fbpx
Wikipedia

Isotopes of niobium

Naturally occurring niobium (41Nb) is composed of one stable isotope (93Nb). The most stable radioisotope is 92Nb with a half-life of 34.7 million years. The next longest-lived niobium isotopes are 94Nb (half-life: 20,300 years) and 91Nb with a half-life of 680 years. There is also a meta state of 93Nb at 31 keV whose half-life is 16.13 years. Twenty-seven other radioisotopes have been characterized. Most of these have half-lives that are less than two hours, except 95Nb (35 days), 96Nb (23.4 hours) and 90Nb (14.6 hours). The primary decay mode before stable 93Nb is electron capture and the primary mode after is beta emission with some neutron emission occurring in 104–110Nb.

Isotopes of niobium (41Nb)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
91Nb synth 680 y ε 91Zr
92Nb trace 3.47×107 y β+ 92Zr
93Nb 100% stable
93mNb synth 16.12 y IT 93Nb
94Nb trace 20.4×103 y β 94Mo
95Nb synth 34.991 d β 95Mo
Standard atomic weight Ar°(Nb)
  • 92.90637±0.00001
  • 92.906±0.001 (abridged)[2][3]

Only 95Nb (35 days) and 97Nb (72 minutes) and heavier isotopes (half-lives in seconds) are fission products in significant quantity, as the other isotopes are shadowed by stable or very long-lived (93Zr) isotopes of the preceding element zirconium from production via beta decay of neutron-rich fission fragments. 95Nb is the decay product of 95Zr (64 days), so disappearance of 95Nb in used nuclear fuel is slower than would be expected from its own 35-day half-life alone. Small amounts of other isotopes may be produced as direct fission products.

List of isotopes Edit

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity
[n 8][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion Range of variation
81Nb 41 40 80.94903(161)# <44 ns β+, p 80Y 3/2−#
p 80Zr
β+ 81Zr
82Nb 41 41 81.94313(32)# 51(5) ms β+ 82Zr 0+
83Nb 41 42 82.93671(34) 4.1(3) s β+ 83Zr (5/2+)
84Nb 41 43 83.93357(32)# 9.8(9) s β+ (>99.9%) 84Zr 3+
β+, p (<.1%) 83Y
84mNb 338(10) keV 103(19) ns (5−)
85Nb 41 44 84.92791(24) 20.9(7) s β+ 85Zr (9/2+)
85mNb 759.0(10) keV 12(5) s (1/2−)
86Nb 41 45 85.92504(9) 88(1) s β+ 86Zr (6+)
86mNb 250(160)# keV 56(8) s β+ 86Zr high
87Nb 41 46 86.92036(7) 3.75(9) min β+ 87Zr (1/2−)
87mNb 3.84(14) keV 2.6(1) min β+ 87Zr (9/2+)#
88Nb 41 47 87.91833(11) 14.55(6) min β+ 88Zr (8+)
88mNb 40(140) keV 7.8(1) min β+ 88Zr (4−)
89Nb 41 48 88.913418(29) 2.03(7) h β+ 89Zr (9/2+)
89mNb 0(30)# keV 1.10(3) h β+ 89Zr (1/2)−
90Nb 41 49 89.911265(5) 14.60(5) h β+ 90Zr 8+
90m1Nb 122.370(22) keV 63(2) μs 6+
90m2Nb 124.67(25) keV 18.81(6) s IT 90Nb 4-
90m3Nb 171.10(10) keV <1 μs 7+
90m4Nb 382.01(25) keV 6.19(8) ms 1+
90m5Nb 1880.21(20) keV 472(13) ns (11−)
91Nb 41 50 90.906996(4) 680(130) a EC (99.98%) 91Zr 9/2+
β+ (.013%) 91Zr
91m1Nb 104.60(5) keV 60.86(22) d IT (93%) 91Nb 1/2−
EC (7%) 91Zr
β+ (.0028%) 91Zr
91m2Nb 2034.35(19) keV 3.76(12) μs (17/2−)
92Nb 41 51 91.907194(3) 3.47(24)×107 a β+ (99.95%) 92Zr (7)+
β (.05%) 92Mo
92m1Nb 135.5(4) keV 10.15(2) d β+ 92Zr (2)+
92m2Nb 225.7(4) keV 5.9(2) μs (2)−
92m3Nb 2203.3(4) keV 167(4) ns (11−)
93Nb 41 52 92.9063781(26) Stable[n 9] 9/2+ 1.0000
93mNb 30.77(2) keV 16.13(14) a IT 93Nb 1/2−
94Nb 41 53 93.9072839(26) 2.03(16)×104 a β 94Mo (6)+
94mNb 40.902(12) keV 6.263(4) min IT (99.5%) 94Nb 3+
β (.5%) 94Mo
95Nb 41 54 94.9068358(21) 34.991(6) d β 95Mo 9/2+
95mNb 235.690(20) keV 3.61(3) d IT (94.4%) 95Nb 1/2−
β (5.6%) 95Mo
96Nb 41 55 95.908101(4) 23.35(5) h β 96Mo 6+
97Nb 41 56 96.9080986(27) 72.1(7) min β 97Mo 9/2+
97mNb 743.35(3) keV 52.7(18) s IT 97Nb 1/2−
98Nb 41 57 97.910328(6) 2.86(6) s β 98Mo 1+
98mNb 84(4) keV 51.3(4) min β (99.9%) 98Mo (5+)
IT (.1%) 98Nb
99Nb 41 58 98.911618(14) 15.0(2) s β 99Mo 9/2+
99mNb 365.29(14) keV 2.6(2) min β (96.2%) 99Mo 1/2−
IT (3.8%) 99Nb
100Nb 41 59 99.914182(28) 1.5(2) s β 100Mo 1+
100mNb 470(40) keV 2.99(11) s β 100Mo (4+, 5+)
101Nb 41 60 100.915252(20) 7.1(3) s β 101Mo (5/2#)+
102Nb 41 61 101.91804(4) 1.3(2) s β 102Mo 1+
102mNb 130(50) keV 4.3(4) s β 102Mo high
103Nb 41 62 102.91914(7) 1.5(2) s β 103Mo (5/2+)
104Nb 41 63 103.92246(11) 4.9(3) s β (99.94%) 104Mo (1+)
β, n (.06%) 103Mo
104mNb 220(120) keV 940(40) ms β (99.95%) 104Mo high
β, n (.05%) 103Mo
105Nb 41 64 104.92394(11) 2.95(6) s β (98.3%) 105Mo (5/2+)#
β, n (1.7%) 104Mo
106Nb 41 65 105.92797(21)# 920(40) ms β (95.5%) 106Mo 2+#
β, n (4.5%) 105Mo
107Nb 41 66 106.93031(43)# 300(9) ms β (94%) 107Mo 5/2+#
β, n (6%) 106Mo
108Nb 41 67 107.93484(32)# 0.193(17) s β (93.8%) 108Mo (2+)
β, n (6.2%) 107Mo
109Nb 41 68 108.93763(54)# 190(30) ms β (69%) 109Mo 5/2+#
β, n (31%) 108Mo
110Nb 41 69 109.94244(54)# 170(20) ms β (60%) 110Mo 2+#
β, n (40%) 109Mo
111Nb 41 70 110.94565(54)# 80# ms [>300 ns] 5/2+#
112Nb 41 71 111.95083(75)# 60# ms [>300 ns] 2+#
113Nb 41 72 112.95470(86)# 30# ms [>300 ns] 5/2+#
114Nb[4] 41 73
115Nb[4] 41 74
116Nb[5] 41 75
117Nb[6] 41 76
This table header & footer:
  1. ^ mNb – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
  6. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ Theoretically capable of spontaneous fission, lightest nuclide so capable

Niobium-92 Edit

Niobium-92 is an extinct radionuclide[7] with a half-life of 34.7 million years, decaying predominantly via β+ decay. Its abundance relative to the stable 93Nb in the early Solar System, estimated at 1.7×10−5, has been measured to investigate the origin of p-nuclei.[7][8] A higher initial abundance of 92Nb has been estimated for material in the outer protosolar disk (sampled from the meteorite NWA 6704), suggesting that this nuclide was predominantly formed via the gamma process (photodisintegration) in a nearby core-collapse supernova.[9]

Niobium-92, along with niobium-94, has been detected in refined samples of terrestrial niobium and may originate from bombardment by cosmic ray muons in Earth's crust.[10]

References Edit

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Niobium". CIAAW. 2017.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; et al. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ a b Ohnishi, Tetsuya; Kubo, Toshiyuki; Kusaka, Kensuke; et al. (2010). "Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon". J. Phys. Soc. Jpn. Physical Society of Japan. 79 (7): 073201. arXiv:1006.0305. Bibcode:2010JPSJ...79g3201T. doi:10.1143/JPSJ.79.073201.
  5. ^ Shimizu, Yohei; et al. (2018). "Observation of New Neutron-rich Isotopes among Fission Fragments from In-flight Fission of 345MeV=nucleon 238U: Search for New Isotopes Conducted Concurrently with Decay Measurement Campaigns". Journal of the Physical Society of Japan. 87 (1): 014203. Bibcode:2018JPSJ...87a4203S. doi:10.7566/JPSJ.87.014203.
  6. ^ Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.
  7. ^ a b Iizuka, Tsuyoshi; Lai, Yi-Jen; Akram, Waheed; Amelin, Yuri; Schönbächler, Maria (2016). "The initial abundance and distribution of 92Nb in the Solar System". Earth and Planetary Science Letters. 439: 172–181. arXiv:1602.00966. Bibcode:2016E&PSL.439..172I. doi:10.1016/j.epsl.2016.02.005. S2CID 119299654.
  8. ^ Hibiya, Y; Iizuka, T; Enomoto, H (2019). THE INITIAL ABUNDANCE OF NIOBIUM-92 IN THE OUTER SOLAR SYSTEM (PDF). Lunar and Planetary Science Conference (50th ed.). Retrieved 7 September 2019.
  9. ^ Hibiya, Y.; Iizuka, T.; Enomoto, H.; Hayakawa, T. (2023). "Evidence for enrichment of niobium-92 in the outer protosolar disk". Astrophysical Journal Letters. 942 (L15): L15. Bibcode:2023ApJ...942L..15H. doi:10.3847/2041-8213/acab5d. S2CID 255414098.
  10. ^ Clayton, Donald D.; Morgan, John A. (1977). "Muon production of 92,94Nb in the Earth's crust". Nature. 266 (5604): 712–713. doi:10.1038/266712a0. S2CID 4292459.
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

isotopes, niobium, naturally, occurring, niobium, 41nb, composed, stable, isotope, 93nb, most, stable, radioisotope, 92nb, with, half, life, million, years, next, longest, lived, niobium, isotopes, 94nb, half, life, years, 91nb, with, half, life, years, there,. Naturally occurring niobium 41Nb is composed of one stable isotope 93Nb The most stable radioisotope is 92Nb with a half life of 34 7 million years The next longest lived niobium isotopes are 94Nb half life 20 300 years and 91Nb with a half life of 680 years There is also a meta state of 93Nb at 31 keV whose half life is 16 13 years Twenty seven other radioisotopes have been characterized Most of these have half lives that are less than two hours except 95Nb 35 days 96Nb 23 4 hours and 90Nb 14 6 hours The primary decay mode before stable 93Nb is electron capture and the primary mode after is beta emission with some neutron emission occurring in 104 110Nb Isotopes of niobium 41Nb Main isotopes 1 Decayabun dance half life t1 2 mode pro duct91Nb synth 680 y e 91Zr92Nb trace 3 47 107 y b 92Zr93Nb 100 stable93mNb synth 16 12 y IT 93Nb94Nb trace 20 4 103 y b 94Mo95Nb synth 34 991 d b 95MoStandard atomic weight Ar Nb 92 90637 0 0000192 906 0 001 abridged 2 3 viewtalkeditOnly 95Nb 35 days and 97Nb 72 minutes and heavier isotopes half lives in seconds are fission products in significant quantity as the other isotopes are shadowed by stable or very long lived 93Zr isotopes of the preceding element zirconium from production via beta decay of neutron rich fission fragments 95Nb is the decay product of 95Zr 64 days so disappearance of 95Nb in used nuclear fuel is slower than would be expected from its own 35 day half life alone Small amounts of other isotopes may be produced as direct fission products List of isotopes EditNuclide n 1 Z N Isotopic mass Da n 2 n 3 Half life n 4 Decaymode n 5 Daughterisotope n 6 n 7 Spin andparity n 8 n 4 Natural abundance mole fraction Excitation energy n 4 Normal proportion Range of variation81Nb 41 40 80 94903 161 lt 44 ns b p 80Y 3 2 p 80Zrb 81Zr82Nb 41 41 81 94313 32 51 5 ms b 82Zr 0 83Nb 41 42 82 93671 34 4 1 3 s b 83Zr 5 2 84Nb 41 43 83 93357 32 9 8 9 s b gt 99 9 84Zr 3 b p lt 1 83Y84mNb 338 10 keV 103 19 ns 5 85Nb 41 44 84 92791 24 20 9 7 s b 85Zr 9 2 85mNb 759 0 10 keV 12 5 s 1 2 86Nb 41 45 85 92504 9 88 1 s b 86Zr 6 86mNb 250 160 keV 56 8 s b 86Zr high87Nb 41 46 86 92036 7 3 75 9 min b 87Zr 1 2 87mNb 3 84 14 keV 2 6 1 min b 87Zr 9 2 88Nb 41 47 87 91833 11 14 55 6 min b 88Zr 8 88mNb 40 140 keV 7 8 1 min b 88Zr 4 89Nb 41 48 88 913418 29 2 03 7 h b 89Zr 9 2 89mNb 0 30 keV 1 10 3 h b 89Zr 1 2 90Nb 41 49 89 911265 5 14 60 5 h b 90Zr 8 90m1Nb 122 370 22 keV 63 2 ms 6 90m2Nb 124 67 25 keV 18 81 6 s IT 90Nb 4 90m3Nb 171 10 10 keV lt 1 ms 7 90m4Nb 382 01 25 keV 6 19 8 ms 1 90m5Nb 1880 21 20 keV 472 13 ns 11 91Nb 41 50 90 906996 4 680 130 a EC 99 98 91Zr 9 2 b 013 91Zr91m1Nb 104 60 5 keV 60 86 22 d IT 93 91Nb 1 2 EC 7 91Zrb 0028 91Zr91m2Nb 2034 35 19 keV 3 76 12 ms 17 2 92Nb 41 51 91 907194 3 3 47 24 107 a b 99 95 92Zr 7 b 05 92Mo92m1Nb 135 5 4 keV 10 15 2 d b 92Zr 2 92m2Nb 225 7 4 keV 5 9 2 ms 2 92m3Nb 2203 3 4 keV 167 4 ns 11 93Nb 41 52 92 9063781 26 Stable n 9 9 2 1 000093mNb 30 77 2 keV 16 13 14 a IT 93Nb 1 2 94Nb 41 53 93 9072839 26 2 03 16 104 a b 94Mo 6 94mNb 40 902 12 keV 6 263 4 min IT 99 5 94Nb 3 b 5 94Mo95Nb 41 54 94 9068358 21 34 991 6 d b 95Mo 9 2 95mNb 235 690 20 keV 3 61 3 d IT 94 4 95Nb 1 2 b 5 6 95Mo96Nb 41 55 95 908101 4 23 35 5 h b 96Mo 6 97Nb 41 56 96 9080986 27 72 1 7 min b 97Mo 9 2 97mNb 743 35 3 keV 52 7 18 s IT 97Nb 1 2 98Nb 41 57 97 910328 6 2 86 6 s b 98Mo 1 98mNb 84 4 keV 51 3 4 min b 99 9 98Mo 5 IT 1 98Nb99Nb 41 58 98 911618 14 15 0 2 s b 99Mo 9 2 99mNb 365 29 14 keV 2 6 2 min b 96 2 99Mo 1 2 IT 3 8 99Nb100Nb 41 59 99 914182 28 1 5 2 s b 100Mo 1 100mNb 470 40 keV 2 99 11 s b 100Mo 4 5 101Nb 41 60 100 915252 20 7 1 3 s b 101Mo 5 2 102Nb 41 61 101 91804 4 1 3 2 s b 102Mo 1 102mNb 130 50 keV 4 3 4 s b 102Mo high103Nb 41 62 102 91914 7 1 5 2 s b 103Mo 5 2 104Nb 41 63 103 92246 11 4 9 3 s b 99 94 104Mo 1 b n 06 103Mo104mNb 220 120 keV 940 40 ms b 99 95 104Mo highb n 05 103Mo105Nb 41 64 104 92394 11 2 95 6 s b 98 3 105Mo 5 2 b n 1 7 104Mo106Nb 41 65 105 92797 21 920 40 ms b 95 5 106Mo 2 b n 4 5 105Mo107Nb 41 66 106 93031 43 300 9 ms b 94 107Mo 5 2 b n 6 106Mo108Nb 41 67 107 93484 32 0 193 17 s b 93 8 108Mo 2 b n 6 2 107Mo109Nb 41 68 108 93763 54 190 30 ms b 69 109Mo 5 2 b n 31 108Mo110Nb 41 69 109 94244 54 170 20 ms b 60 110Mo 2 b n 40 109Mo111Nb 41 70 110 94565 54 80 ms gt 300 ns 5 2 112Nb 41 71 111 95083 75 60 ms gt 300 ns 2 113Nb 41 72 112 95470 86 30 ms gt 300 ns 5 2 114Nb 4 41 73115Nb 4 41 74116Nb 5 41 75117Nb 6 41 76This table header amp footer view mNb Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS a b c Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay EC Electron captureIT Isomeric transitionn Neutron emissionp Proton emission Bold italics symbol as daughter Daughter product is nearly stable Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Theoretically capable of spontaneous fission lightest nuclide so capableNiobium 92 EditNiobium 92 is an extinct radionuclide 7 with a half life of 34 7 million years decaying predominantly via b decay Its abundance relative to the stable 93Nb in the early Solar System estimated at 1 7 10 5 has been measured to investigate the origin of p nuclei 7 8 A higher initial abundance of 92Nb has been estimated for material in the outer protosolar disk sampled from the meteorite NWA 6704 suggesting that this nuclide was predominantly formed via the gamma process photodisintegration in a nearby core collapse supernova 9 Niobium 92 along with niobium 94 has been detected in refined samples of terrestrial niobium and may originate from bombardment by cosmic ray muons in Earth s crust 10 References Edit Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae Standard Atomic Weights Niobium CIAAW 2017 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline et al 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 a b Ohnishi Tetsuya Kubo Toshiyuki Kusaka Kensuke et al 2010 Identification of 45 New Neutron Rich Isotopes Produced by In Flight Fission of a 238U Beam at 345 MeV nucleon J Phys Soc Jpn Physical Society of Japan 79 7 073201 arXiv 1006 0305 Bibcode 2010JPSJ 79g3201T doi 10 1143 JPSJ 79 073201 Shimizu Yohei et al 2018 Observation of New Neutron rich Isotopes among Fission Fragments from In flight Fission of 345MeV nucleon 238U Search for New Isotopes Conducted Concurrently with Decay Measurement Campaigns Journal of the Physical Society of Japan 87 1 014203 Bibcode 2018JPSJ 87a4203S doi 10 7566 JPSJ 87 014203 Sumikama T et al 2021 Observation of new neutron rich isotopes in the vicinity of Zr110 Physical Review C 103 1 014614 Bibcode 2021PhRvC 103a4614S doi 10 1103 PhysRevC 103 014614 hdl 10261 260248 S2CID 234019083 a b Iizuka Tsuyoshi Lai Yi Jen Akram Waheed Amelin Yuri Schonbachler Maria 2016 The initial abundance and distribution of 92Nb in the Solar System Earth and Planetary Science Letters 439 172 181 arXiv 1602 00966 Bibcode 2016E amp PSL 439 172I doi 10 1016 j epsl 2016 02 005 S2CID 119299654 Hibiya Y Iizuka T Enomoto H 2019 THE INITIAL ABUNDANCE OF NIOBIUM 92 IN THE OUTER SOLAR SYSTEM PDF Lunar and Planetary Science Conference 50th ed Retrieved 7 September 2019 Hibiya Y Iizuka T Enomoto H Hayakawa T 2023 Evidence for enrichment of niobium 92 in the outer protosolar disk Astrophysical Journal Letters 942 L15 L15 Bibcode 2023ApJ 942L 15H doi 10 3847 2041 8213 acab5d S2CID 255414098 Clayton Donald D Morgan John A 1977 Muon production of 92 94Nb in the Earth s crust Nature 266 5604 712 713 doi 10 1038 266712a0 S2CID 4292459 Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Retrieved from https en wikipedia org w index php title Isotopes of niobium amp oldid 1170111672 Niobium 92, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.