fbpx
Wikipedia

Yamaha OPL

The OPL (FM Operator Type-L) series are a family of sound chips developed by Yamaha. The OPL series are low-cost sound chips providing FM synthesis for use in computing, music and video game applications.

Internal operation

The internal operation of the chips is completely digital. Each FM-tone is generated by a digital oscillator using a form of direct digital synthesis. A low-frequency oscillator and an envelope generator drive an FM operator to produce floating-point output for the DAC. Decapsulation of the chips shows two look-up tables, one for calculating exponents and one for log-sine.[1] This allows the FM operator to calculate its output without any multipliers, using the formula   and two 256-entry look-up tables. Both tables are stored as pairs of values rounded to the nearest whole number, with the second value represented as the difference between it and the first value.

A quarter of the log-transformed sine waveform is stored as a sampled approximation in a 256-word read-only memory (ROM) table, computed by   for values of 0 to 255. The rest of the sine-waveform is extrapolated via its property of symmetry. Scaling the output of an oscillator to a wanted volume would normally be done by multiplication, but the YM3526 avoids multiplications by operating on log-transformed signals, which reduces multiplications into computationally cheaper additions.[2]

Another 256-word ROM stores the exponential function as a lookup table, used to convert the logarithmic scale signal back to linear scale when required, as the final stage where the oscillator-outputs are summed together (just prior to the DAC-output bus), with the modulator waveform always delayed by one sample before the carrier waveform.[3] This table is computed by   for values of 0 to 255. To compute the exponent, 1024 is added to the value at the index given by the least significant byte of input; this becomes the significand and the remaining bits of input become the exponent of the floating point output.

Chips in the series

OPL

 
Yamaha YM3526

The YM3526, introduced in 1984, was the first in the OPL family, providing a nine channel, two operator synthesizer. A very closely related chip is the Y8950, or MSX-AUDIO, which was used as an MSX expansion. It is essentially a YM3526 with ADPCM recording and playback capability.

The circuit has 244 different write-only registers. It can produce 9 channels of sound, each made of two oscillators or 6 channels with 5 percussion instruments available. Each oscillator can produce sine waves and has its own ADSR envelope generator. Its main method of synthesis is frequency modulation synthesis, accomplished via phase modulation of the phase of one channel's oscillators by the output of another.

The YM3526's output, a sequence of floating point numbers clocked at a sampling frequency of approximately 49716 Hz, is sent to a separate digital-to-analog converter (DAC) chip, the YM3014B.

Overview of a channel's registers:

For the whole channel:

  • Main frequency (10 bits)
  • Octave (3 bits)
  • Note on/off
  • Synthesis mode (FM or just additive)
  • Feedback (0–7, the modulator modulating itself)

For each one of the two oscillators:

  • Frequency multiply (can be set to 12, 1 to 10, 12 or 15)
  • Waveform (Sine)
  • Volume (0–63, logarithmic)
  • Attack, decay, sustain, release (4 bits each, logarithmic)
  • Tremolo (on or off)
  • Vibrato (on or off)
  • Sustain (on or off)
  • Envelope scaling per key (on or off)
  • Volume scaling per key (0–3)

There are also a few parameters that can be set for the whole chip:

  • Vibrato depth
  • Tremolo depth
  • Percussion mode (uses 3 channels to provide 5 percussion sounds)
  • Composite sine mode (see Sinewave synthesis)

OPL2

An audio sample of music written for and played on YM3812
 
OPL2 waveforms

In 1985, Yamaha created the YM3812, also known as the OPL2. It is backwards compatible with the YM3526. Another related chip is the YM2413 (OPLL), which is a cut down version.

Among its newly-added features is the ability to pick between four waveforms for each individual oscillator by setting a register. In addition to the original sine wave, three modified waveforms can be produced: half-sine waves (where the negative part of the sine is muted), absolute-sine waves (where the negative part is inverted), and pseudo-sawtooth waves (quarter sine waves upward only with silent sections in between). This odd way of producing waveforms give the YM3812 a characteristic sound.

The YM3812 is used with the YM3014B external DAC chip to output its audio in analog form, like with the YM3526.

OPL3

 
OPL3 waveforms

An upgraded version of the OPL2, the YMF262 (a.k.a. OPL3), was released in 1988. It improved upon the feature-set of the YM3812, adding the following features:[4]

  • twice as many channels (18 instead of 9)
  • simple stereo (hard left, center or hard right)
  • 4 channel sound output
  • 4 new waveforms (alternating-sine, "camel"-sine, square and logarithmic sawtooth)
  • 4 operator mode, pairing 2 channels together to create up to six 4 operator FM voices
  • reduced latency for host-register access (the OPL2 had much longer I/O access delays)
  • subtle differences in the sine-wave lookup table and envelope generator to YM3812 (e.g. the modulator waveform on YM3812 is delayed by one sample, whereas both carrier and modulator waveforms on OPL3 are properly synchronized)[3]

The YMF262 also removed support for the little-used CSM (Composite sine mode) mode, featured on the YM3812 and YM3526.[3]

The YMF262's FM synthesis mode can be configured in many different ways:[4]

  • Its basic mode provides 18 two-operator FM channels.
  • One setting, common with the rest of the OPL line, converts 3 of the FM channels into a 5-channel percussion set.
  • Another setting, introduced with this chip, causes 12 of the channels to be paired up into six four-operator channels. This trades in polyphony for more complex sound formation.
  • These two settings above can be used separately or in conjunction, resulting in four total modes:
    • 18 2-operator channels
    • 15 2-operator channels + 5 drum channels (drum setting on)
    • 6 2-operator channels + 6 4-operator channels (4-op setting on)
    • 3 2-operator channels + 6 4-operator channels + 5 drum channels (both settings on)

Like its predecessors, the OPL3 outputs audio in digital-I/O form, requiring an external DAC chip such as the YAC512.

Competing sound chip vendors (such as ESS,[5] OPTi,[6] Crystal[7] and others) designed their own OPL3-compatible audio chips, with varying degrees of faithfulness to the original OPL3.

Yamaha YMF289

A comparison of the outputs of Yamaha's YMF262 and YMF289 FM sound chips. 0:00 is YMF262, and 0:31 onward is YMF289.

Yamaha also produced a fully compatible, low-power variant of the YMF262 in 1995 called the YMF289 (OPL3-L), which targeted PCMCIA sound cards and laptop computers.[8] It was used in some Sound Blaster 16 sound cards made by Creative Technology. The YMF289B is paired with a YAC513 or YAC516 companion floating-point DAC chip.

The YMF289 is fully register-compatible with and retains the feature-set of the YMF262, with a number of differences:[8]

  • Supports 5 or 3.3 volt operation.
  • The registers can be read or written by the host CPU, whereas on the YMF262 they are write-only.
  • 44,100 Hz (44.1 kHz) output sample rate.
  • A power-down mode is added.
  • Somewhat smaller overall footprint, including DAC, compared to a full YMF262 implementation.
  • 33.868 MHz input clock, compared to the 14.32 MHz input clock used for the YMF262.
  • Internal linear interpolator.

ESS ESFM

ESFM's output under Legacy / OPL3-compatible mode demonstrates some tangible differences in the way some sounds are synthesized.

ESS Technology's in-house developed derivative, termed ESFM, is an enhanced, 20-voice, 72-operator, OPL3-compatible clone incorporating two operating modes, a Native mode and a Legacy mode, which controls its feature-set and behavior.[5] In Native mode, ESFM allows more than six 4-operator FM voices to be mapped, potentially allowing for a significant increase in the complexity of tones generated. The drivers for Windows 9x incorporate their own custom instrument patches which make use of this extended mode. Conversely, Legacy mode provides full backward-compatibility with Yamaha's YMF262.[5] ESFM's output in this mode is moderately faithful to the YMF262 overall, but some tones are rendered quite differently, resulting in unique distortions in the sound and music of some games.

ESFM is available in ESS sound chips starting with the ISA-based ES1688 AudioDrive, up to the PCI-based ES1946 Solo-1E, whereas earlier chips required an external FM synthesizer chip (typically a Yamaha YMF262). ESS's Maestro series of PCI-based sound chips rely on a software implementation of FM synthesis that lacks ESFM's special features.

OPL3-SA, DS-XG, OPL4

Yamaha's later PC audio controllers, including the YMF278 (OPL4), the single-chip Yamaha YMF718/719S, and the PCI YMF724/74x family, included the YMF262's FM synthesis block for backward compatibility with legacy software. See YMF7xx for more information.

Products using the OPL series

The YM3526 was notably used in a Commodore 64 expansion, the Sound Expander, as well as several arcade games, such as Terra Cresta and Bubble Bobble.

The YM3812 saw wide use in IBM PC-based sound cards such as the AdLib, Sound Blaster and Pro AudioSpectrum (8bit),[9] as well as several arcade games by Nichibutsu, Toaplan and others.

The YM2413 was used in the FM Sound Unit expansion for the Sega Mark III and the Japanese model Sega Master System, as well as various MSX sound enhancement cards.

The YMF262 was used in many IBM PC-based sound cards, including the popular Sound Blaster Pro 2 and Sound Blaster 16 ASP, as well as the Pro AudioSpectrum (16bit).[9] Later models of the Sound Blaster 16 and Sound Blaster AWE series integrated the OPL3 with other chips, with Creative Labs using an OPL3 clone chip, the CQM, integral with other chips in later models from late 1995.[10] It is also used in several arcade games by Tecmo.

The YMF278 was used in the Moonsound card for the MSX, as well as the SoundEdge card by Yamaha for IBM PC compatibles.

Synthesizers

Synthesizers that use the YM3812:[11]

  • Yamaha PSR-11 49-keys 16-sounds (1986)
  • Yamaha PSR-12 49-keys 32-sounds (1987)
  • Yamaha PSR-21 49-keys 16-sounds, 2 steps sliders (1986)
  • Yamaha PSR-22 49-keys 32-sounds, 2 steps sliders (1987)
  • Yamaha PSR-31 61-keys 16-sounds, additional YM3301 chip[12] for drums (1991)
  • Yamaha PSR-32 61-keys 32-sounds, additional YM3301 chip[12] for drums (1987)
  • Yamaha PSS-360 49 mini-keys 21-sounds, 5 steps sliders, low-cost mono version of PSS-460 (1986)
  • Yamaha PSS-460 49 mini-keys 21-sounds, 5 steps sliders (1986)
  • Yamaha PSS-470 49 mini-keys 21-sounds, 5 steps sliders (1987)
  • Yamaha PSS-560 49 mini-keys 21-sounds, 5 steps sliders, additional YM3301 chip[12] for drums (1986)
  • Yamaha PSS-570 49 mini-keys 21-sounds, 5 steps sliders, additional YM3301 chip[12] for drums (1987)

Synthesizers that use the YM2413 (cost reduced YM3812):[11]

  • Yamaha PSR-6 49-keys 100-sounds (1994)
  • Yamaha PSS-140 37 mini-keys 100-sounds (1988)
  • Yamaha PSS-170 44 mini-keys 100-sounds (1986)
  • Yamaha PSS-270 49 mini-keys 100-sounds (1986)

Variants and derivatives

An open-source RTL implementation of the OPL3 was written in SystemVerilog and adapted to an FPGA in 2015.[13]

See also

References

  1. ^ "Adlib / OPL2 / YM3812 – iki.fi/o".
  2. ^ "OPLx decapsulated". Google Docs.
  3. ^ a b c "Data". dev.kewl.org. Retrieved 2021-10-07.
  4. ^ a b (PDF). www.fit.vutbr.cz. Archived from the original (PDF) on 2003-05-20. Retrieved 2021-10-07.
  5. ^ a b c "Manual" (PDF). ftp.alsa-project.org. Retrieved 2021-10-07.
  6. ^ "82C925(100QFP) PDF Datasheet - OPTi Technologies, Inc". www.datasheets360.com.
  7. ^ (PDF). gd.tuwien.ac.at. Archived from the original (PDF) on 6 February 2018. Retrieved 15 January 2022.{{cite web}}: CS1 maint: archived copy as title (link)
  8. ^ a b "Info" (PDF). doc.chipfind.ru. Retrieved 2021-10-07.
  9. ^ a b "Ad-Lib Sound Card for the Parallel Port" – via www.youtube.com.
  10. ^ "PC audio for luddites". flaterco.com.
  11. ^ a b "Meet the little-known "Soundblaster" Keyboards". The 8-Bit Guy, Youtube. Retrieved 19 August 2015.
  12. ^ a b c d . Edward D-tech. Archived from the original on 16 May 2016. Retrieved 25 January 2016.
  13. ^ "opl3_fpga". September 28, 2021 – via GitHub.

External links

  • http://www.oplx.com/ OPL series programming info
  • MIDIbox FM, a YMF262-based DIY synthesizer
  • AdlibTracker.net Adlib Tracker II (YMF262-Tracker)
  • RAD Reality Adlib Tracker (YMF262-Tracker)
  • An YMF262 emulator with an online player for OPL3 music.
  • OPLx decapsulated (a reverse engineering report)
  • OPL3_FPGA GitHub Reverse engineered OPL3 in an FPGA
  • Analysis of the OPL3 math

yamaha, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jstor, july, 2021, learn, . This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Yamaha OPL news newspapers books scholar JSTOR July 2021 Learn how and when to remove this template message The OPL FM Operator Type L series are a family of sound chips developed by Yamaha The OPL series are low cost sound chips providing FM synthesis for use in computing music and video game applications Contents 1 Internal operation 2 Chips in the series 2 1 OPL 2 2 OPL2 2 3 OPL3 2 3 1 Yamaha YMF289 2 3 2 ESS ESFM 2 4 OPL3 SA DS XG OPL4 3 Products using the OPL series 3 1 Synthesizers 4 Variants and derivatives 5 See also 6 References 7 External linksInternal operation EditThe internal operation of the chips is completely digital Each FM tone is generated by a digital oscillator using a form of direct digital synthesis A low frequency oscillator and an envelope generator drive an FM operator to produce floating point output for the DAC Decapsulation of the chips shows two look up tables one for calculating exponents and one for log sine 1 This allows the FM operator to calculate its output without any multipliers using the formula exp log sin f 2 exp log sin f 1 A 1 A 2 displaystyle exp log sin varphi 2 exp log sin varphi 1 A 1 A 2 and two 256 entry look up tables Both tables are stored as pairs of values rounded to the nearest whole number with the second value represented as the difference between it and the first value A quarter of the log transformed sine waveform is stored as a sampled approximation in a 256 word read only memory ROM table computed by 256 log 2 sin x 0 5 p 512 displaystyle 256 times log 2 left sin left frac x 0 5 times pi 512 right right for values of 0 to 255 The rest of the sine waveform is extrapolated via its property of symmetry Scaling the output of an oscillator to a wanted volume would normally be done by multiplication but the YM3526 avoids multiplications by operating on log transformed signals which reduces multiplications into computationally cheaper additions 2 Another 256 word ROM stores the exponential function as a lookup table used to convert the logarithmic scale signal back to linear scale when required as the final stage where the oscillator outputs are summed together just prior to the DAC output bus with the modulator waveform always delayed by one sample before the carrier waveform 3 This table is computed by 2 x 256 1 1024 displaystyle left frac 2 x 256 1 right times 1024 for values of 0 to 255 To compute the exponent 1024 is added to the value at the index given by the least significant byte of input this becomes the significand and the remaining bits of input become the exponent of the floating point output Chips in the series EditOPL Edit Yamaha YM3526 The YM3526 introduced in 1984 was the first in the OPL family providing a nine channel two operator synthesizer A very closely related chip is the Y8950 or MSX AUDIO which was used as an MSX expansion It is essentially a YM3526 with ADPCM recording and playback capability The circuit has 244 different write only registers It can produce 9 channels of sound each made of two oscillators or 6 channels with 5 percussion instruments available Each oscillator can produce sine waves and has its own ADSR envelope generator Its main method of synthesis is frequency modulation synthesis accomplished via phase modulation of the phase of one channel s oscillators by the output of another The YM3526 s output a sequence of floating point numbers clocked at a sampling frequency of approximately 49716 Hz is sent to a separate digital to analog converter DAC chip the YM3014B Overview of a channel s registers For the whole channel Main frequency 10 bits Octave 3 bits Note on off Synthesis mode FM or just additive Feedback 0 7 the modulator modulating itself For each one of the two oscillators Frequency multiply can be set to 1 2 1 to 10 12 or 15 Waveform Sine Volume 0 63 logarithmic Attack decay sustain release 4 bits each logarithmic Tremolo on or off Vibrato on or off Sustain on or off Envelope scaling per key on or off Volume scaling per key 0 3 There are also a few parameters that can be set for the whole chip Vibrato depth Tremolo depth Percussion mode uses 3 channels to provide 5 percussion sounds Composite sine mode see Sinewave synthesis OPL2 Edit source source An audio sample of music written for and played on YM3812 OPL2 waveforms In 1985 Yamaha created the YM3812 also known as the OPL2 It is backwards compatible with the YM3526 Another related chip is the YM2413 OPLL which is a cut down version Yamaha YM3812 OPL2 chip Creative Labs and other companies often hid the original Yamaha labels Yamaha YM3812 F SMD surface mount OPL2 chip Decapsulated YM3812 showing the die surfaceAmong its newly added features is the ability to pick between four waveforms for each individual oscillator by setting a register In addition to the original sine wave three modified waveforms can be produced half sine waves where the negative part of the sine is muted absolute sine waves where the negative part is inverted and pseudo sawtooth waves quarter sine waves upward only with silent sections in between This odd way of producing waveforms give the YM3812 a characteristic sound The YM3812 is used with the YM3014B external DAC chip to output its audio in analog form like with the YM3526 OPL3 Edit OPL3 waveforms Yamaha YMF262 OPL3 chip manuf year 1994 Decapsulated YMF262 showing the die surfaceAn upgraded version of the OPL2 the YMF262 a k a OPL3 was released in 1988 It improved upon the feature set of the YM3812 adding the following features 4 twice as many channels 18 instead of 9 simple stereo hard left center or hard right 4 channel sound output 4 new waveforms alternating sine camel sine square and logarithmic sawtooth 4 operator mode pairing 2 channels together to create up to six 4 operator FM voices reduced latency for host register access the OPL2 had much longer I O access delays subtle differences in the sine wave lookup table and envelope generator to YM3812 e g the modulator waveform on YM3812 is delayed by one sample whereas both carrier and modulator waveforms on OPL3 are properly synchronized 3 The YMF262 also removed support for the little used CSM Composite sine mode mode featured on the YM3812 and YM3526 3 The YMF262 s FM synthesis mode can be configured in many different ways 4 Its basic mode provides 18 two operator FM channels One setting common with the rest of the OPL line converts 3 of the FM channels into a 5 channel percussion set Another setting introduced with this chip causes 12 of the channels to be paired up into six four operator channels This trades in polyphony for more complex sound formation These two settings above can be used separately or in conjunction resulting in four total modes 18 2 operator channels 15 2 operator channels 5 drum channels drum setting on 6 2 operator channels 6 4 operator channels 4 op setting on 3 2 operator channels 6 4 operator channels 5 drum channels both settings on Like its predecessors the OPL3 outputs audio in digital I O form requiring an external DAC chip such as the YAC512 Competing sound chip vendors such as ESS 5 OPTi 6 Crystal 7 and others designed their own OPL3 compatible audio chips with varying degrees of faithfulness to the original OPL3 Yamaha YMF289 Edit source source A comparison of the outputs of Yamaha s YMF262 and YMF289 FM sound chips 0 00 is YMF262 and 0 31 onward is YMF289 Yamaha also produced a fully compatible low power variant of the YMF262 in 1995 called the YMF289 OPL3 L which targeted PCMCIA sound cards and laptop computers 8 It was used in some Sound Blaster 16 sound cards made by Creative Technology The YMF289B is paired with a YAC513 or YAC516 companion floating point DAC chip The YMF289 is fully register compatible with and retains the feature set of the YMF262 with a number of differences 8 Supports 5 or 3 3 volt operation The registers can be read or written by the host CPU whereas on the YMF262 they are write only 44 100 Hz 44 1 kHz output sample rate A power down mode is added Somewhat smaller overall footprint including DAC compared to a full YMF262 implementation 33 868 MHz input clock compared to the 14 32 MHz input clock used for the YMF262 Internal linear interpolator Yamaha YMF289B and companion YAC516 DACESS ESFM Edit source source ESFM s output under Legacy OPL3 compatible mode demonstrates some tangible differences in the way some sounds are synthesized ESS Technology s in house developed derivative termed ESFM is an enhanced 20 voice 72 operator OPL3 compatible clone incorporating two operating modes a Native mode and a Legacy mode which controls its feature set and behavior 5 In Native mode ESFM allows more than six 4 operator FM voices to be mapped potentially allowing for a significant increase in the complexity of tones generated The drivers for Windows 9x incorporate their own custom instrument patches which make use of this extended mode Conversely Legacy mode provides full backward compatibility with Yamaha s YMF262 5 ESFM s output in this mode is moderately faithful to the YMF262 overall but some tones are rendered quite differently resulting in unique distortions in the sound and music of some games ESFM is available in ESS sound chips starting with the ISA based ES1688 AudioDrive up to the PCI based ES1946 Solo 1E whereas earlier chips required an external FM synthesizer chip typically a Yamaha YMF262 ESS s Maestro series of PCI based sound chips rely on a software implementation of FM synthesis that lacks ESFM s special features The ES1869F is one of several ESS developed sound chips which incorporate their unique ESFM function OPL3 SA DS XG OPL4 Edit Main articles Yamaha YMF278 and Yamaha YMF7xx Yamaha s later PC audio controllers including the YMF278 OPL4 the single chip Yamaha YMF718 719S and the PCI YMF724 74x family included the YMF262 s FM synthesis block for backward compatibility with legacy software See YMF7xx for more information Yamaha OPL YMF715B S chipsetProducts using the OPL series EditThe YM3526 was notably used in a Commodore 64 expansion the Sound Expander as well as several arcade games such as Terra Cresta and Bubble Bobble The YM3812 saw wide use in IBM PC based sound cards such as the AdLib Sound Blaster and Pro AudioSpectrum 8bit 9 as well as several arcade games by Nichibutsu Toaplan and others The YM2413 was used in the FM Sound Unit expansion for the Sega Mark III and the Japanese model Sega Master System as well as various MSX sound enhancement cards The YMF262 was used in many IBM PC based sound cards including the popular Sound Blaster Pro 2 and Sound Blaster 16 ASP as well as the Pro AudioSpectrum 16bit 9 Later models of the Sound Blaster 16 and Sound Blaster AWE series integrated the OPL3 with other chips with Creative Labs using an OPL3 clone chip the CQM integral with other chips in later models from late 1995 10 It is also used in several arcade games by Tecmo The YMF278 was used in the Moonsound card for the MSX as well as the SoundEdge card by Yamaha for IBM PC compatibles Synthesizers Edit Synthesizers that use the YM3812 11 Yamaha PSR 11 49 keys 16 sounds 1986 Yamaha PSR 12 49 keys 32 sounds 1987 Yamaha PSR 21 49 keys 16 sounds 2 steps sliders 1986 Yamaha PSR 22 49 keys 32 sounds 2 steps sliders 1987 Yamaha PSR 31 61 keys 16 sounds additional YM3301 chip 12 for drums 1991 Yamaha PSR 32 61 keys 32 sounds additional YM3301 chip 12 for drums 1987 Yamaha PSS 360 49 mini keys 21 sounds 5 steps sliders low cost mono version of PSS 460 1986 Yamaha PSS 460 49 mini keys 21 sounds 5 steps sliders 1986 Yamaha PSS 470 49 mini keys 21 sounds 5 steps sliders 1987 Yamaha PSS 560 49 mini keys 21 sounds 5 steps sliders additional YM3301 chip 12 for drums 1986 Yamaha PSS 570 49 mini keys 21 sounds 5 steps sliders additional YM3301 chip 12 for drums 1987 Synthesizers that use the YM2413 cost reduced YM3812 11 Yamaha PSR 6 49 keys 100 sounds 1994 Yamaha PSS 140 37 mini keys 100 sounds 1988 Yamaha PSS 170 44 mini keys 100 sounds 1986 Yamaha PSS 270 49 mini keys 100 sounds 1986 Variants and derivatives EditSee also Yamaha Y8950 Yamaha YM2413 Variants and clones Yamaha YMF278 and Yamaha YMF7xx An open source RTL implementation of the OPL3 was written in SystemVerilog and adapted to an FPGA in 2015 13 See also EditList of sound chips List of Yamaha products Yamaha Y8950 Yamaha YM2413 Yamaha YMF278References Edit Adlib OPL2 YM3812 iki fi o OPLx decapsulated Google Docs a b c Data dev kewl org Retrieved 2021 10 07 a b Info PDF www fit vutbr cz Archived from the original PDF on 2003 05 20 Retrieved 2021 10 07 a b c Manual PDF ftp alsa project org Retrieved 2021 10 07 82C925 100QFP PDF Datasheet OPTi Technologies Inc www datasheets360 com Archived copy PDF gd tuwien ac at Archived from the original PDF on 6 February 2018 Retrieved 15 January 2022 a href Template Cite web html title Template Cite web cite web a CS1 maint archived copy as title link a b Info PDF doc chipfind ru Retrieved 2021 10 07 a b Ad Lib Sound Card for the Parallel Port via www youtube com PC audio for luddites flaterco com a b Meet the little known Soundblaster Keyboards The 8 Bit Guy Youtube Retrieved 19 August 2015 a b c d Edward D tech Yamaha Chips YM series Edward D tech Archived from the original on 16 May 2016 Retrieved 25 January 2016 opl3 fpga September 28 2021 via GitHub External links Edithttp www oplx com OPL series programming info MIDIbox FM a YMF262 based DIY synthesizer AdlibTracker net Adlib Tracker II YMF262 Tracker RAD Reality Adlib Tracker YMF262 Tracker An YMF262 emulator with an online player for OPL3 music OPLx decapsulated a reverse engineering report OPL3 FPGA GitHub Reverse engineered OPL3 in an FPGA Analysis of the OPL3 math Retrieved from https en wikipedia org w index php title Yamaha OPL amp oldid 1121439213 OPL3, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.