A different generalisation is to pseudo-inner product spaces, finite-dimensional vector spaces equipped with a non-degenerate symmetric bilinear form known as the metric tensor. In such a basis, the metric takes the form with positive ones and negative ones.

Examples edit

  • For  , the set of vectors   is called the standard basis and forms an orthonormal basis of   with respect to the standard dot product. Note that both the standard basis and standard dot product rely on viewing   as the Cartesian product  
    Proof: A straightforward computation shows that the inner products of these vectors equals zero,   and that each of their magnitudes equals one,   This means that   is an orthonormal set. All vectors   can be expressed as a sum of the basis vectors scaled
     
    so   spans   and hence must be a basis. It may also be shown that the standard basis rotated about an axis through the origin or reflected in a plane through the origin also forms an orthonormal basis of  .
  • For  , the standard basis and inner product are similarly defined. Any other orthonormal basis is related to the standard basis by an orthogonal transformation in the group O(n).
  • For pseudo-Euclidean space  , an orthogonal basis   with metric   instead satisfies   if  ,   if  , and   if  . Any two orthonormal bases are related by a pseudo-orthogonal transformation. In the case  , these are Lorentz transformations.
  • The set   with   where   denotes the exponential function, forms an orthonormal basis of the space of functions with finite Lebesgue integrals,   with respect to the 2-norm. This is fundamental to the study of Fourier series.
  • The set   with   if   and   otherwise forms an orthonormal basis of  
  • Eigenfunctions of a Sturm–Liouville eigenproblem.
  • The column vectors of an orthogonal matrix form an orthonormal set.

Basic formula edit

If   is an orthogonal basis of   then every element   may be written as

 

When   is orthonormal, this simplifies to

 
and the square of the norm of   can be given by
 

Even if   is uncountable, only countably many terms in this sum will be non-zero, and the expression is therefore well-defined. This sum is also called the Fourier expansion of   and the formula is usually known as Parseval's identity.

If   is an orthonormal basis of   then   is isomorphic to   in the following sense: there exists a bijective linear map  such that

 

Incomplete orthogonal sets edit

Given a Hilbert space   and a set   of mutually orthogonal vectors in   we can take the smallest closed linear subspace   of   containing   Then   will be an orthogonal basis of   which may of course be smaller than   itself, being an incomplete orthogonal set, or be   when it is a complete orthogonal set.

Existence edit

Using Zorn's lemma and the Gram–Schmidt process (or more simply well-ordering and transfinite recursion), one can show that every Hilbert space admits an orthonormal basis;[6] furthermore, any two orthonormal bases of the same space have the same cardinality (this can be proven in a manner akin to that of the proof of the usual dimension theorem for vector spaces, with separate cases depending on whether the larger basis candidate is countable or not). A Hilbert space is separable if and only if it admits a countable orthonormal basis. (One can prove this last statement without using the axiom of choice.)

Choice of basis as a choice of isomorphism edit

For concreteness we discuss orthonormal bases for a real,   dimensional vector space   with a positive definite symmetric bilinear form  .

One way to view an orthonormal basis with respect to   is as a set of vectors  , which allow us to write   for  , and   or  . With respect to this basis, the components of   are particularly simple:  

We can now view the basis as a map   which is an isomorphism of inner product spaces: to make this more explicit we can write

 

Explicitly we can write   where   is the dual basis element to  .

The inverse is a component map

 

These definitions make it manifest that there is a bijection

 

The space of isomorphisms admits actions of orthogonal groups at either the   side or the   side. For concreteness we fix the isomorphisms to point in the direction  , and consider the space of such maps,  .

This space admits a left action by the group of isometries of  , that is,   such that  , with the action given by composition:  

This space also admits a right action by the group of isometries of  , that is,  , with the action again given by composition:  .

As a principal homogeneous space edit

The set of orthonormal bases for   with the standard inner product is a principal homogeneous space or G-torsor for the orthogonal group   and is called the Stiefel manifold   of orthonormal  -frames.[7]

In other words, the space of orthonormal bases is like the orthogonal group, but without a choice of base point: given the space of orthonormal bases, there is no natural choice of orthonormal basis, but once one is given one, there is a one-to-one correspondence between bases and the orthogonal group. Concretely, a linear map is determined by where it sends a given basis: just as an invertible map can take any basis to any other basis, an orthogonal map can take any orthogonal basis to any other orthogonal basis.

The other Stiefel manifolds   for   of incomplete orthonormal bases (orthonormal  -frames) are still homogeneous spaces for the orthogonal group, but not principal homogeneous spaces: any  -frame can be taken to any other  -frame by an orthogonal map, but this map is not uniquely determined.

  • The set of orthonormal bases for   is a G-torsor for  .
  • The set of orthonormal bases for   is a G-torsor for  .
  • The set of orthonormal bases for   is a G-torsor for  .
  • The set of right-handed orthonormal bases for   is a G-torsor for  

See also edit

References edit

  1. ^ Lay, David C. (2006). Linear Algebra and Its Applications (3rd ed.). Addison–Wesley. ISBN 0-321-28713-4.
  2. ^ Strang, Gilbert (2006). Linear Algebra and Its Applications (4th ed.). Brooks Cole. ISBN 0-03-010567-6.
  3. ^ Axler, Sheldon (2002). Linear Algebra Done Right (2nd ed.). Springer. ISBN 0-387-98258-2.
  4. ^ Rudin, Walter (1987). Real & Complex Analysis. McGraw-Hill. ISBN 0-07-054234-1.
  5. ^ Roman 2008, p. 218, ch. 9.
  6. ^ Linear Functional Analysis Authors: Rynne, Bryan, Youngson, M.A. page 79
  7. ^ "CU Faculty". engfac.cooper.edu. Retrieved 2021-04-15.

External links edit

  • This Stack Exchange Post discusses why the set of Dirac Delta functions is not a basis of L2([0,1]).

orthonormal, basis, mathematics, particularly, linear, algebra, orthonormal, basis, inner, product, space, with, finite, dimension, basis, displaystyle, whose, vectors, orthonormal, that, they, unit, vectors, orthogonal, each, other, example, standard, basis, . In mathematics particularly linear algebra an orthonormal basis for an inner product space V with finite dimension is a basis for V displaystyle V whose vectors are orthonormal that is they are all unit vectors and orthogonal to each other 1 2 3 For example the standard basis for a Euclidean space R n displaystyle mathbb R n is an orthonormal basis where the relevant inner product is the dot product of vectors The image of the standard basis under a rotation or reflection or any orthogonal transformation is also orthonormal and every orthonormal basis for R n displaystyle mathbb R n arises in this fashion For a general inner product space V displaystyle V an orthonormal basis can be used to define normalized orthogonal coordinates on V displaystyle V Under these coordinates the inner product becomes a dot product of vectors Thus the presence of an orthonormal basis reduces the study of a finite dimensional inner product space to the study of R n displaystyle mathbb R n under dot product Every finite dimensional inner product space has an orthonormal basis which may be obtained from an arbitrary basis using the Gram Schmidt process In functional analysis the concept of an orthonormal basis can be generalized to arbitrary infinite dimensional inner product spaces 4 Given a pre Hilbert space H displaystyle H an orthonormal basis for H displaystyle H is an orthonormal set of vectors with the property that every vector in H displaystyle H can be written as an infinite linear combination of the vectors in the basis In this case the orthonormal basis is sometimes called a Hilbert basis for H displaystyle H Note that an orthonormal basis in this sense is not generally a Hamel basis since infinite linear combinations are required 5 Specifically the linear span of the basis must be dense in H displaystyle H although not necessarily the entire space If we go on to Hilbert spaces a non orthonormal set of vectors having the same linear span as an orthonormal basis may not be a basis at all For instance any square integrable function on the interval 1 1 displaystyle 1 1 can be expressed almost everywhere as an infinite sum of Legendre polynomials an orthonormal basis but not necessarily as an infinite sum of the monomials x n displaystyle x n A different generalisation is to pseudo inner product spaces finite dimensional vector spaces M displaystyle M equipped with a non degenerate symmetric bilinear form known as the metric tensor In such a basis the metric takes the form diag 1 1 1 1 displaystyle text diag 1 cdots 1 1 cdots 1 with p displaystyle p positive ones and q displaystyle q negative ones Contents 1 Examples 2 Basic formula 3 Incomplete orthogonal sets 4 Existence 5 Choice of basis as a choice of isomorphism 6 As a principal homogeneous space 7 See also 8 References 9 External linksExamples editFor R 3 displaystyle mathbb R 3 nbsp the set of vectors e 1 1 0 0 e 2 0 1 0 e 3 0 0 1 displaystyle left e 1 1 0 0 e 2 0 1 0 e 3 0 0 1 right nbsp is called the standard basis and forms an orthonormal basis of R 3 displaystyle mathbb R 3 nbsp with respect to the standard dot product Note that both the standard basis and standard dot product rely on viewing R 3 displaystyle mathbb R 3 nbsp as the Cartesian product R R R displaystyle mathbb R times mathbb R times mathbb R nbsp Proof A straightforward computation shows that the inner products of these vectors equals zero e 1 e 2 e 1 e 3 e 2 e 3 0 displaystyle left langle e 1 e 2 right rangle left langle e 1 e 3 right rangle left langle e 2 e 3 right rangle 0 nbsp and that each of their magnitudes equals one e 1 e 2 e 3 1 displaystyle left e 1 right left e 2 right left e 3 right 1 nbsp This means that e 1 e 2 e 3 displaystyle left e 1 e 2 e 3 right nbsp is an orthonormal set All vectors x y z R 3 displaystyle x y z in mathbb R 3 nbsp can be expressed as a sum of the basis vectors scaled x y z x e 1 y e 2 z e 3 displaystyle x y z xe 1 ye 2 ze 3 nbsp so e 1 e 2 e 3 displaystyle left e 1 e 2 e 3 right nbsp spans R 3 displaystyle mathbb R 3 nbsp and hence must be a basis It may also be shown that the standard basis rotated about an axis through the origin or reflected in a plane through the origin also forms an orthonormal basis of R 3 displaystyle mathbb R 3 nbsp For R n displaystyle mathbb R n nbsp the standard basis and inner product are similarly defined Any other orthonormal basis is related to the standard basis by an orthogonal transformation in the group O n For pseudo Euclidean space R p q displaystyle mathbb R p q nbsp an orthogonal basis e m displaystyle e mu nbsp with metric h displaystyle eta nbsp instead satisfies h e m e n 0 displaystyle eta e mu e nu 0 nbsp if m n displaystyle mu neq nu nbsp h e m e m 1 displaystyle eta e mu e mu 1 nbsp if 1 m p displaystyle 1 leq mu leq p nbsp and h e m e m 1 displaystyle eta e mu e mu 1 nbsp if p 1 m p q displaystyle p 1 leq mu leq p q nbsp Any two orthonormal bases are related by a pseudo orthogonal transformation In the case p q 1 3 displaystyle p q 1 3 nbsp these are Lorentz transformations The set f n n Z displaystyle left f n n in mathbb Z right nbsp with f n x exp 2 p i n x displaystyle f n x exp 2 pi inx nbsp where exp displaystyle exp nbsp denotes the exponential function forms an orthonormal basis of the space of functions with finite Lebesgue integrals L 2 0 1 displaystyle L 2 0 1 nbsp with respect to the 2 norm This is fundamental to the study of Fourier series The set e b b B displaystyle left e b b in B right nbsp with e b c 1 displaystyle e b c 1 nbsp if b c displaystyle b c nbsp and e b c 0 displaystyle e b c 0 nbsp otherwise forms an orthonormal basis of ℓ 2 B displaystyle ell 2 B nbsp Eigenfunctions of a Sturm Liouville eigenproblem The column vectors of an orthogonal matrix form an orthonormal set Basic formula editIf B displaystyle B nbsp is an orthogonal basis of H displaystyle H nbsp then every element x H displaystyle x in H nbsp may be written asx b B x b b 2 b displaystyle x sum b in B frac langle x b rangle lVert b rVert 2 b nbsp When B displaystyle B nbsp is orthonormal this simplifies tox b B x b b displaystyle x sum b in B langle x b rangle b nbsp and the square of the norm of x displaystyle x nbsp can be given by x 2 b B x b 2 displaystyle x 2 sum b in B langle x b rangle 2 nbsp Even if B displaystyle B nbsp is uncountable only countably many terms in this sum will be non zero and the expression is therefore well defined This sum is also called the Fourier expansion of x displaystyle x nbsp and the formula is usually known as Parseval s identity If B displaystyle B nbsp is an orthonormal basis of H displaystyle H nbsp then H displaystyle H nbsp is isomorphic to ℓ 2 B displaystyle ell 2 B nbsp in the following sense there exists a bijective linear map F H ℓ 2 B displaystyle Phi H to ell 2 B nbsp such that F x F y x y for all x y H displaystyle langle Phi x Phi y rangle langle x y rangle quad text for all x y in H nbsp Incomplete orthogonal sets editGiven a Hilbert space H displaystyle H nbsp and a set S displaystyle S nbsp of mutually orthogonal vectors in H displaystyle H nbsp we can take the smallest closed linear subspace V displaystyle V nbsp of H displaystyle H nbsp containing S displaystyle S nbsp Then S displaystyle S nbsp will be an orthogonal basis of V displaystyle V nbsp which may of course be smaller than H displaystyle H nbsp itself being an incomplete orthogonal set or be H displaystyle H nbsp when it is a complete orthogonal set Existence editUsing Zorn s lemma and the Gram Schmidt process or more simply well ordering and transfinite recursion one can show that every Hilbert space admits an orthonormal basis 6 furthermore any two orthonormal bases of the same space have the same cardinality this can be proven in a manner akin to that of the proof of the usual dimension theorem for vector spaces with separate cases depending on whether the larger basis candidate is countable or not A Hilbert space is separable if and only if it admits a countable orthonormal basis One can prove this last statement without using the axiom of choice Choice of basis as a choice of isomorphism editFor concreteness we discuss orthonormal bases for a real n displaystyle n nbsp dimensional vector space V displaystyle V nbsp with a positive definite symmetric bilinear form ϕ displaystyle phi langle cdot cdot rangle nbsp One way to view an orthonormal basis with respect to ϕ displaystyle phi nbsp is as a set of vectors B e i displaystyle mathcal B e i nbsp which allow us to write v v i e i displaystyle v v i e i nbsp for v V displaystyle v in V nbsp and v i R displaystyle v i in mathbb R nbsp or v i R n displaystyle v i in mathbb R n nbsp With respect to this basis the components of ϕ displaystyle phi nbsp are particularly simple ϕ e i e j d i j displaystyle phi e i e j delta ij nbsp We can now view the basis as a map ps B V R n displaystyle psi mathcal B V rightarrow mathbb R n nbsp which is an isomorphism of inner product spaces to make this more explicit we can write ps B V ϕ R n d i j displaystyle psi mathcal B V phi rightarrow mathbb R n delta ij nbsp Explicitly we can write ps B v i e i v ϕ e i v displaystyle psi mathcal B v i e i v phi e i v nbsp where e i displaystyle e i nbsp is the dual basis element to e i displaystyle e i nbsp The inverse is a component map C B R n V v i i 1 n v i e i displaystyle C mathcal B mathbb R n rightarrow V v i mapsto sum i 1 n v i e i nbsp These definitions make it manifest that there is a bijection Space of orthogonal bases B Space of isomorphisms V R n displaystyle text Space of orthogonal bases mathcal B leftrightarrow text Space of isomorphisms V leftrightarrow mathbb R n nbsp The space of isomorphisms admits actions of orthogonal groups at either the V displaystyle V nbsp side or the R n displaystyle mathbb R n nbsp side For concreteness we fix the isomorphisms to point in the direction R n V displaystyle mathbb R n rightarrow V nbsp and consider the space of such maps Iso R n V displaystyle text Iso mathbb R n rightarrow V nbsp This space admits a left action by the group of isometries of V displaystyle V nbsp that is R GL V displaystyle R in text GL V nbsp such that ϕ ϕ R R displaystyle phi cdot cdot phi R cdot R cdot nbsp with the action given by composition R C R C displaystyle R C R circ C nbsp This space also admits a right action by the group of isometries of R n displaystyle mathbb R n nbsp that is R i j O n Mat n n R displaystyle R ij in text O n subset text Mat n times n mathbb R nbsp with the action again given by composition C R i j C R i j displaystyle C R ij C circ R ij nbsp As a principal homogeneous space editMain article Stiefel manifold The set of orthonormal bases for R n displaystyle mathbb R n nbsp with the standard inner product is a principal homogeneous space or G torsor for the orthogonal group G O n displaystyle G text O n nbsp and is called the Stiefel manifold V n R n displaystyle V n mathbb R n nbsp of orthonormal n displaystyle n nbsp frames 7 In other words the space of orthonormal bases is like the orthogonal group but without a choice of base point given the space of orthonormal bases there is no natural choice of orthonormal basis but once one is given one there is a one to one correspondence between bases and the orthogonal group Concretely a linear map is determined by where it sends a given basis just as an invertible map can take any basis to any other basis an orthogonal map can take any orthogonal basis to any other orthogonal basis The other Stiefel manifolds V k R n displaystyle V k mathbb R n nbsp for k lt n displaystyle k lt n nbsp of incomplete orthonormal bases orthonormal k displaystyle k nbsp frames are still homogeneous spaces for the orthogonal group but not principal homogeneous spaces any k displaystyle k nbsp frame can be taken to any other k displaystyle k nbsp frame by an orthogonal map but this map is not uniquely determined The set of orthonormal bases for R p q displaystyle mathbb R p q nbsp is a G torsor for G O p q displaystyle G text O p q nbsp The set of orthonormal bases for C n displaystyle mathbb C n nbsp is a G torsor for G U n displaystyle G text U n nbsp The set of orthonormal bases for C p q displaystyle mathbb C p q nbsp is a G torsor for G U p q displaystyle G text U p q nbsp The set of right handed orthonormal bases for R n displaystyle mathbb R n nbsp is a G torsor for G SO n displaystyle G text SO n nbsp See also editOrthogonal basis Basis linear algebra Set of vectors used to define coordinates Orthonormal frame Euclidean space without distance and angles Schauder basis Computational tool Total set subset of a topological vector space whose linear span is densePages displaying wikidata descriptions as a fallbackReferences edit Lay David C 2006 Linear Algebra and Its Applications 3rd ed Addison Wesley ISBN 0 321 28713 4 Strang Gilbert 2006 Linear Algebra and Its Applications 4th ed Brooks Cole ISBN 0 03 010567 6 Axler Sheldon 2002 Linear Algebra Done Right 2nd ed Springer ISBN 0 387 98258 2 Rudin Walter 1987 Real amp Complex Analysis McGraw Hill ISBN 0 07 054234 1 Roman 2008 p 218 ch 9 Linear Functional Analysis Authors Rynne Bryan Youngson M A page 79 CU Faculty engfac cooper edu Retrieved 2021 04 15 Roman Stephen 2008 Advanced Linear Algebra Graduate Texts in Mathematics Third ed Springer ISBN 978 0 387 72828 5 page 218 ch 9 Rudin Walter 1991 Functional Analysis International Series in Pure and Applied Mathematics Vol 8 Second ed New York NY McGraw Hill Science Engineering Math ISBN 978 0 07 054236 5 OCLC 21163277 External links editThis Stack Exchange Post discusses why the set of Dirac Delta functions is not a basis of L2 0 1 Retrieved from https en wikipedia org w index php title Orthonormal basis amp oldid 1211850010, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.