fbpx
Wikipedia

Non-Archimedean ordered field

In mathematics, a non-Archimedean ordered field is an ordered field that does not satisfy the Archimedean property. Such fields will contain infinitesimal and infinitely large elements, suitably defined.

Definition edit

Suppose F is an ordered field. We say that F satisfies the Archimedean property if, for every two positive elements x and y of F, there exists a natural number n such that nx > y. Here, n denotes the field element resulting from forming the sum of n copies of the field element 1, so that nx is the sum of n copies of x.

An ordered field which does not satisfy the Archimedean property is a non-Archimedean ordered field.

Examples edit

The fields of rational numbers and real numbers, with their usual orderings, satisfy the Archimedean property.

Examples of non-Archimedean ordered fields are the Levi-Civita field, the hyperreal numbers, the surreal numbers, the Dehn field, and the field of rational functions with real coefficients (where we define f > g to mean that f(t)>g(t) for large enough t).

Infinite and infinitesimal elements edit

In a non-Archimedean ordered field, we can find two positive elements x and y such that, for every natural number n, nxy. This means that the positive element y/x is greater than every natural number n (so it is an "infinite element"), and the positive element x/y is smaller than 1/n for every natural number n (so it is an "infinitesimal element").

Conversely, if an ordered field contains an infinite or an infinitesimal element in this sense, then it is a non-Archimedean ordered field.

Applications edit

Hyperreal fields, non-Archimedean ordered fields containing the real numbers as a subfield, are used to provide a mathematical foundation for nonstandard analysis.

Max Dehn used the Dehn field, an example of a non-Archimedean ordered field, to construct non-Euclidean geometries in which the parallel postulate fails to be true but nevertheless triangles have angles summing to π.[1]

The field of rational functions over   can be used to construct an ordered field which is Cauchy complete (in the sense of convergence of Cauchy sequences) but is not the real numbers.[2] This completion can be described as the field of formal Laurent series over  . It is a non-Archimedean ordered field. Sometimes the term "complete" is used to mean that the least upper bound property holds, i.e. for Dedekind-completeness. There are no Dedekind-complete non-Archimedean ordered fields. The subtle distinction between these two uses of the word complete is occasionally a source of confusion.

References edit

  1. ^ Dehn, Max (1900), "Die Legendre'schen Sätze über die Winkelsumme im Dreieck", Mathematische Annalen, 53 (3): 404–439, doi:10.1007/BF01448980, ISSN 0025-5831, JFM 31.0471.01.
  2. ^ Counterexamples in Analysis by Bernard R. Gelbaum and John M. H. Olmsted, Chapter 1, Example 7, page 17.

archimedean, ordered, field, mathematics, archimedean, ordered, field, ordered, field, that, does, satisfy, archimedean, property, such, fields, will, contain, infinitesimal, infinitely, large, elements, suitably, defined, contents, definition, examples, infin. In mathematics a non Archimedean ordered field is an ordered field that does not satisfy the Archimedean property Such fields will contain infinitesimal and infinitely large elements suitably defined Contents 1 Definition 2 Examples 3 Infinite and infinitesimal elements 4 Applications 5 ReferencesDefinition editSuppose F is an ordered field We say that F satisfies the Archimedean property if for every two positive elements x and y of F there exists a natural number n such that nx gt y Here n denotes the field element resulting from forming the sum of n copies of the field element 1 so that nx is the sum of n copies of x An ordered field which does not satisfy the Archimedean property is a non Archimedean ordered field Examples editThe fields of rational numbers and real numbers with their usual orderings satisfy the Archimedean property Examples of non Archimedean ordered fields are the Levi Civita field the hyperreal numbers the surreal numbers the Dehn field and the field of rational functions with real coefficients where we define f gt g to mean that f t gt g t for large enough t Infinite and infinitesimal elements editIn a non Archimedean ordered field we can find two positive elements x and y such that for every natural number n nx y This means that the positive element y x is greater than every natural number n so it is an infinite element and the positive element x y is smaller than 1 n for every natural number n so it is an infinitesimal element Conversely if an ordered field contains an infinite or an infinitesimal element in this sense then it is a non Archimedean ordered field Applications editHyperreal fields non Archimedean ordered fields containing the real numbers as a subfield are used to provide a mathematical foundation for nonstandard analysis Max Dehn used the Dehn field an example of a non Archimedean ordered field to construct non Euclidean geometries in which the parallel postulate fails to be true but nevertheless triangles have angles summing to p 1 The field of rational functions over R displaystyle mathbb R nbsp can be used to construct an ordered field which is Cauchy complete in the sense of convergence of Cauchy sequences but is not the real numbers 2 This completion can be described as the field of formal Laurent series over R displaystyle mathbb R nbsp It is a non Archimedean ordered field Sometimes the term complete is used to mean that the least upper bound property holds i e for Dedekind completeness There are no Dedekind complete non Archimedean ordered fields The subtle distinction between these two uses of the word complete is occasionally a source of confusion References edit Dehn Max 1900 Die Legendre schen Satze uber die Winkelsumme im Dreieck Mathematische Annalen 53 3 404 439 doi 10 1007 BF01448980 ISSN 0025 5831 JFM 31 0471 01 Counterexamples in Analysis by Bernard R Gelbaum and John M H Olmsted Chapter 1 Example 7 page 17 Retrieved from https en wikipedia org w index php title Non Archimedean ordered field amp oldid 1189930499, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.