fbpx
Wikipedia

Multi-particle collision dynamics

Multi-particle collision dynamics (MPC), also known as stochastic rotation dynamics (SRD),[1] is a particle-based mesoscale simulation technique for complex fluids which fully incorporates thermal fluctuations and hydrodynamic interactions.[2] Coupling of embedded particles to the coarse-grained solvent is achieved through molecular dynamics.[3]

Method of simulation edit

The solvent is modelled as a set of   point particles of mass   with continuous coordinates   and velocities  . The simulation consists of streaming and collision steps.

During the streaming step, the coordinates of the particles are updated according to

 

where   is a chosen simulation time step which is typically much larger than a molecular dynamics time step.

After the streaming step, interactions between the solvent particles are modelled in the collision step. The particles are sorted into collision cells with a lateral size  . Particle velocities within each cell are updated according to the collision rule

 

where   is the centre of mass velocity of the particles in the collision cell and   is a rotation matrix. In two dimensions,   performs a rotation by an angle   or   with probability  . In three dimensions, the rotation is performed by an angle   around a random rotation axis. The same rotation is applied for all particles within a given collision cell, but the direction (axis) of rotation is statistically independent both between all cells and for a given cell in time.

If the structure of the collision grid defined by the positions of the collision cells is fixed, Galilean invariance is violated. It is restored with the introduction of a random shift of the collision grid.[4]

Explicit expressions for the diffusion coefficient and viscosity derived based on Green-Kubo relations are in excellent agreement with simulations.[5][6]

Simulation parameters edit

The set of parameters for the simulation of the solvent are:

  • solvent particle mass  
  • average number of solvent particles per collision box  
  • lateral collision box size  
  • stochastic rotation angle  
  • kT (energy)
  • time step  

The simulation parameters define the solvent properties,[1] such as

  • mean free path  
  • diffusion coefficient  
  • shear viscosity  
  • thermal diffusivity  

where   is the dimensionality of the system.

A typical choice for normalisation is  . To reproduce fluid-like behaviour, the remaining parameters may be fixed as  .[7]

Applications edit

MPC has become a notable tool in the simulations of many soft-matter systems, including

References edit

  1. ^ a b Gompper, G.; Ihle, T.; Kroll, D. M.; Winkler, R. G. (2009). "Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids". Advanced Computer Simulation Approaches for Soft Matter Sciences III. Vol. 221. pp. 1–87. arXiv:0808.2157. Bibcode:2009acsa.book....1G. doi:10.1007/978-3-540-87706-6_1. ISBN 978-3-540-87705-9. S2CID 8433369.
  2. ^ Malevanets, Anatoly; Kapral, Raymond (1999). "Mesoscopic model for solvent dynamics". The Journal of Chemical Physics. 110 (17): 8605–8613. Bibcode:1999JChPh.110.8605M. doi:10.1063/1.478857.
  3. ^ a b Malevanets, Anatoly; Kapral, Raymond (2000). "Solute molecular dynamics in a mesoscale solvent". The Journal of Chemical Physics. 112 (16): 7260–7269. Bibcode:2000JChPh.112.7260M. doi:10.1063/1.481289. S2CID 73679245.
  4. ^ Ihle, T.; Kroll, D. M. (2003). "Stochastic rotation dynamics. I. Formalism, Galilean invariance, and Green-Kubo relations". Physical Review E. 67 (6): 066705. Bibcode:2003PhRvE..67f6705I. doi:10.1103/PhysRevE.67.066705. PMID 16241378.
  5. ^ Ihle, T.; Tüzel, E.; Kroll, D. M. (2004). "Resummed Green-Kubo relations for a fluctuating fluid-particle model". Physical Review E. 70 (3): 035701. arXiv:cond-mat/0404305. Bibcode:2004PhRvE..70c5701I. doi:10.1103/PhysRevE.70.035701. PMID 15524580. S2CID 11272882.
  6. ^ Ihle, T.; Tüzel, E.; Kroll, D. M. (2005). "Equilibrium calculation of transport coefficients for a fluid-particle model". Physical Review E. 72 (4): 046707. arXiv:cond-mat/0505434. Bibcode:2005PhRvE..72d6707I. doi:10.1103/PhysRevE.72.046707. PMID 16383567. S2CID 14413944.
  7. ^ a b J. Elgeti "Sperm and Cilia Dynamics" PhD thesis, Universität zu Köln (2006)
  8. ^ Padding, J. T.; Louis, A. A. (2004). "Hydrodynamic and Brownian Fluctuations in Sedimenting Suspensions". Physical Review Letters. 93 (22): 220601. arXiv:cond-mat/0409133. Bibcode:2004PhRvL..93v0601P. doi:10.1103/PhysRevLett.93.220601. PMID 15601076. S2CID 119504730.
  9. ^ Hecht, Martin; Harting, Jens; Bier, Markus; Reinshagen, Jörg; Herrmann, Hans J. (2006). "Shear viscosity of claylike colloids in computer simulations and experiments". Physical Review E. 74 (2): 021403. arXiv:cond-mat/0601413. Bibcode:2006PhRvE..74b1403H. doi:10.1103/PhysRevE.74.021403. PMID 17025421. S2CID 19998245.
  10. ^ Mussawisade, K.; Ripoll, M.; Winkler, R. G.; Gompper, G. (2005). "Dynamics of polymers in a particle-based mesoscopic solvent" (PDF). The Journal of Chemical Physics. 123 (14): 144905. Bibcode:2005JChPh.123n4905M. doi:10.1063/1.2041527. PMID 16238422.
  11. ^ Ripoll, M.; Winkler, R. G.; Gompper, G. (2007). "Hydrodynamic screening of star polymers in shear flow". The European Physical Journal E. 23 (4): 349–354. Bibcode:2007EPJE...23..349R. doi:10.1140/epje/i2006-10220-0. PMID 17712520. S2CID 36780360.
  12. ^ Noguchi, Hiroshi; Gompper, Gerhard (2005). "Dynamics of fluid vesicles in shear flow: Effect of membrane viscosity and thermal fluctuations" (PDF). Physical Review E. 72 (1): 011901. Bibcode:2005PhRvE..72a1901N. doi:10.1103/PhysRevE.72.011901. PMID 16089995.
  13. ^ K.-W. Lee and Marco G. Mazza (2015). "Stochastic rotation dynamics for nematic liquid crystals". Journal of Chemical Physics. 142 (16): 164110. arXiv:1502.03293. Bibcode:2015JChPh.142p4110L. doi:10.1063/1.4919310. PMID 25933755. S2CID 36839435.

multi, particle, collision, dynamics, also, known, stochastic, rotation, dynamics, particle, based, mesoscale, simulation, technique, complex, fluids, which, fully, incorporates, thermal, fluctuations, hydrodynamic, interactions, coupling, embedded, particles,. Multi particle collision dynamics MPC also known as stochastic rotation dynamics SRD 1 is a particle based mesoscale simulation technique for complex fluids which fully incorporates thermal fluctuations and hydrodynamic interactions 2 Coupling of embedded particles to the coarse grained solvent is achieved through molecular dynamics 3 Contents 1 Method of simulation 2 Simulation parameters 3 Applications 4 ReferencesMethod of simulation editThe solvent is modelled as a set of N displaystyle N nbsp point particles of mass m displaystyle m nbsp with continuous coordinates r i displaystyle vec r i nbsp and velocities v i displaystyle vec v i nbsp The simulation consists of streaming and collision steps During the streaming step the coordinates of the particles are updated according tor i t dtMPC r i t v i t dtMPC displaystyle vec r i t delta t mathrm MPC vec r i t vec v i t delta t mathrm MPC nbsp where dtMPC displaystyle delta t mathrm MPC nbsp is a chosen simulation time step which is typically much larger than a molecular dynamics time step After the streaming step interactions between the solvent particles are modelled in the collision step The particles are sorted into collision cells with a lateral size a displaystyle a nbsp Particle velocities within each cell are updated according to the collision rule v i v CMS R v i v CMS displaystyle vec v i rightarrow vec v mathrm CMS hat mathbf R vec v i vec v mathrm CMS nbsp where v CMS displaystyle vec v mathrm CMS nbsp is the centre of mass velocity of the particles in the collision cell and R displaystyle hat mathbf R nbsp is a rotation matrix In two dimensions R displaystyle hat mathbf R nbsp performs a rotation by an angle a displaystyle alpha nbsp or a displaystyle alpha nbsp with probability 1 2 displaystyle 1 2 nbsp In three dimensions the rotation is performed by an angle a displaystyle alpha nbsp around a random rotation axis The same rotation is applied for all particles within a given collision cell but the direction axis of rotation is statistically independent both between all cells and for a given cell in time If the structure of the collision grid defined by the positions of the collision cells is fixed Galilean invariance is violated It is restored with the introduction of a random shift of the collision grid 4 Explicit expressions for the diffusion coefficient and viscosity derived based on Green Kubo relations are in excellent agreement with simulations 5 6 Simulation parameters editThe set of parameters for the simulation of the solvent are solvent particle mass m displaystyle m nbsp average number of solvent particles per collision box ns displaystyle n s nbsp lateral collision box size a displaystyle a nbsp stochastic rotation angle a displaystyle alpha nbsp kT energy time step dtMPC displaystyle delta t mathrm MPC nbsp The simulation parameters define the solvent properties 1 such as mean free path l dtMPCkT m displaystyle lambda delta t mathrm MPC sqrt kT m nbsp diffusion coefficient D kTdtMPC2m dns 1 cos a ns 1 exp ns 1 displaystyle D frac kT delta t mathrm M PC 2m Bigg frac dn s 1 cos alpha n s 1 exp n s 1 Bigg nbsp shear viscosity n displaystyle nu nbsp thermal diffusivity DT displaystyle D T nbsp where d displaystyle d nbsp is the dimensionality of the system A typical choice for normalisation is a 1 kT 1 m 1 displaystyle a 1 kT 1 m 1 nbsp To reproduce fluid like behaviour the remaining parameters may be fixed as a 130o ns 10 dtMPC 0 01 0 1 displaystyle alpha 130 o n s 10 delta t mathrm MPC in 0 01 0 1 nbsp 7 Applications editMPC has become a notable tool in the simulations of many soft matter systems including colloid dynamics 3 8 9 polymer dynamics 10 11 vesicles 12 active systems 7 liquid crystals 13 References edit a b Gompper G Ihle T Kroll D M Winkler R G 2009 Multi Particle Collision Dynamics A Particle Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids Advanced Computer Simulation Approaches for Soft Matter Sciences III Vol 221 pp 1 87 arXiv 0808 2157 Bibcode 2009acsa book 1G doi 10 1007 978 3 540 87706 6 1 ISBN 978 3 540 87705 9 S2CID 8433369 Malevanets Anatoly Kapral Raymond 1999 Mesoscopic model for solvent dynamics The Journal of Chemical Physics 110 17 8605 8613 Bibcode 1999JChPh 110 8605M doi 10 1063 1 478857 a b Malevanets Anatoly Kapral Raymond 2000 Solute molecular dynamics in a mesoscale solvent The Journal of Chemical Physics 112 16 7260 7269 Bibcode 2000JChPh 112 7260M doi 10 1063 1 481289 S2CID 73679245 Ihle T Kroll D M 2003 Stochastic rotation dynamics I Formalism Galilean invariance and Green Kubo relations Physical Review E 67 6 066705 Bibcode 2003PhRvE 67f6705I doi 10 1103 PhysRevE 67 066705 PMID 16241378 Ihle T Tuzel E Kroll D M 2004 Resummed Green Kubo relations for a fluctuating fluid particle model Physical Review E 70 3 035701 arXiv cond mat 0404305 Bibcode 2004PhRvE 70c5701I doi 10 1103 PhysRevE 70 035701 PMID 15524580 S2CID 11272882 Ihle T Tuzel E Kroll D M 2005 Equilibrium calculation of transport coefficients for a fluid particle model Physical Review E 72 4 046707 arXiv cond mat 0505434 Bibcode 2005PhRvE 72d6707I doi 10 1103 PhysRevE 72 046707 PMID 16383567 S2CID 14413944 a b J Elgeti Sperm and Cilia Dynamics PhD thesis Universitat zu Koln 2006 Padding J T Louis A A 2004 Hydrodynamic and Brownian Fluctuations in Sedimenting Suspensions Physical Review Letters 93 22 220601 arXiv cond mat 0409133 Bibcode 2004PhRvL 93v0601P doi 10 1103 PhysRevLett 93 220601 PMID 15601076 S2CID 119504730 Hecht Martin Harting Jens Bier Markus Reinshagen Jorg Herrmann Hans J 2006 Shear viscosity of claylike colloids in computer simulations and experiments Physical Review E 74 2 021403 arXiv cond mat 0601413 Bibcode 2006PhRvE 74b1403H doi 10 1103 PhysRevE 74 021403 PMID 17025421 S2CID 19998245 Mussawisade K Ripoll M Winkler R G Gompper G 2005 Dynamics of polymers in a particle based mesoscopic solvent PDF The Journal of Chemical Physics 123 14 144905 Bibcode 2005JChPh 123n4905M doi 10 1063 1 2041527 PMID 16238422 Ripoll M Winkler R G Gompper G 2007 Hydrodynamic screening of star polymers in shear flow The European Physical Journal E 23 4 349 354 Bibcode 2007EPJE 23 349R doi 10 1140 epje i2006 10220 0 PMID 17712520 S2CID 36780360 Noguchi Hiroshi Gompper Gerhard 2005 Dynamics of fluid vesicles in shear flow Effect of membrane viscosity and thermal fluctuations PDF Physical Review E 72 1 011901 Bibcode 2005PhRvE 72a1901N doi 10 1103 PhysRevE 72 011901 PMID 16089995 K W Lee and Marco G Mazza 2015 Stochastic rotation dynamics for nematic liquid crystals Journal of Chemical Physics 142 16 164110 arXiv 1502 03293 Bibcode 2015JChPh 142p4110L doi 10 1063 1 4919310 PMID 25933755 S2CID 36839435 Retrieved from https en wikipedia org w index php title Multi particle collision dynamics amp oldid 1172298802, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.