fbpx
Wikipedia

Mountain formation

Mountain formation refers to the geological processes that underlie the formation of mountains. These processes are associated with large-scale movements of the Earth's crust (tectonic plates).[1] Folding, faulting, volcanic activity, igneous intrusion and metamorphism can all be parts of the orogenic process of mountain building.[2] The formation of mountains is not necessarily related to the geological structures found on it.[3]

Thrust and reverse fault movement are an important component of mountain formation.
Illustration of mountains that developed on a fold that thrusted.

The understanding of specific landscape features in terms of the underlying tectonic processes is called tectonic geomorphology, and the study of geologically young or ongoing processes is called neotectonics.[4][clarification needed]

From the late 18th century until its replacement by plate tectonics in the 1960s, geosyncline theory was used to explain much mountain-building.[5]

Types of mountains

There are five main types of mountains: volcanic, fold, plateau, fault-block and dome. A more detailed classification useful on a local scale predates plate tectonics and adds to these categories.[6]

Volcanic mountains

 
Annotated view includes Ushkovsky, Tolbachik, Bezymianny, Zimina, and Udina stratovolcanoes of Kamchatka, Russia. Oblique view taken on November 12, 2013, from ISS.[7]
 
Stratovolcanoes associated with a subduction zone (left) and a spreading ridge volcano (right). A hotspot volcano is center.[8]

Movements of tectonic plates create volcanoes along the plate boundaries, which erupt and form mountains. A volcanic arc system is a series of volcanoes that form near a subduction zone where the crust of a sinking oceanic plate melts and drags water down with the subducting crust.[9]

 
The Dome of Vitosha mountain next to Sofia

Most volcanoes occur in a band encircling the Pacific Ocean (the Pacific Ring of Fire), and in another that extends from the Mediterranean across Asia to join the Pacific band in the Indonesian Archipelago. The most important types of volcanic mountain are composite cones or stratovolcanoes (Vesuvius, Kilimanjaro and Mount Fuji are examples) and shield volcanoes (such as Mauna Loa on Hawaii, a hotspot volcano).[10][11]

A shield volcano has a gently sloping cone due to the low viscosity of the emitted material, primarily basalt. Mauna Loa is the classic example, with a slope of 4°-6°. (The relation between slope and viscosity falls under the topic of angle of repose.[12]) The composite volcano or stratovolcano has a more steeply rising cone (33°-40°),[13] due to the higher viscosity of the emitted material, and eruptions are more violent and less frequent than for shield volcanoes. Besides the examples already mentioned are Mount Shasta, Mount Hood and Mount Rainier.[14] Vitosha - the domed mountain next to Sofia, capital of Bulgaria, is also formed by volcanic activity.

Fold mountains

 
Zard-Kuh, a fold mountain in the central Zagros range of Iran.

When plates collide or undergo subduction (that is – ride one over another), the plates tend to buckle and fold, forming mountains. Most of the major continental mountain ranges are associated with thrusting and folding or orogenesis. Examples are the Balkan Mountains, the Jura and the Zagros mountains.[15]

Block mountains

 
Fault-block mountain of the tilted type.[16]
 
Sierra Nevada Mountains (formed by delamination) as seen from the International Space Station.

When a fault block is raised or tilted, block mountains can result.[17] Higher blocks are called horsts and troughs are called grabens. A spreading apart of the surface causes tensional forces. When the tensional forces are strong enough to cause a plate to split apart, it does so such that a center block drops down relative to its flanking blocks.

An example of this is the Sierra Nevada Range, where delamination created a block 650 km long and 80 km wide that consists of many individual portions tipped gently west, with east facing slips rising abruptly to produce the highest mountain front in the continental United States.[18][19]

Another good example is the Rila - Rhodope mountain Massif in Bulgaria, Southeast Europe, including the well defined horsts of Belasitsa (linear horst), Rila mountain (vaulted domed shaped horst) and Pirin mountain - a horst forming a massive anticline situated between the complex graben valleys of Struma and that of Mesta.[20][21][22]

Uplifted passive margins

Unlike orogenic mountains there is no widely accepted geophysical model that explains elevated passive continental margins such as the Scandinavian Mountains, Eastern Greenland, the Brazilian Highlands or Australia's Great Dividing Range.[23][24] Different elevated passive continental margins most likely share the same mechanism of uplift. This mechanism is possibly related to far-field stresses in Earth's lithosphere. According to this view elevated passived margins can be likened to giant anticlinal lithospheric folds, where folding is caused by horizontal compression acting on a thin to thick crust transition zone (as are all passive margins).[25][26]

Models

Hotspot volcanoes

Hotspots are supplied by a magma source in the Earth's mantle called a mantle plume. Although originally attributed to a melting of subducted oceanic crust, recent evidence belies this connection.[27] The mechanism for plume formation remains a research topic.

Fault blocks

Several movements of the Earth's crust that lead to mountains are associated with faults. These movements actually are amenable to analysis that can predict, for example, the height of a raised block and the width of an intervening rift between blocks using the rheology of the layers and the forces of isostasy. Early bent plate models predicting fractures and fault movements have evolved into today's kinematic and flexural models.[28][29]

See also

  • 3D fold evolution
  • Continental collision – Phenomenon in which mountains can be produced on the boundaries of converging tectonic plates
  • Cycle of erosion – Model of geographic landscape evolution
  • Inselberg – Isolated, steep rock hill on relatively flat terrain
  • Orogeny – The formation of mountain ranges
  • Tectonics – Process of evolution of the earth's crust
  • Seamount – Mountain rising from the ocean seafloor that does not reach to the water's surface

References

  1. ^ Steven M. Stanley (2004). "Mountain building". Earth system history (2nd ed.). Macmillan. p. 207. ISBN 978-0-7167-3907-4.
  2. ^ Robert J. Twiss; Eldridge M. Moores (1992). "Plate tectonic models of orogenic core zones". Structural Geology (2nd ed.). Macmillan. p. 493. ISBN 978-0-7167-2252-6.
  3. ^ Ollier, Cliff; Pain, Colin (2000). The Origin of Mountains. Routledge. p. 1. ISBN 978-0-415-19890-5.
  4. ^ Kurt Stüwe (2007). "§4.5 Geomorphology". Geodynamics of the lithosphere: an introduction (2nd ed.). Springer. p. 178. ISBN 978-3-540-71236-7.
  5. ^ "Geosynclinal Theory". publish.illinois.edu. University of Illinois at Urbana-Champaign. Retrieved March 8, 2018. The major mountain-building idea that was supported from the 19th century and into the 20th is the geosynclinal theory.
  6. ^ Andrew Goudie (2004). Encyclopedia of geomorphology; Volume 2. Routledge. p. 701. ISBN 978-0-415-32738-1.
  7. ^ NASA - Activity at Kliuchevskoi
  8. ^ Victor Schmidt; William Harbert (2003). Planet Earth and the New Geoscience (4th ed.). Kendall Hunt. pp. 46–47. ISBN 978-0-7872-9355-0.
  9. ^ Stephen D Butz (2004). "Chapter 8: Plate tectonics". Science of Earth Systems. Thompson/Delmar Learning. p. 136. ISBN 978-0-7668-3391-3.
  10. ^ John Gerrard (1990). "Types of volcano". Mountain environments: an examination of the physical geography of mountains. MIT Press. p. 194. ISBN 978-0-262-07128-4.
  11. ^ Robert Wayne Decker; Barbara Decker (2005). "Chapter 8: Hot spots". Volcanoes (4th ed.). Macmillan. p. 113 ff. ISBN 978-0-7167-8929-1.
  12. ^ Arthur Holmes; Donald Duff (2004). Holmes Principles of Physical Geology (4th ed.). Taylor & Francis. p. 209. ISBN 978-0-7487-4381-0.
  13. ^ Transactions of the American Society of Civil Engineers, Volume 39. American Society of Civil Engineers. 1898. p. 62.
  14. ^ James Shipman; Jerry D. Wilson; Aaron Todd (2007). "Minerals, rocks and volcanoes". An Introduction to Physical Science (12th ed.). Cengage Learning. p. 650. ISBN 978-0-618-93596-3.
  15. ^ Michael P Searle (2007). "Diagnostic features and processes in the construction and evolution of Oman-, Zagros-, Himalayan-, Karakoram-, and Tibetan type orogenic belts". In Robert D Hatcher Jr.; MP Carlson; JH McBride & JR Martinez Catalán (eds.). 4-D framework of continental crust. Geological Society of America. p. 41 ff. ISBN 978-0-8137-1200-0.
  16. ^ Chris C. Park (2001). "Figure 6.11". The environment: principles and applications (2nd ed.). Routledge. p. 160. ISBN 9780415217705.
  17. ^ Scott Ryan (2006). "Figure 13-1". CliffsQuickReview Earth Science. Wiley. ISBN 978-0-471-78937-6.
  18. ^ John Gerrard (1990-04-12). Reference cited. p. 9. ISBN 978-0-262-07128-4.
  19. ^ Lee, C.-T.; Yin, Q; Rudnick, RL; Chesley, JT; Jacobsen, SB (2000). (PDF). Science. 289 (5486): 1912–6. Bibcode:2000Sci...289.1912L. doi:10.1126/science.289.5486.1912. PMID 10988067. Archived from the original (PDF) on 2011-06-15.
  20. ^ Мичев (Michev), Николай (Nikolay); Михайлов (Mihaylov), Цветко (Tsvetko); Вапцаров (Vaptsarov), Иван (Ivan); Кираджиев (Kiradzhiev), Светлин (Svetlin) (1980). Географски речник на България [Geographic Dictionary of Bulgaria] (in Bulgarian). Sofia: Наука и култура (Nauka i kultura). p. 368.
  21. ^ Димитрова (Dimitrova), Людмила (Lyudmila) (2004). Национален парк "Пирин". План за управление [Pirin National Park. Management Plan] (in Bulgarian). и колектив. Sofia: Ministry of Environment and Water, Bulgarian Foundation "Biodiversity". p. 53.
  22. ^ Дончев (Donchev), Дончо (Doncho); Каракашев (Karakashev), Христо (Hristo) (2004). Теми по физическа и социално-икономическа география на България [Topics on Physical and Social-Economic Geography of Bulgaria] (in Bulgarian). Sofia: Ciela. pp. 128–129. ISBN 954-649-717-7.
  23. ^ Bonow, Johan M. (2009). "atlantens kustberg och högslätter – gamla eller unga?" (PDF). www.geografitorget.se (in Swedish). Geografilärarnas Riksförening.
  24. ^ Green, Paul F.; Lidmar-Bergström, Karna; Japsen, Peter; Bonow, Johan M.; Chalmers, James A. (2013). "Stratigraphic landscape analysis, thermochronology and the episodic development of elevated, passive continental margins". Geological Survey of Denmark and Greenland Bulletin. 30: 18. doi:10.34194/geusb.v30.4673.
  25. ^ Japsen, Peter; Chalmers, James A.; Green, Paul F.; Bonow, Johan M. (2012). "Elevated, passive continental margins: Not rift shoulders, but expressions of episodic, post-rift burial and exhumation". Global and Planetary Change. 90–91: 73–86. Bibcode:2012GPC....90...73J. doi:10.1016/j.gloplacha.2011.05.004.
  26. ^ Løseth and Hendriksen 2005
  27. ^ Y Niu & MJ O'Hara (2004). "Chapter 7: Mantle plumes are NOT from ancient oceanic crust". In Roger Hékinian; Peter Stoffers & Jean-Louis Cheminée (eds.). Oceanic hotspots: intraplate submarine magmatism and tectonism. Springer. p. 239 ff. ISBN 978-3-540-40859-8.
  28. ^ AB Watts (2001). "§7.2 Extensional tectonics and rifting". Isostasy and flexure of the lithosphere. Cambridge University Press. p. 295. ISBN 978-0-521-00600-2.
  29. ^ GD Karner & NW Driscoll (1999). "Style, timing and distribution of tectonic deformation across the Exmouth Plateau, northwest Australia, determined from stratal architecture and quantitative basin modelling". In Conall Mac Niocaill & Paul Desmond Ryan (eds.). Continental tectonics. Geological society. p. 280. ISBN 978-1-86239-051-5.

External links

  • NASA Goddard Planetary Geodynamics Laboratory

mountain, formation, refers, geological, processes, that, underlie, formation, mountains, these, processes, associated, with, large, scale, movements, earth, crust, tectonic, plates, folding, faulting, volcanic, activity, igneous, intrusion, metamorphism, part. Mountain formation refers to the geological processes that underlie the formation of mountains These processes are associated with large scale movements of the Earth s crust tectonic plates 1 Folding faulting volcanic activity igneous intrusion and metamorphism can all be parts of the orogenic process of mountain building 2 The formation of mountains is not necessarily related to the geological structures found on it 3 Thrust and reverse fault movement are an important component of mountain formation Illustration of mountains that developed on a fold that thrusted The understanding of specific landscape features in terms of the underlying tectonic processes is called tectonic geomorphology and the study of geologically young or ongoing processes is called neotectonics 4 clarification needed From the late 18th century until its replacement by plate tectonics in the 1960s geosyncline theory was used to explain much mountain building 5 Contents 1 Types of mountains 1 1 Volcanic mountains 1 2 Fold mountains 1 3 Block mountains 1 4 Uplifted passive margins 2 Models 2 1 Hotspot volcanoes 2 2 Fault blocks 3 See also 4 References 5 External linksTypes of mountains EditSee also List of mountain types There are five main types of mountains volcanic fold plateau fault block and dome A more detailed classification useful on a local scale predates plate tectonics and adds to these categories 6 Volcanic mountains Edit See also Stratovolcano Shield volcano and Guyot Annotated view includes Ushkovsky Tolbachik Bezymianny Zimina and Udina stratovolcanoes of Kamchatka Russia Oblique view taken on November 12 2013 from ISS 7 Stratovolcanoes associated with a subduction zone left and a spreading ridge volcano right A hotspot volcano is center 8 Movements of tectonic plates create volcanoes along the plate boundaries which erupt and form mountains A volcanic arc system is a series of volcanoes that form near a subduction zone where the crust of a sinking oceanic plate melts and drags water down with the subducting crust 9 The Dome of Vitosha mountain next to SofiaMost volcanoes occur in a band encircling the Pacific Ocean the Pacific Ring of Fire and in another that extends from the Mediterranean across Asia to join the Pacific band in the Indonesian Archipelago The most important types of volcanic mountain are composite cones or stratovolcanoes Vesuvius Kilimanjaro and Mount Fuji are examples and shield volcanoes such as Mauna Loa on Hawaii a hotspot volcano 10 11 A shield volcano has a gently sloping cone due to the low viscosity of the emitted material primarily basalt Mauna Loa is the classic example with a slope of 4 6 The relation between slope and viscosity falls under the topic of angle of repose 12 The composite volcano or stratovolcano has a more steeply rising cone 33 40 13 due to the higher viscosity of the emitted material and eruptions are more violent and less frequent than for shield volcanoes Besides the examples already mentioned are Mount Shasta Mount Hood and Mount Rainier 14 Vitosha the domed mountain next to Sofia capital of Bulgaria is also formed by volcanic activity Fold mountains Edit See also Fold geology Fold and thrust belt and Fold mountain Zard Kuh a fold mountain in the central Zagros range of Iran When plates collide or undergo subduction that is ride one over another the plates tend to buckle and fold forming mountains Most of the major continental mountain ranges are associated with thrusting and folding or orogenesis Examples are the Balkan Mountains the Jura and the Zagros mountains 15 Block mountains Edit Main article Fault block mountain Fault block mountain of the tilted type 16 Sierra Nevada Mountains formed by delamination as seen from the International Space Station When a fault block is raised or tilted block mountains can result 17 Higher blocks are called horsts and troughs are called grabens A spreading apart of the surface causes tensional forces When the tensional forces are strong enough to cause a plate to split apart it does so such that a center block drops down relative to its flanking blocks An example of this is the Sierra Nevada Range where delamination created a block 650 km long and 80 km wide that consists of many individual portions tipped gently west with east facing slips rising abruptly to produce the highest mountain front in the continental United States 18 19 Another good example is the Rila Rhodope mountain Massif in Bulgaria Southeast Europe including the well defined horsts of Belasitsa linear horst Rila mountain vaulted domed shaped horst and Pirin mountain a horst forming a massive anticline situated between the complex graben valleys of Struma and that of Mesta 20 21 22 Uplifted passive margins Edit Unlike orogenic mountains there is no widely accepted geophysical model that explains elevated passive continental margins such as the Scandinavian Mountains Eastern Greenland the Brazilian Highlands or Australia s Great Dividing Range 23 24 Different elevated passive continental margins most likely share the same mechanism of uplift This mechanism is possibly related to far field stresses in Earth s lithosphere According to this view elevated passived margins can be likened to giant anticlinal lithospheric folds where folding is caused by horizontal compression acting on a thin to thick crust transition zone as are all passive margins 25 26 Models EditSee also Extensional tectonics Rift valley Rift Prediction of volcanic activity and Geomorphology Hotspot volcanoes Edit Hotspots are supplied by a magma source in the Earth s mantle called a mantle plume Although originally attributed to a melting of subducted oceanic crust recent evidence belies this connection 27 The mechanism for plume formation remains a research topic Fault blocks Edit Several movements of the Earth s crust that lead to mountains are associated with faults These movements actually are amenable to analysis that can predict for example the height of a raised block and the width of an intervening rift between blocks using the rheology of the layers and the forces of isostasy Early bent plate models predicting fractures and fault movements have evolved into today s kinematic and flexural models 28 29 See also Edit3D fold evolution Continental collision Phenomenon in which mountains can be produced on the boundaries of converging tectonic plates Cycle of erosion Model of geographic landscape evolution Inselberg Isolated steep rock hill on relatively flat terrain Orogeny The formation of mountain ranges Tectonics Process of evolution of the earth s crust Seamount Mountain rising from the ocean seafloor that does not reach to the water s surfaceReferences Edit Steven M Stanley 2004 Mountain building Earth system history 2nd ed Macmillan p 207 ISBN 978 0 7167 3907 4 Robert J Twiss Eldridge M Moores 1992 Plate tectonic models of orogenic core zones Structural Geology 2nd ed Macmillan p 493 ISBN 978 0 7167 2252 6 Ollier Cliff Pain Colin 2000 The Origin of Mountains Routledge p 1 ISBN 978 0 415 19890 5 Kurt Stuwe 2007 4 5 Geomorphology Geodynamics of the lithosphere an introduction 2nd ed Springer p 178 ISBN 978 3 540 71236 7 Geosynclinal Theory publish illinois edu University of Illinois at Urbana Champaign Retrieved March 8 2018 The major mountain building idea that was supported from the 19th century and into the 20th is the geosynclinal theory Andrew Goudie 2004 Encyclopedia of geomorphology Volume 2 Routledge p 701 ISBN 978 0 415 32738 1 NASA Activity at Kliuchevskoi Victor Schmidt William Harbert 2003 Planet Earth and the New Geoscience 4th ed Kendall Hunt pp 46 47 ISBN 978 0 7872 9355 0 Stephen D Butz 2004 Chapter 8 Plate tectonics Science of Earth Systems Thompson Delmar Learning p 136 ISBN 978 0 7668 3391 3 John Gerrard 1990 Types of volcano Mountain environments an examination of the physical geography of mountains MIT Press p 194 ISBN 978 0 262 07128 4 Robert Wayne Decker Barbara Decker 2005 Chapter 8 Hot spots Volcanoes 4th ed Macmillan p 113 ff ISBN 978 0 7167 8929 1 Arthur Holmes Donald Duff 2004 Holmes Principles of Physical Geology 4th ed Taylor amp Francis p 209 ISBN 978 0 7487 4381 0 Transactions of the American Society of Civil Engineers Volume 39 American Society of Civil Engineers 1898 p 62 James Shipman Jerry D Wilson Aaron Todd 2007 Minerals rocks and volcanoes An Introduction to Physical Science 12th ed Cengage Learning p 650 ISBN 978 0 618 93596 3 Michael P Searle 2007 Diagnostic features and processes in the construction and evolution of Oman Zagros Himalayan Karakoram and Tibetan type orogenic belts In Robert D Hatcher Jr MP Carlson JH McBride amp JR Martinez Catalan eds 4 D framework of continental crust Geological Society of America p 41 ff ISBN 978 0 8137 1200 0 Chris C Park 2001 Figure 6 11 The environment principles and applications 2nd ed Routledge p 160 ISBN 9780415217705 Scott Ryan 2006 Figure 13 1 CliffsQuickReview Earth Science Wiley ISBN 978 0 471 78937 6 John Gerrard 1990 04 12 Reference cited p 9 ISBN 978 0 262 07128 4 Lee C T Yin Q Rudnick RL Chesley JT Jacobsen SB 2000 Osmium Isotopic Evidence for Mesozoic Removal of Lithospheric Mantle Beneath the Sierra Nevada California PDF Science 289 5486 1912 6 Bibcode 2000Sci 289 1912L doi 10 1126 science 289 5486 1912 PMID 10988067 Archived from the original PDF on 2011 06 15 Michev Michev Nikolaj Nikolay Mihajlov Mihaylov Cvetko Tsvetko Vapcarov Vaptsarov Ivan Ivan Kiradzhiev Kiradzhiev Svetlin Svetlin 1980 Geografski rechnik na Blgariya Geographic Dictionary of Bulgaria in Bulgarian Sofia Nauka i kultura Nauka i kultura p 368 Dimitrova Dimitrova Lyudmila Lyudmila 2004 Nacionalen park Pirin Plan za upravlenie Pirin National Park Management Plan in Bulgarian i kolektiv Sofia Ministry of Environment and Water Bulgarian Foundation Biodiversity p 53 Donchev Donchev Doncho Doncho Karakashev Karakashev Hristo Hristo 2004 Temi po fizicheska i socialno ikonomicheska geografiya na Blgariya Topics on Physical and Social Economic Geography of Bulgaria in Bulgarian Sofia Ciela pp 128 129 ISBN 954 649 717 7 Bonow Johan M 2009 atlantens kustberg och hogslatter gamla eller unga PDF www geografitorget se in Swedish Geografilararnas Riksforening Green Paul F Lidmar Bergstrom Karna Japsen Peter Bonow Johan M Chalmers James A 2013 Stratigraphic landscape analysis thermochronology and the episodic development of elevated passive continental margins Geological Survey of Denmark and Greenland Bulletin 30 18 doi 10 34194 geusb v30 4673 Japsen Peter Chalmers James A Green Paul F Bonow Johan M 2012 Elevated passive continental margins Not rift shoulders but expressions of episodic post rift burial and exhumation Global and Planetary Change 90 91 73 86 Bibcode 2012GPC 90 73J doi 10 1016 j gloplacha 2011 05 004 Loseth and Hendriksen 2005 Y Niu amp MJ O Hara 2004 Chapter 7 Mantle plumes are NOT from ancient oceanic crust In Roger Hekinian Peter Stoffers amp Jean Louis Cheminee eds Oceanic hotspots intraplate submarine magmatism and tectonism Springer p 239 ff ISBN 978 3 540 40859 8 AB Watts 2001 7 2 Extensional tectonics and rifting Isostasy and flexure of the lithosphere Cambridge University Press p 295 ISBN 978 0 521 00600 2 GD Karner amp NW Driscoll 1999 Style timing and distribution of tectonic deformation across the Exmouth Plateau northwest Australia determined from stratal architecture and quantitative basin modelling In Conall Mac Niocaill amp Paul Desmond Ryan eds Continental tectonics Geological society p 280 ISBN 978 1 86239 051 5 External links EditNASA Goddard Planetary Geodynamics Laboratory NASA Goddard Planetary Geodynamics Laboratory Volcanology Research Rotating globe showing areas of earthquake activity Retrieved from https en wikipedia org w index php title Mountain formation amp oldid 1144586034, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.