fbpx
Wikipedia

Nonlinear eigenproblem

In mathematics, a nonlinear eigenproblem, sometimes nonlinear eigenvalue problem, is a generalization of the (ordinary) eigenvalue problem to equations that depend nonlinearly on the eigenvalue. Specifically, it refers to equations of the form

where is a vector, and is a matrix-valued function of the number . The number is known as the (nonlinear) eigenvalue, the vector as the (nonlinear) eigenvector, and as the eigenpair. The matrix is singular at an eigenvalue .

Definition edit

In the discipline of numerical linear algebra the following definition is typically used.[1][2][3][4]

Let  , and let   be a function that maps scalars to matrices. A scalar   is called an eigenvalue, and a nonzero vector  is called a right eigevector if  . Moreover, a nonzero vector  is called a left eigevector if  , where the superscript   denotes the Hermitian transpose. The definition of the eigenvalue is equivalent to  , where   denotes the determinant.[1]

The function   is usually required to be a holomorphic function of   (in some domain  ).

In general,   could be a linear map, but most commonly it is a finite-dimensional, usually square, matrix.

Definition: The problem is said to be regular if there exists a   such that  . Otherwise it is said to be singular.[1][4]

Definition: An eigenvalue   is said to have algebraic multiplicity   if   is the smallest integer such that the  th derivative of   with respect to  , in   is nonzero. In formulas that   but   for  .[1][4]

Definition: The geometric multiplicity of an eigenvalue   is the dimension of the nullspace of  .[1][4]

Special cases edit

The following examples are special cases of the nonlinear eigenproblem.

  • The (ordinary) eigenvalue problem:  
  • The generalized eigenvalue problem:  
  • The quadratic eigenvalue problem:  
  • The polynomial eigenvalue problem:  
  • The rational eigenvalue problem:   where   are rational functions.
  • The delay eigenvalue problem:   where   are given scalars, known as delays.

Jordan chains edit

Definition: Let   be an eigenpair. A tuple of vectors   is called a Jordan chain if

 
for  , where   denotes the  th derivative of   with respect to   and evaluated in  . The vectors   are called generalized eigenvectors,   is called the length of the Jordan chain, and the maximal length a Jordan chain starting with   is called the rank of  .[1][4]


Theorem:[1] A tuple of vectors   is a Jordan chain if and only if the function   has a root in   and the root is of multiplicity at least   for  , where the vector valued function   is defined as

 

Mathematical software edit

  • The eigenvalue solver package SLEPc contains C-implementations of many numerical methods for nonlinear eigenvalue problems.[5]
  • The NLEVP collection of nonlinear eigenvalue problems is a MATLAB package containing many nonlinear eigenvalue problems with various properties. [6]
  • The FEAST eigenvalue solver is a software package for standard eigenvalue problems as well as nonlinear eigenvalue problems, designed from density-matrix representation in quantum mechanics combined with contour integration techniques.[7]
  • The MATLAB toolbox NLEIGS contains an implementation of fully rational Krylov with a dynamically constructed rational interpolant.[8]
  • The MATLAB toolbox CORK contains an implementation of the compact rational Krylov algorithm that exploits the Kronecker structure of the linearization pencils.[9]
  • The MATLAB toolbox AAA-EIGS contains an implementation of CORK with rational approximation by set-valued AAA.[10]
  • The MATLAB toolbox RKToolbox (Rational Krylov Toolbox) contains implementations of the rational Krylov method for nonlinear eigenvalue problems as well as features for rational approximation. [11]
  • The Julia package NEP-PACK contains many implementations of various numerical methods for nonlinear eigenvalue problems, as well as many benchmark problems.[12]
  • The review paper of Güttel & Tisseur[1] contains MATLAB code snippets implementing basic Newton-type methods and contour integration methods for nonlinear eigenproblems.


Eigenvector nonlinearity edit

Eigenvector nonlinearities is a related, but different, form of nonlinearity that is sometimes studied. In this case the function   maps vectors to matrices, or sometimes hermitian matrices to hermitian matrices.[13][14]

References edit

  1. ^ a b c d e f g h Güttel, Stefan; Tisseur, Françoise (2017). "The nonlinear eigenvalue problem" (PDF). Acta Numerica. 26: 1–94. doi:10.1017/S0962492917000034. ISSN 0962-4929. S2CID 46749298.
  2. ^ Ruhe, Axel (1973). "Algorithms for the Nonlinear Eigenvalue Problem". SIAM Journal on Numerical Analysis. 10 (4): 674–689. Bibcode:1973SJNA...10..674R. doi:10.1137/0710059. ISSN 0036-1429. JSTOR 2156278.
  3. ^ Mehrmann, Volker; Voss, Heinrich (2004). "Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods". GAMM-Mitteilungen. 27 (2): 121–152. doi:10.1002/gamm.201490007. ISSN 1522-2608. S2CID 14493456.
  4. ^ a b c d e Voss, Heinrich (2014). "Nonlinear eigenvalue problems" (PDF). In Hogben, Leslie (ed.). Handbook of Linear Algebra (2 ed.). Boca Raton, FL: Chapman and Hall/CRC. ISBN 9781466507289.
  5. ^ Hernandez, Vicente; Roman, Jose E.; Vidal, Vicente (September 2005). "SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems". ACM Transactions on Mathematical Software. 31 (3): 351–362. doi:10.1145/1089014.1089019. S2CID 14305707.
  6. ^ Betcke, Timo; Higham, Nicholas J.; Mehrmann, Volker; Schröder, Christian; Tisseur, Françoise (February 2013). "NLEVP: A Collection of Nonlinear Eigenvalue Problems". ACM Transactions on Mathematical Software. 39 (2): 1–28. doi:10.1145/2427023.2427024. S2CID 4271705.
  7. ^ Polizzi, Eric (2020). "FEAST Eigenvalue Solver v4.0 User Guide". arXiv:2002.04807 [cs.MS].
  8. ^ Güttel, Stefan; Van Beeumen, Roel; Meerbergen, Karl; Michiels, Wim (1 January 2014). "NLEIGS: A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems". SIAM Journal on Scientific Computing. 36 (6): A2842–A2864. Bibcode:2014SJSC...36A2842G. doi:10.1137/130935045.
  9. ^ Van Beeumen, Roel; Meerbergen, Karl; Michiels, Wim (2015). "Compact rational Krylov methods for nonlinear eigenvalue problems". SIAM Journal on Matrix Analysis and Applications. 36 (2): 820–838. doi:10.1137/140976698. S2CID 18893623.
  10. ^ Lietaert, Pieter; Meerbergen, Karl; Pérez, Javier; Vandereycken, Bart (13 April 2022). "Automatic rational approximation and linearization of nonlinear eigenvalue problems". IMA Journal of Numerical Analysis. 42 (2): 1087–1115. arXiv:1801.08622. doi:10.1093/imanum/draa098.
  11. ^ Berljafa, Mario; Steven, Elsworth; Güttel, Stefan (15 July 2020). "An overview of the example collection". index.m. Retrieved 31 May 2022.
  12. ^ Jarlebring, Elias; Bennedich, Max; Mele, Giampaolo; Ringh, Emil; Upadhyaya, Parikshit (23 November 2018). "NEP-PACK: A Julia package for nonlinear eigenproblems". arXiv:1811.09592 [math.NA].
  13. ^ Jarlebring, Elias; Kvaal, Simen; Michiels, Wim (2014-01-01). "An Inverse Iteration Method for Eigenvalue Problems with Eigenvector Nonlinearities". SIAM Journal on Scientific Computing. 36 (4): A1978–A2001. arXiv:1212.0417. Bibcode:2014SJSC...36A1978J. doi:10.1137/130910014. ISSN 1064-8275. S2CID 16959079.
  14. ^ Upadhyaya, Parikshit; Jarlebring, Elias; Rubensson, Emanuel H. (2021). "A density matrix approach to the convergence of the self-consistent field iteration". Numerical Algebra, Control & Optimization. 11 (1): 99. arXiv:1809.02183. doi:10.3934/naco.2020018. ISSN 2155-3297.

Further reading edit

nonlinear, eigenproblem, mathematics, nonlinear, eigenproblem, sometimes, nonlinear, eigenvalue, problem, generalization, ordinary, eigenvalue, problem, equations, that, depend, nonlinearly, eigenvalue, specifically, refers, equations, form, displaystyle, lamb. In mathematics a nonlinear eigenproblem sometimes nonlinear eigenvalue problem is a generalization of the ordinary eigenvalue problem to equations that depend nonlinearly on the eigenvalue Specifically it refers to equations of the form M l x 0 displaystyle M lambda x 0 where x 0 displaystyle x neq 0 is a vector and M displaystyle M is a matrix valued function of the number l displaystyle lambda The number l displaystyle lambda is known as the nonlinear eigenvalue the vector x displaystyle x as the nonlinear eigenvector and l x displaystyle lambda x as the eigenpair The matrix M l displaystyle M lambda is singular at an eigenvalue l displaystyle lambda Contents 1 Definition 2 Special cases 3 Jordan chains 4 Mathematical software 5 Eigenvector nonlinearity 6 References 7 Further readingDefinition editIn the discipline of numerical linear algebra the following definition is typically used 1 2 3 4 Let W C displaystyle Omega subseteq mathbb C nbsp and let M W Cn n displaystyle M Omega rightarrow mathbb C n times n nbsp be a function that maps scalars to matrices A scalar l C displaystyle lambda in mathbb C nbsp is called an eigenvalue and a nonzero vector x Cn displaystyle x in mathbb C n nbsp is called a right eigevector if M l x 0 displaystyle M lambda x 0 nbsp Moreover a nonzero vector y Cn displaystyle y in mathbb C n nbsp is called a left eigevector if yHM l 0H displaystyle y H M lambda 0 H nbsp where the superscript H displaystyle H nbsp denotes the Hermitian transpose The definition of the eigenvalue is equivalent to det M l 0 displaystyle det M lambda 0 nbsp where det displaystyle det nbsp denotes the determinant 1 The function M displaystyle M nbsp is usually required to be a holomorphic function of l displaystyle lambda nbsp in some domain W displaystyle Omega nbsp In general M l displaystyle M lambda nbsp could be a linear map but most commonly it is a finite dimensional usually square matrix Definition The problem is said to be regular if there exists a z W displaystyle z in Omega nbsp such that det M z 0 displaystyle det M z neq 0 nbsp Otherwise it is said to be singular 1 4 Definition An eigenvalue l displaystyle lambda nbsp is said to have algebraic multiplicity k displaystyle k nbsp if k displaystyle k nbsp is the smallest integer such that the k displaystyle k nbsp th derivative of det M z displaystyle det M z nbsp with respect to z displaystyle z nbsp in l displaystyle lambda nbsp is nonzero In formulas that dkdet M z dzk z l 0 displaystyle left frac d k det M z dz k right z lambda neq 0 nbsp but dℓdet M z dzℓ z l 0 displaystyle left frac d ell det M z dz ell right z lambda 0 nbsp for ℓ 0 1 2 k 1 displaystyle ell 0 1 2 dots k 1 nbsp 1 4 Definition The geometric multiplicity of an eigenvalue l displaystyle lambda nbsp is the dimension of the nullspace of M l displaystyle M lambda nbsp 1 4 Special cases editThe following examples are special cases of the nonlinear eigenproblem The ordinary eigenvalue problem M l A lI displaystyle M lambda A lambda I nbsp The generalized eigenvalue problem M l A lB displaystyle M lambda A lambda B nbsp The quadratic eigenvalue problem M l A0 lA1 l2A2 displaystyle M lambda A 0 lambda A 1 lambda 2 A 2 nbsp The polynomial eigenvalue problem M l i 0mliAi displaystyle M lambda sum i 0 m lambda i A i nbsp The rational eigenvalue problem M l i 0m1Aili i 1m2Biri l displaystyle M lambda sum i 0 m 1 A i lambda i sum i 1 m 2 B i r i lambda nbsp where ri l displaystyle r i lambda nbsp are rational functions The delay eigenvalue problem M l Il A0 i 1mAie til displaystyle M lambda I lambda A 0 sum i 1 m A i e tau i lambda nbsp where t1 t2 tm displaystyle tau 1 tau 2 dots tau m nbsp are given scalars known as delays Jordan chains editDefinition Let l0 x0 displaystyle lambda 0 x 0 nbsp be an eigenpair A tuple of vectors x0 x1 xr 1 Cn Cn Cn displaystyle x 0 x 1 dots x r 1 in mathbb C n times mathbb C n times dots times mathbb C n nbsp is called a Jordan chain if k 0ℓM k l0 xℓ k 0 displaystyle sum k 0 ell M k lambda 0 x ell k 0 nbsp for ℓ 0 1 r 1 displaystyle ell 0 1 dots r 1 nbsp where M k l0 displaystyle M k lambda 0 nbsp denotes the k displaystyle k nbsp th derivative of M displaystyle M nbsp with respect to l displaystyle lambda nbsp and evaluated in l l0 displaystyle lambda lambda 0 nbsp The vectors x0 x1 xr 1 displaystyle x 0 x 1 dots x r 1 nbsp are called generalized eigenvectors r displaystyle r nbsp is called the length of the Jordan chain and the maximal length a Jordan chain starting with x0 displaystyle x 0 nbsp is called the rank of x0 displaystyle x 0 nbsp 1 4 Theorem 1 A tuple of vectors x0 x1 xr 1 Cn Cn Cn displaystyle x 0 x 1 dots x r 1 in mathbb C n times mathbb C n times dots times mathbb C n nbsp is a Jordan chain if and only if the function M l xℓ l displaystyle M lambda chi ell lambda nbsp has a root in l l0 displaystyle lambda lambda 0 nbsp and the root is of multiplicity at least ℓ displaystyle ell nbsp for ℓ 0 1 r 1 displaystyle ell 0 1 dots r 1 nbsp where the vector valued function xℓ l displaystyle chi ell lambda nbsp is defined asxℓ l k 0ℓxk l l0 k displaystyle chi ell lambda sum k 0 ell x k lambda lambda 0 k nbsp Mathematical software editThe eigenvalue solver package SLEPc contains C implementations of many numerical methods for nonlinear eigenvalue problems 5 The NLEVP collection of nonlinear eigenvalue problems is a MATLAB package containing many nonlinear eigenvalue problems with various properties 6 The FEAST eigenvalue solver is a software package for standard eigenvalue problems as well as nonlinear eigenvalue problems designed from density matrix representation in quantum mechanics combined with contour integration techniques 7 The MATLAB toolbox NLEIGS contains an implementation of fully rational Krylov with a dynamically constructed rational interpolant 8 The MATLAB toolbox CORK contains an implementation of the compact rational Krylov algorithm that exploits the Kronecker structure of the linearization pencils 9 The MATLAB toolbox AAA EIGS contains an implementation of CORK with rational approximation by set valued AAA 10 The MATLAB toolbox RKToolbox Rational Krylov Toolbox contains implementations of the rational Krylov method for nonlinear eigenvalue problems as well as features for rational approximation 11 The Julia package NEP PACK contains many implementations of various numerical methods for nonlinear eigenvalue problems as well as many benchmark problems 12 The review paper of Guttel amp Tisseur 1 contains MATLAB code snippets implementing basic Newton type methods and contour integration methods for nonlinear eigenproblems Eigenvector nonlinearity editEigenvector nonlinearities is a related but different form of nonlinearity that is sometimes studied In this case the function M displaystyle M nbsp maps vectors to matrices or sometimes hermitian matrices to hermitian matrices 13 14 References edit a b c d e f g h Guttel Stefan Tisseur Francoise 2017 The nonlinear eigenvalue problem PDF Acta Numerica 26 1 94 doi 10 1017 S0962492917000034 ISSN 0962 4929 S2CID 46749298 Ruhe Axel 1973 Algorithms for the Nonlinear Eigenvalue Problem SIAM Journal on Numerical Analysis 10 4 674 689 Bibcode 1973SJNA 10 674R doi 10 1137 0710059 ISSN 0036 1429 JSTOR 2156278 Mehrmann Volker Voss Heinrich 2004 Nonlinear eigenvalue problems a challenge for modern eigenvalue methods GAMM Mitteilungen 27 2 121 152 doi 10 1002 gamm 201490007 ISSN 1522 2608 S2CID 14493456 a b c d e Voss Heinrich 2014 Nonlinear eigenvalue problems PDF In Hogben Leslie ed Handbook of Linear Algebra 2 ed Boca Raton FL Chapman and Hall CRC ISBN 9781466507289 Hernandez Vicente Roman Jose E Vidal Vicente September 2005 SLEPc A scalable and flexible toolkit for the solution of eigenvalue problems ACM Transactions on Mathematical Software 31 3 351 362 doi 10 1145 1089014 1089019 S2CID 14305707 Betcke Timo Higham Nicholas J Mehrmann Volker Schroder Christian Tisseur Francoise February 2013 NLEVP A Collection of Nonlinear Eigenvalue Problems ACM Transactions on Mathematical Software 39 2 1 28 doi 10 1145 2427023 2427024 S2CID 4271705 Polizzi Eric 2020 FEAST Eigenvalue Solver v4 0 User Guide arXiv 2002 04807 cs MS Guttel Stefan Van Beeumen Roel Meerbergen Karl Michiels Wim 1 January 2014 NLEIGS A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems SIAM Journal on Scientific Computing 36 6 A2842 A2864 Bibcode 2014SJSC 36A2842G doi 10 1137 130935045 Van Beeumen Roel Meerbergen Karl Michiels Wim 2015 Compact rational Krylov methods for nonlinear eigenvalue problems SIAM Journal on Matrix Analysis and Applications 36 2 820 838 doi 10 1137 140976698 S2CID 18893623 Lietaert Pieter Meerbergen Karl Perez Javier Vandereycken Bart 13 April 2022 Automatic rational approximation and linearization of nonlinear eigenvalue problems IMA Journal of Numerical Analysis 42 2 1087 1115 arXiv 1801 08622 doi 10 1093 imanum draa098 Berljafa Mario Steven Elsworth Guttel Stefan 15 July 2020 An overview of the example collection index m Retrieved 31 May 2022 Jarlebring Elias Bennedich Max Mele Giampaolo Ringh Emil Upadhyaya Parikshit 23 November 2018 NEP PACK A Julia package for nonlinear eigenproblems arXiv 1811 09592 math NA Jarlebring Elias Kvaal Simen Michiels Wim 2014 01 01 An Inverse Iteration Method for Eigenvalue Problems with Eigenvector Nonlinearities SIAM Journal on Scientific Computing 36 4 A1978 A2001 arXiv 1212 0417 Bibcode 2014SJSC 36A1978J doi 10 1137 130910014 ISSN 1064 8275 S2CID 16959079 Upadhyaya Parikshit Jarlebring Elias Rubensson Emanuel H 2021 A density matrix approach to the convergence of the self consistent field iteration Numerical Algebra Control amp Optimization 11 1 99 arXiv 1809 02183 doi 10 3934 naco 2020018 ISSN 2155 3297 Further reading editFrancoise Tisseur and Karl Meerbergen The quadratic eigenvalue problem SIAM Review 43 2 235 286 2001 link Gene H Golub and Henk A van der Vorst Eigenvalue computation in the 20th century Journal of Computational and Applied Mathematics 123 35 65 2000 Philippe Guillaume Nonlinear eigenproblems SIAM Journal on Matrix Analysis and Applications 20 3 575 595 1999 link Cedric Effenberger Robust solution methods fornonlinear eigenvalue problems PhD thesis EPFL 2013 link Roel Van Beeumen Rational Krylov methods fornonlinear eigenvalue problems PhD thesis KU Leuven 2015 link Retrieved from https en wikipedia org w index php title Nonlinear eigenproblem amp oldid 1193832548, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.