fbpx
Wikipedia

Isotopes of nihonium

Nihonium (113Nh) is a synthetic element. Being synthetic, a standard atomic weight cannot be given and like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 284Nh as a decay product of 288Mc in 2003. The first isotope to be directly synthesized was 278Nh in 2004. There are 6 known radioisotopes from 278Nh to 286Nh, along with the unconfirmed 287Nh and 290Nh. The longest-lived isotope is 286Nh with a half-life of 9.5 seconds.

Isotopes of nihonium (113Nh)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
278Nh synth 0.002 s α 274Rg
282Nh synth 0.061 s α 278Rg
283Nh synth 0.123 s α 279Rg
284Nh synth 0.90 s α 280Rg
ε 284Cn
285Nh synth 2.1 s α 281Rg
SF
286Nh synth 9.5 s α 282Rg
287Nh synth 5.5 s?[2] α 283Rg
290Nh synth 2 s?[3] α 286Rg

List of isotopes edit

Nuclide
Z N Isotopic mass (Da)
[n 1][n 2]
Half-life
Decay
mode

[n 3]
Daughter
isotope

Spin and
parity
278Nh[4] 113 165 278.17058(20)# 2.0+2.7
−0.7
 ms
α 274Rg
282Nh 113 169 282.17567(39)# 61+73
−22
 ms
[5]
α 278Rg
283Nh[n 4] 113 170 283.17657(52)# 123+80
−35
 ms
[5]
α 279Rg
284Nh[n 5] 113 171 284.17873(62)# 0.90+0.07
−0.06
 s
[5]
α (≥99%) 280Rg  
EC (≤1%)[5] 284Cn
285Nh[n 6] 113 172 285.17973(89)# 2.1+0.6
−0.3
 s
[5]
α (82%) 281Rg
SF (18%)[5] (various)
286Nh[n 7] 113 173 286.18221(72)# 9.5 s α 282Rg
287Nh[n 8] 113 174 287.18339(81)# 5.5 s α 283Rg
290Nh[n 9] 113 177 2 s? α 286Rg
This table header & footer:
  1. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  2. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  3. ^ Modes of decay:
  4. ^ Not directly synthesized, occurs as decay product of 287Mc
  5. ^ Not directly synthesized, occurs as decay product of 288Mc
  6. ^ Not directly synthesized, occurs in decay chain of 293Ts
  7. ^ Not directly synthesized, occurs in decay chain of 294Ts
  8. ^ Not directly synthesized, occurs in decay chain of 287Fl; unconfirmed
  9. ^ Not directly synthesized, occurs in decay chain of 290Fl and 294Lv; unconfirmed

Isotopes and nuclear properties edit

Nucleosynthesis edit

Super-heavy elements such as nihonium are produced by bombarding lighter elements in particle accelerators that induce fusion reactions. Whereas most of the isotopes of nihonium can be synthesized directly this way, some heavier ones have only been observed as decay products of elements with higher atomic numbers.[6]

Depending on the energies involved, the former are separated into "hot" and "cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise to compound nuclei at high excitation energy (~40–50 MeV) that may either fission or evaporate several (3 to 5) neutrons.[7] In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the ground state, they require emission of only one or two neutrons, and thus, allows for the generation of more neutron-rich products.[6] The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (see cold fusion).[8]

Cold fusion edit

Before the synthesis of nihonium by the RIKEN team, scientists at the Institute for Heavy Ion Research (Gesellschaft für Schwerionenforschung) in Darmstadt, Germany also tried to synthesize nihonium by bombarding bismuth-209 with zinc-70 in 1998. No nihonium atoms were identified in two separate runs of the reaction.[9] They repeated the experiment in 2003 again without success.[9] In late 2003, the emerging team at RIKEN using their efficient apparatus GARIS attempted the reaction and reached a limit of 140 fb. In December 2003 – August 2004, they resorted to "brute force" and carried out the reaction for a period of eight months. They were able to detect a single atom of 278Nh.[10] They repeated the reaction in several runs in 2005 and were able to synthesize a second atom,[11] followed by a third in 2012.[12]

The table below contains various combinations of targets and projectiles which could be used to form compound nuclei with Z=113.

Target Projectile CN Attempt result
208Pb 71Ga 279Nh Reaction yet to be attempted
209Bi 70Zn 279Nh Successful reaction
238U 45Sc 283Nh Reaction yet to be attempted
237Np 48Ca 285Nh Successful reaction
244Pu 41K 285Nh Reaction yet to be attempted
250Cm 37Cl 287Nh Reaction yet to be attempted
248Cm 37Cl 285Nh Reaction yet to be attempted

Hot fusion edit

In June 2006, the Dubna-Livermore team synthesised nihonium directly by bombarding a neptunium-237 target with accelerated calcium-48 nuclei, in a search for the lighter isotopes 281Nh and 282Nh and their decay products, to provide insight into the stabilizing effects of the closed neutron shells at N = 162 and N = 184:[13]

237
93
Np
+ 48
20
Ca
282
113
Nh
+ 3 1
0
n

Two atoms of 282Nh were detected.[13]

As decay product edit

List of nihonium isotopes observed by decay
Evaporation residue Observed nihonium isotope
294Lv, 290Fl ? 290Nh ?[3]
287Fl ? 287Nh ?[14]
294Ts, 290Mc 286Nh[15]
293Ts, 289Mc 285Nh[15]
288Mc 284Nh[16]
287Mc 283Nh[16]
286Mc 282Nh

Nihonium has been observed as a decay product of moscovium (via alpha decay). Moscovium currently has five known isotopes; all of them undergo alpha decays to become nihonium nuclei, with mass numbers between 282 and 286. Parent moscovium nuclei can be themselves decay products of tennessine. It may also occur as a decay product of flerovium (via electron capture), and parent flerovium nuclei can be themselves decay products of livermorium.[17] For example, in January 2010, the Dubna team (JINR) identified nihonium-286 as a product in the decay of tennessine via an alpha decay sequence:[15]

294
117
Ts
290
115
Mc
+ 4
2
He
290
115
Mc
286
113
Nh
+ 4
2
He

Theoretical calculations edit

Evaporation residue cross sections edit

The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.

DNS = Di-nuclear system; σ = cross section

Target Projectile CN Channel (product) σmax Model Ref
209Bi 70Zn 279Nh 1n (278Nh) 30 fb DNS [18]
238U 45Sc 283Nh 3n (280Nh) 20 fb DNS [19]
237Np 48Ca 285Nh 3n (282Nh) 0.4 pb DNS [20]
244Pu 41K 285Nh 3n (282Nh) 42.2 fb DNS [19]
250Cm 37Cl 287Nh 4n (283Nh) 0.594 pb DNS [19]
248Cm 37Cl 285Nh 3n (282Nh) 0.26 pb DNS [19]

References edit

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; et al. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". In Peninozhkevich, Yu. E.; Sobolev, Yu. G. (eds.). Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei. Exotic Nuclei. pp. 155–164. ISBN 9789813226555.
  3. ^ a b Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; et al. (2016). "Review of even element super-heavy nuclei and search for element 120". The European Physics Journal A. 2016 (52). doi:10.1140/epja/i2016-16180-4.
  4. ^ Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sumita, Takayuki; Wakabayashi, Yasuo; Yoneda, Akira; Tanaka, Kengo; Yamaki, Sayaka; Sakai, Ryutaro; Akiyama, Takahiro; Goto, Shin-ichi; Hasebe, Hiroo; Huang, Minghui; Huang, Tianheng; Ideguchi, Eiji; Kasamatsu, Yoshitaka; Katori, Kenji; Kariya, Yoshiki; Kikunaga, Hidetoshi; Koura, Hiroyuki; Kudo, Hisaaki; Mashiko, Akihiro; Mayama, Keita; Mitsuoka, Shin-ichi; Moriya, Toru; Murakami, Masashi; Murayama, Hirohumi; Namai, Saori; Ozawa, Akira; Sato, Nozomi; Sueki, Keisuke; Takeyama, Mirei; Tokanai, Fuyuki; Yamaguchi, Takayuki; Yoshida, Atsushi (15 October 2012). "New Result in the Production and Decay of an Isotope, 278 113, of the 113th Element". Journal of the Physical Society of Japan. 81 (10): 103201. arXiv:1209.6431. Bibcode:2012JPSJ...81j3201M. doi:10.1143/JPSJ.81.103201. ISSN 0031-9015. S2CID 119217928. Retrieved 29 June 2023.
  5. ^ a b c d e f Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. (2022). "New isotope 286Mc produced in the 243Am+48Ca reaction". Physical Review C. 106 (64306): 064306. Bibcode:2022PhRvC.106f4306O. doi:10.1103/PhysRevC.106.064306. S2CID 254435744.
  6. ^ a b Armbruster, Peter & Münzenberg, Gottfried (1989). "Creating superheavy elements". Scientific American. 34: 36–42.
  7. ^ Barber, Robert C.; Gäggeler, Heinz W.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich (2009). "Discovery of the element with atomic number 112 (IUPAC Technical Report)". Pure and Applied Chemistry. 81 (7): 1331. doi:10.1351/PAC-REP-08-03-05.
  8. ^ Fleischmann, Martin; Pons, Stanley (1989). "Electrochemically induced nuclear fusion of deuterium". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 261 (2): 301–308. doi:10.1016/0022-0728(89)80006-3.
  9. ^ a b "Search for element 113" 2012-02-19 at the Wayback Machine, Hofmann et al., GSI report 2003. Retrieved on 3 March 2008
  10. ^ Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-Ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; et al. (2004). "Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn, n)278113". Journal of the Physical Society of Japan. 73 (10): 2593–2596. Bibcode:2004JPSJ...73.2593M. doi:10.1143/JPSJ.73.2593.
  11. ^ Barber, Robert C.; Karol, Paul J; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. (2011). "Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)". Pure and Applied Chemistry. 83 (7): 1485. doi:10.1351/PAC-REP-10-05-01.
  12. ^ K. Morita; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sumita, Takayuki; Wakabayashi, Yasuo; Yoneda, Akira; Tanaka, Kengo; et al. (2012). "New Results in the Production and Decay of an Isotope, 278113, of the 113th Element". Journal of the Physical Society of Japan. 81 (10): 103201. arXiv:1209.6431. Bibcode:2012JPSJ...81j3201M. doi:10.1143/JPSJ.81.103201. S2CID 119217928.
  13. ^ a b Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Sagaidak, R.; Shirokovsky, I.; Tsyganov, Yu.; Voinov, A.; Gulbekian, Gulbekian; et al. (2007). "Synthesis of the isotope 282113 in the 237Np+48Ca fusion reaction" (PDF). Physical Review C. 76 (1): 011601(R). Bibcode:2007PhRvC..76a1601O. doi:10.1103/PhysRevC.76.011601.
  14. ^ Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; Burkhard, H. G.; Dahl, L.; Eberhardt, K.; Grzywacz, R.; Hamilton, J. H.; Henderson, R. A.; Kenneally, J. M.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Miernik, K.; Miller, D.; Moody, K. J.; Morita, K.; Nishio, K.; Popeko, A. G.; Roberto, J. B.; Runke, J.; Rykaczewski, K. P.; Saro, S.; Schneidenberger, C.; Schött, H. J.; Shaughnessy, D. A.; Stoyer, M. A.; Thörle-Pospiech, P.; Tinschert, K.; Trautmann, N.; Uusitalo, J.; Yeremin, A. V. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". In Peninozhkevich, Yu. E.; Sobolev, Yu. G. (eds.). Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei. Exotic Nuclei. pp. 155–164. ISBN 9789813226555.
  15. ^ a b c Oganessian, Yu. Ts.; Abdullin, F. Sh.; Bailey, P. D.; Benker, D. E.; Bennett, M. E.; Dmitriev, S. N.; Ezold, J. G.; Hamilton, J. H.; et al. (2010). "Synthesis of a New Element with Atomic Number Z=117". Physical Review Letters. 104 (14): 142502. Bibcode:2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935.
  16. ^ a b Oganessian, Yu. Ts.; Penionzhkevich, Yu. E.; Cherepanov, E. A. (2007). "Heaviest Nuclei Produced in 48Ca-induced Reactions (Synthesis and Decay Properties)". AIP Conference Proceedings. Vol. 912. pp. 235–246. doi:10.1063/1.2746600.
  17. ^ Sonzogni, Alejandro. . National Nuclear Data Center: Brookhaven National Laboratory. Archived from the original on 2007-08-07. Retrieved 2008-06-06.
  18. ^ Feng, Zhao-Qing; Jin, Gen-Ming; Li, Jun-Qing; Scheid, Werner (2007). "Formation of superheavy nuclei in cold fusion reactions". Physical Review C. 76 (4): 044606. arXiv:0707.2588. Bibcode:2007PhRvC..76d4606F. doi:10.1103/PhysRevC.76.044606. S2CID 711489.
  19. ^ a b c d Feng, Z.; Jin, G.; Li, J. (2009). "Production of new superheavy Z=108-114 nuclei with 238U, 244Pu and 248,250Cm targets". Physical Review C. 80 (5): 057601. arXiv:0912.4069. doi:10.1103/PhysRevC.80.057601. S2CID 118733755.
  20. ^ Feng, Z; Jin, G; Li, J; Scheid, W (2009). "Production of heavy and superheavy nuclei in massive fusion reactions". Nuclear Physics A. 816 (1–4): 33–51. arXiv:0803.1117. Bibcode:2009NuPhA.816...33F. doi:10.1016/j.nuclphysa.2008.11.003. S2CID 18647291.
  • Isotope masses from:
    • M. Wang; G. Audi; A. H. Wapstra; F. G. Kondev; M. MacCormick; X. Xu; et al. (2012). "The AME2012 atomic mass evaluation (II). Tables, graphs and references" (PDF). Chinese Physics C. 36 (12): 1603–2014. Bibcode:2012ChPhC..36....3M. doi:10.1088/1674-1137/36/12/003. S2CID 250839471.
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

isotopes, nihonium, nihonium, 113nh, synthetic, element, being, synthetic, standard, atomic, weight, cannot, given, like, artificial, elements, stable, isotopes, first, isotope, synthesized, 284nh, decay, product, 288mc, 2003, first, isotope, directly, synthes. Nihonium 113Nh is a synthetic element Being synthetic a standard atomic weight cannot be given and like all artificial elements it has no stable isotopes The first isotope to be synthesized was 284Nh as a decay product of 288Mc in 2003 The first isotope to be directly synthesized was 278Nh in 2004 There are 6 known radioisotopes from 278Nh to 286Nh along with the unconfirmed 287Nh and 290Nh The longest lived isotope is 286Nh with a half life of 9 5 seconds Isotopes of nihonium 113Nh Main isotopes 1 Decayabun dance half life t1 2 mode pro duct278Nh synth 0 002 s a 274Rg282Nh synth 0 061 s a 278Rg283Nh synth 0 123 s a 279Rg284Nh synth 0 90 s a 280Rge 284Cn285Nh synth 2 1 s a 281RgSF 286Nh synth 9 5 s a 282Rg287Nh synth 5 5 s 2 a 283Rg290Nh synth 2 s 3 a 286Rgviewtalkedit Contents 1 List of isotopes 2 Isotopes and nuclear properties 2 1 Nucleosynthesis 2 1 1 Cold fusion 2 1 2 Hot fusion 2 1 3 As decay product 2 2 Theoretical calculations 2 2 1 Evaporation residue cross sections 3 ReferencesList of isotopes editNuclide Z N Isotopic mass Da n 1 n 2 Half life Decaymode n 3 Daughterisotope Spin andparity278Nh 4 113 165 278 17058 20 2 0 2 7 0 7 ms a 274Rg282Nh 113 169 282 17567 39 61 73 22 ms 5 a 278Rg283Nh n 4 113 170 283 17657 52 123 80 35 ms 5 a 279Rg284Nh n 5 113 171 284 17873 62 0 90 0 07 0 06 s 5 a 99 280Rg EC 1 5 284Cn285Nh n 6 113 172 285 17973 89 2 1 0 6 0 3 s 5 a 82 281RgSF 18 5 various 286Nh n 7 113 173 286 18221 72 9 5 s a 282Rg287Nh n 8 113 174 287 18339 81 5 5 s a 283Rg290Nh n 9 113 177 2 s a 286RgThis table header amp footer view Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS Modes of decay EC Electron capture Not directly synthesized occurs as decay product of 287Mc Not directly synthesized occurs as decay product of 288Mc Not directly synthesized occurs in decay chain of 293Ts Not directly synthesized occurs in decay chain of 294Ts Not directly synthesized occurs in decay chain of 287Fl unconfirmed Not directly synthesized occurs in decay chain of 290Fl and 294Lv unconfirmedIsotopes and nuclear properties editNucleosynthesis edit Super heavy elements such as nihonium are produced by bombarding lighter elements in particle accelerators that induce fusion reactions Whereas most of the isotopes of nihonium can be synthesized directly this way some heavier ones have only been observed as decay products of elements with higher atomic numbers 6 Depending on the energies involved the former are separated into hot and cold In hot fusion reactions very light high energy projectiles are accelerated toward very heavy targets actinides giving rise to compound nuclei at high excitation energy 40 50 MeV that may either fission or evaporate several 3 to 5 neutrons 7 In cold fusion reactions the produced fused nuclei have a relatively low excitation energy 10 20 MeV which decreases the probability that these products will undergo fission reactions As the fused nuclei cool to the ground state they require emission of only one or two neutrons and thus allows for the generation of more neutron rich products 6 The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions see cold fusion 8 Cold fusion edit Before the synthesis of nihonium by the RIKEN team scientists at the Institute for Heavy Ion Research Gesellschaft fur Schwerionenforschung in Darmstadt Germany also tried to synthesize nihonium by bombarding bismuth 209 with zinc 70 in 1998 No nihonium atoms were identified in two separate runs of the reaction 9 They repeated the experiment in 2003 again without success 9 In late 2003 the emerging team at RIKEN using their efficient apparatus GARIS attempted the reaction and reached a limit of 140 fb In December 2003 August 2004 they resorted to brute force and carried out the reaction for a period of eight months They were able to detect a single atom of 278Nh 10 They repeated the reaction in several runs in 2005 and were able to synthesize a second atom 11 followed by a third in 2012 12 The table below contains various combinations of targets and projectiles which could be used to form compound nuclei with Z 113 Target Projectile CN Attempt result208Pb 71Ga 279Nh Reaction yet to be attempted209Bi 70Zn 279Nh Successful reaction238U 45Sc 283Nh Reaction yet to be attempted237Np 48Ca 285Nh Successful reaction244Pu 41K 285Nh Reaction yet to be attempted250Cm 37Cl 287Nh Reaction yet to be attempted248Cm 37Cl 285Nh Reaction yet to be attemptedHot fusion edit In June 2006 the Dubna Livermore team synthesised nihonium directly by bombarding a neptunium 237 target with accelerated calcium 48 nuclei in a search for the lighter isotopes 281Nh and 282Nh and their decay products to provide insight into the stabilizing effects of the closed neutron shells at N 162 and N 184 13 23793 Np 4820 Ca 282113 Nh 3 10 nTwo atoms of 282Nh were detected 13 As decay product edit List of nihonium isotopes observed by decay Evaporation residue Observed nihonium isotope294Lv 290Fl 290Nh 3 287Fl 287Nh 14 294Ts 290Mc 286Nh 15 293Ts 289Mc 285Nh 15 288Mc 284Nh 16 287Mc 283Nh 16 286Mc 282Nh Nihonium has been observed as a decay product of moscovium via alpha decay Moscovium currently has five known isotopes all of them undergo alpha decays to become nihonium nuclei with mass numbers between 282 and 286 Parent moscovium nuclei can be themselves decay products of tennessine It may also occur as a decay product of flerovium via electron capture and parent flerovium nuclei can be themselves decay products of livermorium 17 For example in January 2010 the Dubna team JINR identified nihonium 286 as a product in the decay of tennessine via an alpha decay sequence 15 294117 Ts 290115 Mc 42 He 290115 Mc 286113 Nh 42 HeTheoretical calculations edit Evaporation residue cross sections edit The below table contains various targets projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels The channel with the highest expected yield is given DNS Di nuclear system s cross section Target Projectile CN Channel product smax Model Ref209Bi 70Zn 279Nh 1n 278Nh 30 fb DNS 18 238U 45Sc 283Nh 3n 280Nh 20 fb DNS 19 237Np 48Ca 285Nh 3n 282Nh 0 4 pb DNS 20 244Pu 41K 285Nh 3n 282Nh 42 2 fb DNS 19 250Cm 37Cl 287Nh 4n 283Nh 0 594 pb DNS 19 248Cm 37Cl 285Nh 3n 282Nh 0 26 pb DNS 19 References edit Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae Hofmann S Heinz S Mann R Maurer J Munzenberg G Antalic S Barth W et al 2016 Remarks on the Fission Barriers of SHN and Search for Element 120 In Peninozhkevich Yu E Sobolev Yu G eds Exotic Nuclei EXON 2016 Proceedings of the International Symposium on Exotic Nuclei Exotic Nuclei pp 155 164 ISBN 9789813226555 a b Hofmann S Heinz S Mann R Maurer J Munzenberg G Antalic S Barth W et al 2016 Review of even element super heavy nuclei and search for element 120 The European Physics Journal A 2016 52 doi 10 1140 epja i2016 16180 4 Morita Kosuke Morimoto Kouji Kaji Daiya Haba Hiromitsu Ozeki Kazutaka Kudou Yuki Sumita Takayuki Wakabayashi Yasuo Yoneda Akira Tanaka Kengo Yamaki Sayaka Sakai Ryutaro Akiyama Takahiro Goto Shin ichi Hasebe Hiroo Huang Minghui Huang Tianheng Ideguchi Eiji Kasamatsu Yoshitaka Katori Kenji Kariya Yoshiki Kikunaga Hidetoshi Koura Hiroyuki Kudo Hisaaki Mashiko Akihiro Mayama Keita Mitsuoka Shin ichi Moriya Toru Murakami Masashi Murayama Hirohumi Namai Saori Ozawa Akira Sato Nozomi Sueki Keisuke Takeyama Mirei Tokanai Fuyuki Yamaguchi Takayuki Yoshida Atsushi 15 October 2012 New Result in the Production and Decay of an Isotope 278 113 of the 113th Element Journal of the Physical Society of Japan 81 10 103201 arXiv 1209 6431 Bibcode 2012JPSJ 81j3201M doi 10 1143 JPSJ 81 103201 ISSN 0031 9015 S2CID 119217928 Retrieved 29 June 2023 a b c d e f Oganessian Yu Ts Utyonkov V K Kovrizhnykh N D et al 2022 New isotope 286Mc produced in the 243Am 48Ca reaction Physical Review C 106 64306 064306 Bibcode 2022PhRvC 106f4306O doi 10 1103 PhysRevC 106 064306 S2CID 254435744 a b Armbruster Peter amp Munzenberg Gottfried 1989 Creating superheavy elements Scientific American 34 36 42 Barber Robert C Gaggeler Heinz W Karol Paul J Nakahara Hiromichi Vardaci Emanuele Vogt Erich 2009 Discovery of the element with atomic number 112 IUPAC Technical Report Pure and Applied Chemistry 81 7 1331 doi 10 1351 PAC REP 08 03 05 Fleischmann Martin Pons Stanley 1989 Electrochemically induced nuclear fusion of deuterium Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 261 2 301 308 doi 10 1016 0022 0728 89 80006 3 a b Search for element 113 Archived 2012 02 19 at the Wayback Machine Hofmann et al GSI report 2003 Retrieved on 3 March 2008 Morita Kosuke Morimoto Kouji Kaji Daiya Akiyama Takahiro Goto Sin Ichi Haba Hiromitsu Ideguchi Eiji Kanungo Rituparna et al 2004 Experiment on the Synthesis of Element 113 in the Reaction 209Bi 70Zn n 278113 Journal of the Physical Society of Japan 73 10 2593 2596 Bibcode 2004JPSJ 73 2593M doi 10 1143 JPSJ 73 2593 Barber Robert C Karol Paul J Nakahara Hiromichi Vardaci Emanuele Vogt Erich W 2011 Discovery of the elements with atomic numbers greater than or equal to 113 IUPAC Technical Report Pure and Applied Chemistry 83 7 1485 doi 10 1351 PAC REP 10 05 01 K Morita Morimoto Kouji Kaji Daiya Haba Hiromitsu Ozeki Kazutaka Kudou Yuki Sumita Takayuki Wakabayashi Yasuo Yoneda Akira Tanaka Kengo et al 2012 New Results in the Production and Decay of an Isotope 278113 of the 113th Element Journal of the Physical Society of Japan 81 10 103201 arXiv 1209 6431 Bibcode 2012JPSJ 81j3201M doi 10 1143 JPSJ 81 103201 S2CID 119217928 a b Oganessian Yu Ts Utyonkov V Lobanov Yu Abdullin F Polyakov A Sagaidak R Shirokovsky I Tsyganov Yu Voinov A Gulbekian Gulbekian et al 2007 Synthesis of the isotope 282113 in the 237Np 48Ca fusion reaction PDF Physical Review C 76 1 011601 R Bibcode 2007PhRvC 76a1601O doi 10 1103 PhysRevC 76 011601 Hofmann S Heinz S Mann R Maurer J Munzenberg G Antalic S Barth W Burkhard H G Dahl L Eberhardt K Grzywacz R Hamilton J H Henderson R A Kenneally J M Kindler B Kojouharov I Lang R Lommel B Miernik K Miller D Moody K J Morita K Nishio K Popeko A G Roberto J B Runke J Rykaczewski K P Saro S Schneidenberger C Schott H J Shaughnessy D A Stoyer M A Thorle Pospiech P Tinschert K Trautmann N Uusitalo J Yeremin A V 2016 Remarks on the Fission Barriers of SHN and Search for Element 120 In Peninozhkevich Yu E Sobolev Yu G eds Exotic Nuclei EXON 2016 Proceedings of the International Symposium on Exotic Nuclei Exotic Nuclei pp 155 164 ISBN 9789813226555 a b c Oganessian Yu Ts Abdullin F Sh Bailey P D Benker D E Bennett M E Dmitriev S N Ezold J G Hamilton J H et al 2010 Synthesis of a New Element with Atomic Number Z 117 Physical Review Letters 104 14 142502 Bibcode 2010PhRvL 104n2502O doi 10 1103 PhysRevLett 104 142502 PMID 20481935 a b Oganessian Yu Ts Penionzhkevich Yu E Cherepanov E A 2007 Heaviest Nuclei Produced in 48Ca induced Reactions Synthesis and Decay Properties AIP Conference Proceedings Vol 912 pp 235 246 doi 10 1063 1 2746600 Sonzogni Alejandro Interactive Chart of Nuclides National Nuclear Data Center Brookhaven National Laboratory Archived from the original on 2007 08 07 Retrieved 2008 06 06 Feng Zhao Qing Jin Gen Ming Li Jun Qing Scheid Werner 2007 Formation of superheavy nuclei in cold fusion reactions Physical Review C 76 4 044606 arXiv 0707 2588 Bibcode 2007PhRvC 76d4606F doi 10 1103 PhysRevC 76 044606 S2CID 711489 a b c d Feng Z Jin G Li J 2009 Production of new superheavy Z 108 114 nuclei with 238U 244Pu and 248 250Cm targets Physical Review C 80 5 057601 arXiv 0912 4069 doi 10 1103 PhysRevC 80 057601 S2CID 118733755 Feng Z Jin G Li J Scheid W 2009 Production of heavy and superheavy nuclei in massive fusion reactions Nuclear Physics A 816 1 4 33 51 arXiv 0803 1117 Bibcode 2009NuPhA 816 33F doi 10 1016 j nuclphysa 2008 11 003 S2CID 18647291 Isotope masses from M Wang G Audi A H Wapstra F G Kondev M MacCormick X Xu et al 2012 The AME2012 atomic mass evaluation II Tables graphs and references PDF Chinese Physics C 36 12 1603 2014 Bibcode 2012ChPhC 36 3M doi 10 1088 1674 1137 36 12 003 S2CID 250839471 Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Retrieved from https en wikipedia org w index php title Isotopes of nihonium amp oldid 1189778823 Nihonium 278, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.