fbpx
Wikipedia

Nucleic acid test

A nucleic acid test (NAT) is a technique used to detect a particular nucleic acid sequence and thus usually to detect and identify a particular species or subspecies of organism, often a virus or bacterium that acts as a pathogen in blood, tissue, urine, etc. NATs differ from other tests in that they detect genetic materials (RNA or DNA) rather than antigens or antibodies. Detection of genetic materials allows an early diagnosis of a disease because the detection of antigens and/or antibodies requires time for them to start appearing in the bloodstream.[1] Since the amount of a certain genetic material is usually very small, many NATs include a step that amplifies the genetic material—that is, makes many copies of it. Such NATs are called nucleic acid amplification tests (NAATs). There are several ways of amplification, including polymerase chain reaction (PCR), strand displacement assay (SDA), or transcription mediated assay (TMA).[2]

Rotavirus

Virtually all nucleic acid amplification methods and detection technologies use the specificity of Watson-Crick base pairing; single-stranded probe or primer molecules capture DNA or RNA target molecules of complementary strands. Therefore, the design of probe strands is highly significant to raise the sensitivity and specificity of the detection. However, the mutants which form the genetic basis for a variety of human diseases are usually slightly different from the normal nucleic acids. Often, they are only different in a single base, e.g., insertions, deletions, and single-nucleotide polymorphisms (SNPs). In this case, imperfect probe-target binding can easily occur, resulting in false-positive outcomes such as mistaking a strain that is commensal for one that is pathogenic. Much research has been dedicated to achieving single-base specificity.

Advances edit

Nucleic acid (DNA and RNA) strands with corresponding sequences stick together in pairwise chains, zipping up like Velcro tumbled in a clothes dryer. But each node of the chain is not very sticky, so the double-stranded chain is continuously coming partway unzipped and re-zipping itself under the influence of ambient vibrations (referred to as thermal noise or Brownian motion). Longer pairings are more stable. Nucleic acid tests use a "probe" which is a long strand with a short strand stuck to it. The long primer strand has a corresponding (complementary) sequence to a "target" strand from the disease organism being detected. The disease strand sticks tightly to the exposed part of the long primer strand (called the "toehold"), and then little by little, displaces the short "protector" strand from the probe. In the end, the short protector strand is not bound to anything, and the unbound short primer is detectable. The rest of this section gives some history of the research needed to fine-tune this process into a useful test.

In 2012, Yin's research group published a paper about optimizing the specificity of nucleic acid hybridization.[3] They introduced a ‘toehold exchange probe (PC)’ which consists of a pre-hybridized complement strand C and a protector strand P. Complement strand is longer than protector strand to have unbound tail in the end, a toehold. Complement is perfectly complementary with the target sequence. When the correct target(X) reacts with the toehold exchange probe(PC), P is released and hybridized product XC is formed. The standard free energy(∆) of the reaction is close to zero. On the other hand, if the toehold exchange probe(PC) reacts with spurious target(S), the reaction forwards, but the standard free energy increases to be less thermodynamically favorable. The standard free energy difference(∆∆) is significant enough to give obvious discrimination in yield. The discrimination factor Q is calculated as, the yield of correct target hybridization divided by the yield of spurious target hybridization. Through the experiments on different toehold exchange probes with 5 correct targets and 55 spurious targets with energetically representative single-base changes (replacements, deletions, and insertions), Yin's group concluded that discrimination factors of these probes were between 3 and 100 + with the median 26. The probes function robustly from 10 °C to 37 °C, from 1 mM to 47 mM, and with nucleic acid concentrations from 1 nM to 5 M. They also figured out the toehold exchange probes work robustly even in RNA detection.

Further researches have been studied thereafter. In 2013, Seelig's group published a paper about fluorescent molecular probes which also utilizes the toehold exchange reaction.[4] This enabled the optical detection of correct target and SNP target. They also succeeded in the detection of SNPs in E. coli-derived samples.

In 2015, David's group achieved extremely high (1,000+) selectivity of single-nucleotide variants (SNVs) by introducing the system called ‘competitive compositions’.[5] In this system, they constructed a kinetic reaction model of the underlying hybridization processes to predict the optimal parameter values, which vary based on the sequences of SNV and wildtype (WT), on the design architecture of the probe and sink, and on the reagent concentrations and assay conditions. Their model succeeded in a median 890-fold selectivity for 44 cancer-related DNA SNVs, with a minimum of 200, which represents at least a 30-fold improvement over previous hybridization-based assays. In addition, they applied this technology to assay low VAF sequences from human genomic DNA following PCR, as well as directly to synthetic RNA sequences.

Based on the expertise, they developed a new PCR method called Blocker Displacement Amplification (BDA).[6] It is a temperature-robust PCR which selectively amplifies all sequence variants within a roughly 20 nt window by 1000-fold over wildtype sequences, allowing easy detection and quantitation of hundreds of potentials variants originally at ≤ 0.1% allele frequency. BDA achieves similar enrichment performance across anneal temperatures ranging from 56 °C to 64 °C. This temperature robustness facilitates multiplexed enrichment of many different variants across the genome, and furthermore enables the use of inexpensive and portable thermocycling instruments for rare DNA variant detection. BDA has been validated even on sample types including clinical cell-free DNA samples collected from the blood plasma of lung cancer patients.

Applications edit

  • Diagnosis of gonococcal and other neisserian infections: amplification of specific N. gonorrhoeae DNA or RNA sequences for detection.[7]
  • Diagnosis of urogenital C. trachomatis infections[8]
  • Detection of Mycobacterium tuberculosis[9]
  • Detection of HIV RNA or DNA[10]
  • Detection of zoonotic coronaviruses[11]
  • Diagnostic test for SARS-CoV-2 [12]
  • Detection of antibiotic resistant bacteria following antibiotic treatment [13]

References edit

  1. ^ "What is the nucleic acid test (NAT)?". American Red Cross.
  2. ^ Peter A. Leone, Joseph A. Duncan (2011). Tropical Infectious Diseases: Principles, Pathogens and Practice (Third ed.). Philadelphia: Elsevier. pp. 184–190.
  3. ^ Peng Yin, David Zhang (2012). "Optimizing the specificity of nucleic acid hybridization". Nature Chemistry. 4 (3): 208–214. Bibcode:2012NatCh...4..208Z. doi:10.1038/NCHEM.1246. PMC 4238961. PMID 22354435.
  4. ^ Georg Seelig, Sherry Chen (2013). "Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA". Nature Chemistry. 5 (9): 782–789. Bibcode:2013NatCh...5..782C. doi:10.1038/NCHEM.1713. PMC 3844531. PMID 23965681.
  5. ^ David Zhang, Juexiao Sherry Wang (2015). "Simulation-guided DNA probe design for consistently ultraspecific hybridization". Nature Chemistry. 7 (7): 545–553. Bibcode:2015NatCh...7..545W. doi:10.1038/NCHEM.2266. PMC 4479422. PMID 26100802.
  6. ^ David Zhang, Lucia R. Wu (2017). "Multiplexed enrichment of rare DNA variants via sequence-selective and temperature-robust amplification". Nature Biomedical Engineering. 1 (9): 714–723. doi:10.1038/s41551-017-0126-5. PMC 5969535. PMID 29805844.
  7. ^ Peter A. Leone, Joseph A. Duncan (2011). Tropical Infectious Diseases: Principles, Pathogens and Practice (Third ed.). Philadelphia: Elsevier. pp. 184–190.
  8. ^ Fan, Huizhou (2015). Molecular Medical Microbiology (Second ed.). Academic Press. pp. 1449–1469.
  9. ^ Ridderhof, John C (2009). Tuberculosis. Elsevier. pp. 738–745.
  10. ^ Gillespie, Susan L. (2013). Clinical Immunology (Fourth ed.). Elsevier. pp. 465–479.
  11. ^ Schmidt, Michael; Brixner, Veronika; Ruster, Brigitte; Hourfar, Michael K.; Drosten, Christian; Preiser, Wolfgang; Seifried, Erhard; Roth, W. Kurt (April 2004). "NAT screening of blood donors for severe acute respiratory syndrome coronavirus can potentially prevent transfusion associated transmissions". Transfusion. 44 (4): 470–475. doi:10.1111/j.1537-2995.2004.03269.x. ISSN 0041-1132. PMC 7201871. PMID 15043560.
  12. ^ CDC (2020-02-11). "Labs". Centers for Disease Control and Prevention. Retrieved 2021-09-01.
  13. ^ "StackPath". www.mlo-online.com. 24 May 2016. Retrieved 2022-04-01.

nucleic, acid, test, naat, redirects, here, confused, with, village, naat, disambiguation, nucleic, acid, test, technique, used, detect, particular, nucleic, acid, sequence, thus, usually, detect, identify, particular, species, subspecies, organism, often, vir. NAAT redirects here Not to be confused with na at Na at village or Naat disambiguation A nucleic acid test NAT is a technique used to detect a particular nucleic acid sequence and thus usually to detect and identify a particular species or subspecies of organism often a virus or bacterium that acts as a pathogen in blood tissue urine etc NATs differ from other tests in that they detect genetic materials RNA or DNA rather than antigens or antibodies Detection of genetic materials allows an early diagnosis of a disease because the detection of antigens and or antibodies requires time for them to start appearing in the bloodstream 1 Since the amount of a certain genetic material is usually very small many NATs include a step that amplifies the genetic material that is makes many copies of it Such NATs are called nucleic acid amplification tests NAATs There are several ways of amplification including polymerase chain reaction PCR strand displacement assay SDA or transcription mediated assay TMA 2 Rotavirus Virtually all nucleic acid amplification methods and detection technologies use the specificity of Watson Crick base pairing single stranded probe or primer molecules capture DNA or RNA target molecules of complementary strands Therefore the design of probe strands is highly significant to raise the sensitivity and specificity of the detection However the mutants which form the genetic basis for a variety of human diseases are usually slightly different from the normal nucleic acids Often they are only different in a single base e g insertions deletions and single nucleotide polymorphisms SNPs In this case imperfect probe target binding can easily occur resulting in false positive outcomes such as mistaking a strain that is commensal for one that is pathogenic Much research has been dedicated to achieving single base specificity Advances editNucleic acid DNA and RNA strands with corresponding sequences stick together in pairwise chains zipping up like Velcro tumbled in a clothes dryer But each node of the chain is not very sticky so the double stranded chain is continuously coming partway unzipped and re zipping itself under the influence of ambient vibrations referred to as thermal noise or Brownian motion Longer pairings are more stable Nucleic acid tests use a probe which is a long strand with a short strand stuck to it The long primer strand has a corresponding complementary sequence to a target strand from the disease organism being detected The disease strand sticks tightly to the exposed part of the long primer strand called the toehold and then little by little displaces the short protector strand from the probe In the end the short protector strand is not bound to anything and the unbound short primer is detectable The rest of this section gives some history of the research needed to fine tune this process into a useful test This section needs expansion with a layperson friendly thumbnail of NAT history and clinical applications before it delves into acting like a journal review article of merely 3 or 4 recent reports out of a sea of biomedical literature on NATs that spans decades You can help by adding to it January 2020 In 2012 Yin s research group published a paper about optimizing the specificity of nucleic acid hybridization 3 They introduced a toehold exchange probe PC which consists of a pre hybridized complement strand C and a protector strand P Complement strand is longer than protector strand to have unbound tail in the end a toehold Complement is perfectly complementary with the target sequence When the correct target X reacts with the toehold exchange probe PC P is released and hybridized product XC is formed The standard free energy of the reaction is close to zero On the other hand if the toehold exchange probe PC reacts with spurious target S the reaction forwards but the standard free energy increases to be less thermodynamically favorable The standard free energy difference is significant enough to give obvious discrimination in yield The discrimination factor Q is calculated as the yield of correct target hybridization divided by the yield of spurious target hybridization Through the experiments on different toehold exchange probes with 5 correct targets and 55 spurious targets with energetically representative single base changes replacements deletions and insertions Yin s group concluded that discrimination factors of these probes were between 3 and 100 with the median 26 The probes function robustly from 10 C to 37 C from 1 mM to 47 mM and with nucleic acid concentrations from 1 nM to 5 M They also figured out the toehold exchange probes work robustly even in RNA detection Further researches have been studied thereafter In 2013 Seelig s group published a paper about fluorescent molecular probes which also utilizes the toehold exchange reaction 4 This enabled the optical detection of correct target and SNP target They also succeeded in the detection of SNPs in E coli derived samples In 2015 David s group achieved extremely high 1 000 selectivity of single nucleotide variants SNVs by introducing the system called competitive compositions 5 In this system they constructed a kinetic reaction model of the underlying hybridization processes to predict the optimal parameter values which vary based on the sequences of SNV and wildtype WT on the design architecture of the probe and sink and on the reagent concentrations and assay conditions Their model succeeded in a median 890 fold selectivity for 44 cancer related DNA SNVs with a minimum of 200 which represents at least a 30 fold improvement over previous hybridization based assays In addition they applied this technology to assay low VAF sequences from human genomic DNA following PCR as well as directly to synthetic RNA sequences Based on the expertise they developed a new PCR method called Blocker Displacement Amplification BDA 6 It is a temperature robust PCR which selectively amplifies all sequence variants within a roughly 20 nt window by 1000 fold over wildtype sequences allowing easy detection and quantitation of hundreds of potentials variants originally at 0 1 allele frequency BDA achieves similar enrichment performance across anneal temperatures ranging from 56 C to 64 C This temperature robustness facilitates multiplexed enrichment of many different variants across the genome and furthermore enables the use of inexpensive and portable thermocycling instruments for rare DNA variant detection BDA has been validated even on sample types including clinical cell free DNA samples collected from the blood plasma of lung cancer patients Applications editDiagnosis of gonococcal and other neisserian infections amplification of specific N gonorrhoeae DNA or RNA sequences for detection 7 Diagnosis of urogenital C trachomatis infections 8 Detection of Mycobacterium tuberculosis 9 Detection of HIV RNA or DNA 10 Detection of zoonotic coronaviruses 11 Diagnostic test for SARS CoV 2 12 Detection of antibiotic resistant bacteria following antibiotic treatment 13 References edit What is the nucleic acid test NAT American Red Cross Peter A Leone Joseph A Duncan 2011 Tropical Infectious Diseases Principles Pathogens and Practice Third ed Philadelphia Elsevier pp 184 190 Peng Yin David Zhang 2012 Optimizing the specificity of nucleic acid hybridization Nature Chemistry 4 3 208 214 Bibcode 2012NatCh 4 208Z doi 10 1038 NCHEM 1246 PMC 4238961 PMID 22354435 Georg Seelig Sherry Chen 2013 Conditionally fluorescent molecular probes for detecting single base changes in double stranded DNA Nature Chemistry 5 9 782 789 Bibcode 2013NatCh 5 782C doi 10 1038 NCHEM 1713 PMC 3844531 PMID 23965681 David Zhang Juexiao Sherry Wang 2015 Simulation guided DNA probe design for consistently ultraspecific hybridization Nature Chemistry 7 7 545 553 Bibcode 2015NatCh 7 545W doi 10 1038 NCHEM 2266 PMC 4479422 PMID 26100802 David Zhang Lucia R Wu 2017 Multiplexed enrichment of rare DNA variants via sequence selective and temperature robust amplification Nature Biomedical Engineering 1 9 714 723 doi 10 1038 s41551 017 0126 5 PMC 5969535 PMID 29805844 Peter A Leone Joseph A Duncan 2011 Tropical Infectious Diseases Principles Pathogens and Practice Third ed Philadelphia Elsevier pp 184 190 Fan Huizhou 2015 Molecular Medical Microbiology Second ed Academic Press pp 1449 1469 Ridderhof John C 2009 Tuberculosis Elsevier pp 738 745 Gillespie Susan L 2013 Clinical Immunology Fourth ed Elsevier pp 465 479 Schmidt Michael Brixner Veronika Ruster Brigitte Hourfar Michael K Drosten Christian Preiser Wolfgang Seifried Erhard Roth W Kurt April 2004 NAT screening of blood donors for severe acute respiratory syndrome coronavirus can potentially prevent transfusion associated transmissions Transfusion 44 4 470 475 doi 10 1111 j 1537 2995 2004 03269 x ISSN 0041 1132 PMC 7201871 PMID 15043560 CDC 2020 02 11 Labs Centers for Disease Control and Prevention Retrieved 2021 09 01 StackPath www mlo online com 24 May 2016 Retrieved 2022 04 01 Retrieved from https en wikipedia org w index php title Nucleic acid test amp oldid 1217574092, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.