fbpx
Wikipedia

Negentropy

In information theory and statistics, negentropy is used as a measure of distance to normality. The concept and phrase "negative entropy" was introduced by Erwin Schrödinger in his 1944 popular-science book What is Life?[1] Later, French physicist Léon Brillouin shortened the phrase to néguentropie (negentropy).[2][3] In 1974, Albert Szent-Györgyi proposed replacing the term negentropy with syntropy. That term may have originated in the 1940s with the Italian mathematician Luigi Fantappiè, who tried to construct a unified theory of biology and physics. Buckminster Fuller tried to popularize this usage, but negentropy remains common.

In a note to What is Life? Schrödinger explained his use of this phrase.

... if I had been catering for them [physicists] alone I should have let the discussion turn on free energy instead. It is the more familiar notion in this context. But this highly technical term seemed linguistically too near to energy for making the average reader alive to the contrast between the two things.

Information theory edit

In information theory and statistics, negentropy is used as a measure of distance to normality.[4][5][6] Out of all distributions with a given mean and variance, the normal or Gaussian distribution is the one with the highest entropy. Negentropy measures the difference in entropy between a given distribution and the Gaussian distribution with the same mean and variance. Thus, negentropy is always nonnegative, is invariant by any linear invertible change of coordinates, and vanishes if and only if the signal is Gaussian.

Negentropy is defined as

 

where   is the differential entropy of the Gaussian density with the same mean and variance as   and   is the differential entropy of  :

 

Negentropy is used in statistics and signal processing. It is related to network entropy, which is used in independent component analysis.[7][8]

The negentropy of a distribution is equal to the Kullback–Leibler divergence between   and a Gaussian distribution with the same mean and variance as   (see Differential entropy § Maximization in the normal distribution for a proof). In particular, it is always nonnegative.

Correlation between statistical negentropy and Gibbs' free energy edit

 
Willard Gibbs’ 1873 available energy (free energy) graph, which shows a plane perpendicular to the axis of v (volume) and passing through point A, which represents the initial state of the body. MN is the section of the surface of dissipated energy. Qε and Qη are sections of the planes η = 0 and ε = 0, and therefore parallel to the axes of ε (internal energy) and η (entropy) respectively. AD and AE are the energy and entropy of the body in its initial state, AB and AC its available energy (Gibbs energy) and its capacity for entropy (the amount by which the entropy of the body can be increased without changing the energy of the body or increasing its volume) respectively.

There is a physical quantity closely linked to free energy (free enthalpy), with a unit of entropy and isomorphic to negentropy known in statistics and information theory. In 1873, Willard Gibbs created a diagram illustrating the concept of free energy corresponding to free enthalpy. On the diagram one can see the quantity called capacity for entropy. This quantity is the amount of entropy that may be increased without changing an internal energy or increasing its volume.[9] In other words, it is a difference between maximum possible, under assumed conditions, entropy and its actual entropy. It corresponds exactly to the definition of negentropy adopted in statistics and information theory. A similar physical quantity was introduced in 1869 by Massieu for the isothermal process[10][11][12] (both quantities differs just with a figure sign) and then Planck for the isothermal-isobaric process.[13] More recently, the Massieu–Planck thermodynamic potential, known also as free entropy, has been shown to play a great role in the so-called entropic formulation of statistical mechanics,[14] applied among the others in molecular biology[15] and thermodynamic non-equilibrium processes.[16]

 
where:
  is entropy
  is negentropy (Gibbs "capacity for entropy")
  is the Massieu potential
  is the partition function
  the Boltzmann constant

In particular, mathematically the negentropy (the negative entropy function, in physics interpreted as free entropy) is the convex conjugate of LogSumExp (in physics interpreted as the free energy).

Brillouin's negentropy principle of information edit

In 1953, Léon Brillouin derived a general equation[17] stating that the changing of an information bit value requires at least   energy. This is the same energy as the work Leó Szilárd's engine produces in the idealistic case. In his book,[18] Brillouin further explored this problem concluding that any cause of this bit value change (measurement, decision about a yes/no question, erasure, display, etc.) will require the same amount of energy.

See also edit

Notes edit

  1. ^ Schrödinger, Erwin, What is Life – the Physical Aspect of the Living Cell, Cambridge University Press, 1944
  2. ^ Brillouin, Leon: (1953) "Negentropy Principle of Information", J. of Applied Physics, v. 24(9), pp. 1152–1163
  3. ^ Léon Brillouin, La science et la théorie de l'information, Masson, 1959
  4. ^ Aapo Hyvärinen, Survey on Independent Component Analysis, node32: Negentropy, Helsinki University of Technology Laboratory of Computer and Information Science
  5. ^ Aapo Hyvärinen and Erkki Oja, Independent Component Analysis: A Tutorial, node14: Negentropy, Helsinki University of Technology Laboratory of Computer and Information Science
  6. ^ Ruye Wang, Independent Component Analysis, node4: Measures of Non-Gaussianity
  7. ^ P. Comon, Independent Component Analysis – a new concept?, Signal Processing, 36 287–314, 1994.
  8. ^ Didier G. Leibovici and Christian Beckmann, An introduction to Multiway Methods for Multi-Subject fMRI experiment, FMRIB Technical Report 2001, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford, UK.
  9. ^ Willard Gibbs, A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces, Transactions of the Connecticut Academy, 382–404 (1873)
  10. ^ Massieu, M. F. (1869a). Sur les fonctions caractéristiques des divers fluides. C. R. Acad. Sci. LXIX:858–862.
  11. ^ Massieu, M. F. (1869b). Addition au precedent memoire sur les fonctions caractéristiques. C. R. Acad. Sci. LXIX:1057–1061.
  12. ^ Massieu, M. F. (1869), Compt. Rend. 69 (858): 1057.
  13. ^ Planck, M. (1945). Treatise on Thermodynamics. Dover, New York.
  14. ^ Antoni Planes, Eduard Vives, Entropic Formulation of Statistical Mechanics 2008-10-11 at the Wayback Machine, Entropic variables and Massieu–Planck functions 2000-10-24 Universitat de Barcelona
  15. ^ John A. Scheilman, Temperature, Stability, and the Hydrophobic Interaction, Biophysical Journal 73 (December 1997), 2960–2964, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 USA
  16. ^ Z. Hens and X. de Hemptinne, Non-equilibrium Thermodynamics approach to Transport Processes in Gas Mixtures, Department of Chemistry, Catholic University of Leuven, Celestijnenlaan 200 F, B-3001 Heverlee, Belgium
  17. ^ Leon Brillouin, The negentropy principle of information, J. Applied Physics 24, 1152–1163 1953
  18. ^ Leon Brillouin, Science and Information theory, Dover, 1956

negentropy, confused, with, negative, entropy, syntropy, redirects, here, other, uses, syntropy, software, information, theory, statistics, negentropy, used, measure, distance, normality, concept, phrase, negative, entropy, introduced, erwin, schrödinger, 1944. Not to be confused with Negative entropy Syntropy redirects here For other uses see Syntropy software In information theory and statistics negentropy is used as a measure of distance to normality The concept and phrase negative entropy was introduced by Erwin Schrodinger in his 1944 popular science book What is Life 1 Later French physicist Leon Brillouin shortened the phrase to neguentropie negentropy 2 3 In 1974 Albert Szent Gyorgyi proposed replacing the term negentropy with syntropy That term may have originated in the 1940s with the Italian mathematician Luigi Fantappie who tried to construct a unified theory of biology and physics Buckminster Fuller tried to popularize this usage but negentropy remains common In a note to What is Life Schrodinger explained his use of this phrase if I had been catering for them physicists alone I should have let the discussion turn on free energy instead It is the more familiar notion in this context But this highly technical term seemed linguistically too near to energy for making the average reader alive to the contrast between the two things Contents 1 Information theory 2 Correlation between statistical negentropy and Gibbs free energy 3 Brillouin s negentropy principle of information 4 See also 5 NotesInformation theory editIn information theory and statistics negentropy is used as a measure of distance to normality 4 5 6 Out of all distributions with a given mean and variance the normal or Gaussian distribution is the one with the highest entropy Negentropy measures the difference in entropy between a given distribution and the Gaussian distribution with the same mean and variance Thus negentropy is always nonnegative is invariant by any linear invertible change of coordinates and vanishes if and only if the signal is Gaussian Negentropy is defined as J p x S f x S p x displaystyle J p x S varphi x S p x nbsp where S f x displaystyle S varphi x nbsp is the differential entropy of the Gaussian density with the same mean and variance as p x displaystyle p x nbsp and S p x displaystyle S p x nbsp is the differential entropy of p x displaystyle p x nbsp S p x p x u log p x u d u displaystyle S p x int p x u log p x u du nbsp Negentropy is used in statistics and signal processing It is related to network entropy which is used in independent component analysis 7 8 The negentropy of a distribution is equal to the Kullback Leibler divergence between p x displaystyle p x nbsp and a Gaussian distribution with the same mean and variance as p x displaystyle p x nbsp see Differential entropy Maximization in the normal distribution for a proof In particular it is always nonnegative Correlation between statistical negentropy and Gibbs free energy edit nbsp Willard Gibbs 1873 available energy free energy graph which shows a plane perpendicular to the axis of v volume and passing through point A which represents the initial state of the body MN is the section of the surface of dissipated energy Qe and Qh are sections of the planes h 0 and e 0 and therefore parallel to the axes of e internal energy and h entropy respectively AD and AE are the energy and entropy of the body in its initial state AB and AC its available energy Gibbs energy and its capacity for entropy the amount by which the entropy of the body can be increased without changing the energy of the body or increasing its volume respectively There is a physical quantity closely linked to free energy free enthalpy with a unit of entropy and isomorphic to negentropy known in statistics and information theory In 1873 Willard Gibbs created a diagram illustrating the concept of free energy corresponding to free enthalpy On the diagram one can see the quantity called capacity for entropy This quantity is the amount of entropy that may be increased without changing an internal energy or increasing its volume 9 In other words it is a difference between maximum possible under assumed conditions entropy and its actual entropy It corresponds exactly to the definition of negentropy adopted in statistics and information theory A similar physical quantity was introduced in 1869 by Massieu for the isothermal process 10 11 12 both quantities differs just with a figure sign and then Planck for the isothermal isobaric process 13 More recently the Massieu Planck thermodynamic potential known also as free entropy has been shown to play a great role in the so called entropic formulation of statistical mechanics 14 applied among the others in molecular biology 15 and thermodynamic non equilibrium processes 16 J S max S F k ln Z displaystyle J S max S Phi k ln Z nbsp dd where S displaystyle S nbsp is entropy J displaystyle J nbsp is negentropy Gibbs capacity for entropy F displaystyle Phi nbsp is the Massieu potential Z displaystyle Z nbsp is the partition function k displaystyle k nbsp the Boltzmann constant dd In particular mathematically the negentropy the negative entropy function in physics interpreted as free entropy is the convex conjugate of LogSumExp in physics interpreted as the free energy Brillouin s negentropy principle of information editIn 1953 Leon Brillouin derived a general equation 17 stating that the changing of an information bit value requires at least k T ln 2 displaystyle kT ln 2 nbsp energy This is the same energy as the work Leo Szilard s engine produces in the idealistic case In his book 18 Brillouin further explored this problem concluding that any cause of this bit value change measurement decision about a yes no question erasure display etc will require the same amount of energy See also editExergy Free entropy Entropy in thermodynamics and information theoryNotes edit Schrodinger Erwin What is Life the Physical Aspect of the Living Cell Cambridge University Press 1944 Brillouin Leon 1953 Negentropy Principle of Information J of Applied Physics v 24 9 pp 1152 1163 Leon Brillouin La science et la theorie de l information Masson 1959 Aapo Hyvarinen Survey on Independent Component Analysis node32 Negentropy Helsinki University of Technology Laboratory of Computer and Information Science Aapo Hyvarinen and Erkki Oja Independent Component Analysis A Tutorial node14 Negentropy Helsinki University of Technology Laboratory of Computer and Information Science Ruye Wang Independent Component Analysis node4 Measures of Non Gaussianity P Comon Independent Component Analysis a new concept Signal Processing 36 287 314 1994 Didier G Leibovici and Christian Beckmann An introduction to Multiway Methods for Multi Subject fMRI experiment FMRIB Technical Report 2001 Oxford Centre for Functional Magnetic Resonance Imaging of the Brain FMRIB Department of Clinical Neurology University of Oxford John Radcliffe Hospital Headley Way Headington Oxford UK Willard Gibbs A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces Transactions of the Connecticut Academy 382 404 1873 Massieu M F 1869a Sur les fonctions caracteristiques des divers fluides C R Acad Sci LXIX 858 862 Massieu M F 1869b Addition au precedent memoire sur les fonctions caracteristiques C R Acad Sci LXIX 1057 1061 Massieu M F 1869 Compt Rend 69 858 1057 Planck M 1945 Treatise on Thermodynamics Dover New York Antoni Planes Eduard Vives Entropic Formulation of Statistical Mechanics Archived 2008 10 11 at the Wayback Machine Entropic variables and Massieu Planck functions 2000 10 24 Universitat de Barcelona John A Scheilman Temperature Stability and the Hydrophobic Interaction Biophysical Journal 73 December 1997 2960 2964 Institute of Molecular Biology University of Oregon Eugene Oregon 97403 USA Z Hens and X de Hemptinne Non equilibrium Thermodynamics approach to Transport Processes in Gas Mixtures Department of Chemistry Catholic University of Leuven Celestijnenlaan 200 F B 3001 Heverlee Belgium Leon Brillouin The negentropy principle of information J Applied Physics 24 1152 1163 1953 Leon Brillouin Science and Information theory Dover 1956 nbsp Look up negentropy in Wiktionary the free dictionary Retrieved from https en wikipedia org w index php title Negentropy amp oldid 1194358710, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.