fbpx
Wikipedia

Mixture distribution

In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized. The underlying random variables may be random real numbers, or they may be random vectors (each having the same dimension), in which case the mixture distribution is a multivariate distribution.

In cases where each of the underlying random variables is continuous, the outcome variable will also be continuous and its probability density function is sometimes referred to as a mixture density. The cumulative distribution function (and the probability density function if it exists) can be expressed as a convex combination (i.e. a weighted sum, with non-negative weights that sum to 1) of other distribution functions and density functions. The individual distributions that are combined to form the mixture distribution are called the mixture components, and the probabilities (or weights) associated with each component are called the mixture weights. The number of components in a mixture distribution is often restricted to being finite, although in some cases the components may be countably infinite in number. More general cases (i.e. an uncountable set of component distributions), as well as the countable case, are treated under the title of compound distributions.

A distinction needs to be made between a random variable whose distribution function or density is the sum of a set of components (i.e. a mixture distribution) and a random variable whose value is the sum of the values of two or more underlying random variables, in which case the distribution is given by the convolution operator. As an example, the sum of two jointly normally distributed random variables, each with different means, will still have a normal distribution. On the other hand, a mixture density created as a mixture of two normal distributions with different means will have two peaks provided that the two means are far enough apart, showing that this distribution is radically different from a normal distribution.

Mixture distributions arise in many contexts in the literature and arise naturally where a statistical population contains two or more subpopulations. They are also sometimes used as a means of representing non-normal distributions. Data analysis concerning statistical models involving mixture distributions is discussed under the title of mixture models, while the present article concentrates on simple probabilistic and statistical properties of mixture distributions and how these relate to properties of the underlying distributions.

Finite and countable mixtures edit

 
Density of a mixture of three normal distributions (μ = 5, 10, 15, σ = 2) with equal weights. Each component is shown as a weighted density (each integrating to 1/3)

Given a finite set of probability density functions p1(x), ..., pn(x), or corresponding cumulative distribution functions P1(x), ..., Pn(x) and weights w1, ..., wn such that wi ≥ 0 and Σwi = 1, the mixture distribution can be represented by writing either the density, f, or the distribution function, F, as a sum (which in both cases is a convex combination):

 
 

This type of mixture, being a finite sum, is called a finite mixture, and in applications, an unqualified reference to a "mixture density" usually means a finite mixture. The case of a countably infinite set of components is covered formally by allowing   .

Uncountable mixtures edit

Where the set of component distributions is uncountable, the result is often called a compound probability distribution. The construction of such distributions has a formal similarity to that of mixture distributions, with either infinite summations or integrals replacing the finite summations used for finite mixtures.

Consider a probability density function p(x;a) for a variable x, parameterized by a. That is, for each value of a in some set A, p(x;a) is a probability density function with respect to x. Given a probability density function w (meaning that w is nonnegative and integrates to 1), the function

 

is again a probability density function for x. A similar integral can be written for the cumulative distribution function. Note that the formulae here reduce to the case of a finite or infinite mixture if the density w is allowed to be a generalized function representing the "derivative" of the cumulative distribution function of a discrete distribution.

Mixtures within a parametric family edit

The mixture components are often not arbitrary probability distributions, but instead are members of a parametric family (such as normal distributions), with different values for a parameter or parameters. In such cases, assuming that it exists, the density can be written in the form of a sum as:

 

for one parameter, or

 

for two parameters, and so forth.

Properties edit

Convexity edit

A general linear combination of probability density functions is not necessarily a probability density, since it may be negative or it may integrate to something other than 1. However, a convex combination of probability density functions preserves both of these properties (non-negativity and integrating to 1), and thus mixture densities are themselves probability density functions.

Moments edit

Let X1, ..., Xn denote random variables from the n component distributions, and let X denote a random variable from the mixture distribution. Then, for any function H(·) for which   exists, and assuming that the component densities pi(x) exist,

 

The jth moment about zero (i.e. choosing H(x) = xj) is simply a weighted average of the jth moments of the components. Moments about the mean H(x) = (x − μ)j involve a binomial expansion:[1]

 

where μi denotes the mean of the ith component.

In the case of a mixture of one-dimensional distributions with weights wi, means μi and variances σi2, the total mean and variance will be:

 
 

These relations highlight the potential of mixture distributions to display non-trivial higher-order moments such as skewness and kurtosis (fat tails) and multi-modality, even in the absence of such features within the components themselves. Marron and Wand (1992) give an illustrative account of the flexibility of this framework.[2]

Modes edit

The question of multimodality is simple for some cases, such as mixtures of exponential distributions: all such mixtures are unimodal.[3] However, for the case of mixtures of normal distributions, it is a complex one. Conditions for the number of modes in a multivariate normal mixture are explored by Ray & Lindsay[4] extending earlier work on univariate[5][6] and multivariate[7] distributions.

Here the problem of evaluation of the modes of an n component mixture in a D dimensional space is reduced to identification of critical points (local minima, maxima and saddle points) on a manifold referred to as the ridgeline surface, which is the image of the ridgeline function

 

where   belongs to the  -dimensional standard simplex:   and   correspond to the covariance and mean of the ith component. Ray & Lindsay[4] consider the case in which   showing a one-to-one correspondence of modes of the mixture and those on the ridge elevation function   thus one may identify the modes by solving   with respect to   and determining the value  .

Using graphical tools, the potential multi-modality of mixtures with number of components   is demonstrated; in particular it is shown that the number of modes may exceed   and that the modes may not be coincident with the component means. For two components they develop a graphical tool for analysis by instead solving the aforementioned differential with respect to the first mixing weight   (which also determines the second mixing weight through  ) and expressing the solutions as a function   so that the number and location of modes for a given value of   corresponds to the number of intersections of the graph on the line  . This in turn can be related to the number of oscillations of the graph and therefore to solutions of   leading to an explicit solution for the case of a two component mixture with   (sometimes called a homoscedastic mixture) given by

 

where   is the Mahalanobis distance between   and  .

Since the above is quadratic it follows that in this instance there are at most two modes irrespective of the dimension or the weights.

For normal mixtures with general   and  , a lower bound for the maximum number of possible modes, and – conditionally on the assumption that the maximum number is finite – an upper bound are known. For those combinations of   and   for which the maximum number is known, it matches the lower bound.[8]

Examples edit

Two normal distributions edit

Simple examples can be given by a mixture of two normal distributions. (See Multimodal distribution#Mixture of two normal distributions for more details.)

Given an equal (50/50) mixture of two normal distributions with the same standard deviation and different means (homoscedastic), the overall distribution will exhibit low kurtosis relative to a single normal distribution – the means of the subpopulations fall on the shoulders of the overall distribution. If sufficiently separated, namely by twice the (common) standard deviation, so   these form a bimodal distribution, otherwise it simply has a wide peak.[9] The variation of the overall population will also be greater than the variation of the two subpopulations (due to spread from different means), and thus exhibits overdispersion relative to a normal distribution with fixed variation   though it will not be overdispersed relative to a normal distribution with variation equal to variation of the overall population.

Alternatively, given two subpopulations with the same mean and different standard deviations, the overall population will exhibit high kurtosis, with a sharper peak and heavier tails (and correspondingly shallower shoulders) than a single distribution.

A normal and a Cauchy distribution edit

The following example is adapted from Hampel,[10] who credits John Tukey.

Consider the mixture distribution defined by

F(x)   =   (1 − 10−10) (standard normal) + 10−10 (standard Cauchy).

The mean of i.i.d. observations from F(x) behaves "normally" except for exorbitantly large samples, although the mean of F(x) does not even exist.

Applications edit

Mixture densities are complicated densities expressible in terms of simpler densities (the mixture components), and are used both because they provide a good model for certain data sets (where different subsets of the data exhibit different characteristics and can best be modeled separately), and because they can be more mathematically tractable, because the individual mixture components can be more easily studied than the overall mixture density.

Mixture densities can be used to model a statistical population with subpopulations, where the mixture components are the densities on the subpopulations, and the weights are the proportions of each subpopulation in the overall population.

Mixture densities can also be used to model experimental error or contamination – one assumes that most of the samples measure the desired phenomenon, with some samples from a different, erroneous distribution.

Parametric statistics that assume no error often fail on such mixture densities – for example, statistics that assume normality often fail disastrously in the presence of even a few outliers – and instead one uses robust statistics.

In meta-analysis of separate studies, study heterogeneity causes distribution of results to be a mixture distribution, and leads to overdispersion of results relative to predicted error. For example, in a statistical survey, the margin of error (determined by sample size) predicts the sampling error and hence dispersion of results on repeated surveys. The presence of study heterogeneity (studies have different sampling bias) increases the dispersion relative to the margin of error.

See also edit

Mixture edit

Hierarchical models edit

Notes edit

  1. ^ Frühwirth-Schnatter (2006, Ch.1.2.4)
  2. ^ Marron, J. S.; Wand, M. P. (1992). "Exact Mean Integrated Squared Error". The Annals of Statistics. 20 (2): 712–736. doi:10.1214/aos/1176348653., http://projecteuclid.org/euclid.aos/1176348653
  3. ^ Frühwirth-Schnatter (2006, Ch.1)
  4. ^ a b Ray, R.; Lindsay, B. (2005), "The topography of multivariate normal mixtures", The Annals of Statistics, 33 (5): 2042–2065, arXiv:math/0602238, doi:10.1214/009053605000000417
  5. ^ Robertson CA, Fryer JG (1969) Some descriptive properties of normal mixtures. Skand Aktuarietidskr 137–146
  6. ^ Behboodian, J (1970). "On the modes of a mixture of two normal distributions". Technometrics. 12: 131–139. doi:10.2307/1267357. JSTOR 1267357.
  7. ^ Carreira-Perpiñán, M Á; Williams, C (2003). On the modes of a Gaussian mixture (PDF). Published as: Lecture Notes in Computer Science 2695. Springer-Verlag. pp. 625–640. doi:10.1007/3-540-44935-3_44. ISSN 0302-9743.
  8. ^ Améndola, C.; Engström, A.; Haase, C. (2020), "Maximum number of modes of Gaussian mixtures", Information and Inference: A Journal of the IMA, 9 (3): 587–600, arXiv:1702.05066, doi:10.1093/imaiai/iaz013
  9. ^ Schilling, Mark F.; Watkins, Ann E.; Watkins, William (2002). "Is human height bimodal?". The American Statistician. 56 (3): 223–229. doi:10.1198/00031300265.
  10. ^ Hampel, Frank (1998), "Is statistics too difficult?", Canadian Journal of Statistics, 26: 497–513, doi:10.2307/3315772, hdl:20.500.11850/145503

References edit

  • Frühwirth-Schnatter, Sylvia (2006), Finite Mixture and Markov Switching Models, Springer, ISBN 978-1-4419-2194-9
  • Lindsay, Bruce G. (1995), Mixture models: theory, geometry and applications, NSF-CBMS Regional Conference Series in Probability and Statistics, vol. 5, Hayward, CA, USA: Institute of Mathematical Statistics, ISBN 0-940600-32-3, JSTOR 4153184
  • Seidel, Wilfried (2010), "Mixture models", in Lovric, M. (ed.), International Encyclopedia of Statistical Science, Heidelberg: Springer, pp. 827–829, arXiv:0909.0389, doi:10.1007/978-3-642-04898-2, ISBN 978-3-642-04898-2

mixture, distribution, also, mixture, model, compound, probability, distribution, probability, statistics, mixture, distribution, probability, distribution, random, variable, that, derived, from, collection, other, random, variables, follows, first, random, va. See also Mixture model and Compound probability distribution In probability and statistics a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows first a random variable is selected by chance from the collection according to given probabilities of selection and then the value of the selected random variable is realized The underlying random variables may be random real numbers or they may be random vectors each having the same dimension in which case the mixture distribution is a multivariate distribution In cases where each of the underlying random variables is continuous the outcome variable will also be continuous and its probability density function is sometimes referred to as a mixture density The cumulative distribution function and the probability density function if it exists can be expressed as a convex combination i e a weighted sum with non negative weights that sum to 1 of other distribution functions and density functions The individual distributions that are combined to form the mixture distribution are called the mixture components and the probabilities or weights associated with each component are called the mixture weights The number of components in a mixture distribution is often restricted to being finite although in some cases the components may be countably infinite in number More general cases i e an uncountable set of component distributions as well as the countable case are treated under the title of compound distributions A distinction needs to be made between a random variable whose distribution function or density is the sum of a set of components i e a mixture distribution and a random variable whose value is the sum of the values of two or more underlying random variables in which case the distribution is given by the convolution operator As an example the sum of two jointly normally distributed random variables each with different means will still have a normal distribution On the other hand a mixture density created as a mixture of two normal distributions with different means will have two peaks provided that the two means are far enough apart showing that this distribution is radically different from a normal distribution Mixture distributions arise in many contexts in the literature and arise naturally where a statistical population contains two or more subpopulations They are also sometimes used as a means of representing non normal distributions Data analysis concerning statistical models involving mixture distributions is discussed under the title of mixture models while the present article concentrates on simple probabilistic and statistical properties of mixture distributions and how these relate to properties of the underlying distributions Contents 1 Finite and countable mixtures 2 Uncountable mixtures 3 Mixtures within a parametric family 4 Properties 4 1 Convexity 4 2 Moments 4 3 Modes 5 Examples 5 1 Two normal distributions 5 2 A normal and a Cauchy distribution 6 Applications 7 See also 7 1 Mixture 7 2 Hierarchical models 8 Notes 9 ReferencesFinite and countable mixtures edit nbsp Density of a mixture of three normal distributions m 5 10 15 s 2 with equal weights Each component is shown as a weighted density each integrating to 1 3 Given a finite set of probability density functions p1 x pn x or corresponding cumulative distribution functions P1 x Pn x and weights w1 wn such that wi 0 and Swi 1 the mixture distribution can be represented by writing either the density f or the distribution function F as a sum which in both cases is a convex combination F x i 1 n w i P i x displaystyle F x sum i 1 n w i P i x nbsp f x i 1 n w i p i x displaystyle f x sum i 1 n w i p i x nbsp This type of mixture being a finite sum is called a finite mixture and in applications an unqualified reference to a mixture density usually means a finite mixture The case of a countably infinite set of components is covered formally by allowing n displaystyle n infty nbsp Uncountable mixtures editMain article Compound distribution Where the set of component distributions is uncountable the result is often called a compound probability distribution The construction of such distributions has a formal similarity to that of mixture distributions with either infinite summations or integrals replacing the finite summations used for finite mixtures Consider a probability density function p x a for a variable x parameterized by a That is for each value of a in some set A p x a is a probability density function with respect to x Given a probability density function w meaning that w is nonnegative and integrates to 1 the function f x A w a p x a d a displaystyle f x int A w a p x a da nbsp is again a probability density function for x A similar integral can be written for the cumulative distribution function Note that the formulae here reduce to the case of a finite or infinite mixture if the density w is allowed to be a generalized function representing the derivative of the cumulative distribution function of a discrete distribution Mixtures within a parametric family editThe mixture components are often not arbitrary probability distributions but instead are members of a parametric family such as normal distributions with different values for a parameter or parameters In such cases assuming that it exists the density can be written in the form of a sum as f x a 1 a n i 1 n w i p x a i displaystyle f x a 1 ldots a n sum i 1 n w i p x a i nbsp for one parameter or f x a 1 a n b 1 b n i 1 n w i p x a i b i displaystyle f x a 1 ldots a n b 1 ldots b n sum i 1 n w i p x a i b i nbsp for two parameters and so forth Properties editConvexity edit A general linear combination of probability density functions is not necessarily a probability density since it may be negative or it may integrate to something other than 1 However a convex combination of probability density functions preserves both of these properties non negativity and integrating to 1 and thus mixture densities are themselves probability density functions Moments edit Let X1 Xn denote random variables from the n component distributions and let X denote a random variable from the mixture distribution Then for any function H for which E H X i displaystyle operatorname E H X i nbsp exists and assuming that the component densities pi x exist E H X H x i 1 n w i p i x d x i 1 n w i p i x H x d x i 1 n w i E H X i displaystyle begin aligned operatorname E H X amp int infty infty H x sum i 1 n w i p i x dx amp sum i 1 n w i int infty infty p i x H x dx sum i 1 n w i operatorname E H X i end aligned nbsp The jth moment about zero i e choosing H x xj is simply a weighted average of the jth moments of the components Moments about the mean H x x m j involve a binomial expansion 1 E X m j i 1 n w i E X i m i m i m j i 1 n w i k 0 j j k m i m j k E X i m i k displaystyle begin aligned operatorname E X mu j amp sum i 1 n w i operatorname E X i mu i mu i mu j amp sum i 1 n w i sum k 0 j left begin array c j k end array right mu i mu j k operatorname E X i mu i k end aligned nbsp where mi denotes the mean of the ith component In the case of a mixture of one dimensional distributions with weights wi means mi and variances si2 the total mean and variance will be E X m i 1 n w i m i displaystyle operatorname E X mu sum i 1 n w i mu i nbsp E X m 2 s 2 E X 2 m 2 s t a n d a r d v a r i a n c e r e f o r m u l a t i o n i 1 n w i E X i 2 m 2 i 1 n w i s i 2 m i 2 m 2 f r o m s i 2 E X i 2 m i 2 t h e r e f o r e E X i 2 s i 2 m i 2 displaystyle begin aligned operatorname E X mu 2 amp sigma 2 amp operatorname E X 2 mu 2 amp mathrm standard mathrm variance mathrm reformulation amp left sum i 1 n w i operatorname E X i 2 right mu 2 amp sum i 1 n w i sigma i 2 mu i 2 mu 2 amp mathrm from sigma i 2 operatorname E X i 2 mu i 2 mathrm therefore operatorname E X i 2 sigma i 2 mu i 2 end aligned nbsp These relations highlight the potential of mixture distributions to display non trivial higher order moments such as skewness and kurtosis fat tails and multi modality even in the absence of such features within the components themselves Marron and Wand 1992 give an illustrative account of the flexibility of this framework 2 Modes edit The question of multimodality is simple for some cases such as mixtures of exponential distributions all such mixtures are unimodal 3 However for the case of mixtures of normal distributions it is a complex one Conditions for the number of modes in a multivariate normal mixture are explored by Ray amp Lindsay 4 extending earlier work on univariate 5 6 and multivariate 7 distributions Here the problem of evaluation of the modes of an n component mixture in a D dimensional space is reduced to identification of critical points local minima maxima and saddle points on a manifold referred to as the ridgeline surface which is the image of the ridgeline function x a i 1 n a i S i 1 1 i 1 n a i S i 1 m i displaystyle x alpha left sum i 1 n alpha i Sigma i 1 right 1 times left sum i 1 n alpha i Sigma i 1 mu i right nbsp where a displaystyle alpha nbsp belongs to the n 1 displaystyle n 1 nbsp dimensional standard simplex S n a R n a i 0 1 i 1 n a i 1 displaystyle mathcal S n alpha in mathbb R n alpha i in 0 1 sum i 1 n alpha i 1 nbsp and S i R D D m i R D displaystyle Sigma i in R D times D mu i in R D nbsp correspond to the covariance and mean of the ith component Ray amp Lindsay 4 consider the case in which n 1 lt D displaystyle n 1 lt D nbsp showing a one to one correspondence of modes of the mixture and those on the ridge elevation function h a q x a displaystyle h alpha q x alpha nbsp thus one may identify the modes by solving d h a d a 0 displaystyle frac dh alpha d alpha 0 nbsp with respect to a displaystyle alpha nbsp and determining the value x a displaystyle x alpha nbsp Using graphical tools the potential multi modality of mixtures with number of components n 2 3 displaystyle n in 2 3 nbsp is demonstrated in particular it is shown that the number of modes may exceed n displaystyle n nbsp and that the modes may not be coincident with the component means For two components they develop a graphical tool for analysis by instead solving the aforementioned differential with respect to the first mixing weight w 1 displaystyle w 1 nbsp which also determines the second mixing weight through w 2 1 w 1 displaystyle w 2 1 w 1 nbsp and expressing the solutions as a function P a a 0 1 displaystyle Pi alpha alpha in 0 1 nbsp so that the number and location of modes for a given value of w 1 displaystyle w 1 nbsp corresponds to the number of intersections of the graph on the line P a w 1 displaystyle Pi alpha w 1 nbsp This in turn can be related to the number of oscillations of the graph and therefore to solutions of d P a d a 0 displaystyle frac d Pi alpha d alpha 0 nbsp leading to an explicit solution for the case of a two component mixture with S 1 S 2 S displaystyle Sigma 1 Sigma 2 Sigma nbsp sometimes called a homoscedastic mixture given by 1 a 1 a d M m 1 m 2 S 2 displaystyle 1 alpha 1 alpha d M mu 1 mu 2 Sigma 2 nbsp where d M m 1 m 2 S m 2 m 1 T S 1 m 2 m 1 displaystyle d M mu 1 mu 2 Sigma sqrt mu 2 mu 1 T Sigma 1 mu 2 mu 1 nbsp is the Mahalanobis distance between m 1 displaystyle mu 1 nbsp and m 2 displaystyle mu 2 nbsp Since the above is quadratic it follows that in this instance there are at most two modes irrespective of the dimension or the weights For normal mixtures with general n gt 2 displaystyle n gt 2 nbsp and D gt 1 displaystyle D gt 1 nbsp a lower bound for the maximum number of possible modes and conditionally on the assumption that the maximum number is finite an upper bound are known For those combinations of n displaystyle n nbsp and D displaystyle D nbsp for which the maximum number is known it matches the lower bound 8 Examples editTwo normal distributions edit Simple examples can be given by a mixture of two normal distributions See Multimodal distribution Mixture of two normal distributions for more details Given an equal 50 50 mixture of two normal distributions with the same standard deviation and different means homoscedastic the overall distribution will exhibit low kurtosis relative to a single normal distribution the means of the subpopulations fall on the shoulders of the overall distribution If sufficiently separated namely by twice the common standard deviation so m 1 m 2 gt 2 s displaystyle left mu 1 mu 2 right gt 2 sigma nbsp these form a bimodal distribution otherwise it simply has a wide peak 9 The variation of the overall population will also be greater than the variation of the two subpopulations due to spread from different means and thus exhibits overdispersion relative to a normal distribution with fixed variation s displaystyle sigma nbsp though it will not be overdispersed relative to a normal distribution with variation equal to variation of the overall population Alternatively given two subpopulations with the same mean and different standard deviations the overall population will exhibit high kurtosis with a sharper peak and heavier tails and correspondingly shallower shoulders than a single distribution nbsp Univariate mixture distribution showing bimodal distribution nbsp Multivariate mixture distribution showing four modes A normal and a Cauchy distribution edit The following example is adapted from Hampel 10 who credits John Tukey Consider the mixture distribution defined by F x 1 10 10 standard normal 10 10 standard Cauchy The mean of i i d observations from F x behaves normally except for exorbitantly large samples although the mean of F x does not even exist Applications editFurther information Mixture model Mixture densities are complicated densities expressible in terms of simpler densities the mixture components and are used both because they provide a good model for certain data sets where different subsets of the data exhibit different characteristics and can best be modeled separately and because they can be more mathematically tractable because the individual mixture components can be more easily studied than the overall mixture density Mixture densities can be used to model a statistical population with subpopulations where the mixture components are the densities on the subpopulations and the weights are the proportions of each subpopulation in the overall population Mixture densities can also be used to model experimental error or contamination one assumes that most of the samples measure the desired phenomenon with some samples from a different erroneous distribution Parametric statistics that assume no error often fail on such mixture densities for example statistics that assume normality often fail disastrously in the presence of even a few outliers and instead one uses robust statistics In meta analysis of separate studies study heterogeneity causes distribution of results to be a mixture distribution and leads to overdispersion of results relative to predicted error For example in a statistical survey the margin of error determined by sample size predicts the sampling error and hence dispersion of results on repeated surveys The presence of study heterogeneity studies have different sampling bias increases the dispersion relative to the margin of error See also editCompound distribution Contaminated normal distribution Convex combination Expectation maximization EM algorithm Not to be confused with list of convolutions of probability distributions Product distribution Mixture edit Mixture probability Mixture model Hierarchical models edit Graphical model Hierarchical Bayes modelNotes edit Fruhwirth Schnatter 2006 Ch 1 2 4 Marron J S Wand M P 1992 Exact Mean Integrated Squared Error The Annals of Statistics 20 2 712 736 doi 10 1214 aos 1176348653 http projecteuclid org euclid aos 1176348653 Fruhwirth Schnatter 2006 Ch 1 a b Ray R Lindsay B 2005 The topography of multivariate normal mixtures The Annals of Statistics 33 5 2042 2065 arXiv math 0602238 doi 10 1214 009053605000000417 Robertson CA Fryer JG 1969 Some descriptive properties of normal mixtures Skand Aktuarietidskr 137 146 Behboodian J 1970 On the modes of a mixture of two normal distributions Technometrics 12 131 139 doi 10 2307 1267357 JSTOR 1267357 Carreira Perpinan M A Williams C 2003 On the modes of a Gaussian mixture PDF Published as Lecture Notes in Computer Science 2695 Springer Verlag pp 625 640 doi 10 1007 3 540 44935 3 44 ISSN 0302 9743 Amendola C Engstrom A Haase C 2020 Maximum number of modes of Gaussian mixtures Information and Inference A Journal of the IMA 9 3 587 600 arXiv 1702 05066 doi 10 1093 imaiai iaz013 Schilling Mark F Watkins Ann E Watkins William 2002 Is human height bimodal The American Statistician 56 3 223 229 doi 10 1198 00031300265 Hampel Frank 1998 Is statistics too difficult Canadian Journal of Statistics 26 497 513 doi 10 2307 3315772 hdl 20 500 11850 145503References editFruhwirth Schnatter Sylvia 2006 Finite Mixture and Markov Switching Models Springer ISBN 978 1 4419 2194 9 Lindsay Bruce G 1995 Mixture models theory geometry and applications NSF CBMS Regional Conference Series in Probability and Statistics vol 5 Hayward CA USA Institute of Mathematical Statistics ISBN 0 940600 32 3 JSTOR 4153184 Seidel Wilfried 2010 Mixture models in Lovric M ed International Encyclopedia of Statistical Science Heidelberg Springer pp 827 829 arXiv 0909 0389 doi 10 1007 978 3 642 04898 2 ISBN 978 3 642 04898 2 Retrieved from https en wikipedia org w index php title Mixture distribution amp oldid 1192498928, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.