fbpx
Wikipedia

Homoscedasticity and heteroscedasticity

In statistics, a sequence (or a vector) of random variables is homoscedastic (/ˌhmskəˈdæstɪk/) if all its random variables have the same finite variance; this is also known as homogeneity of variance. The complementary notion is called heteroscedasticity, also known as heterogeneity of variance. The spellings homoskedasticity and heteroskedasticity are also frequently used.[1][2][3] Assuming a variable is homoscedastic when in reality it is heteroscedastic (/ˌhɛtərskəˈdæstɪk/) results in unbiased but inefficient point estimates and in biased estimates of standard errors, and may result in overestimating the goodness of fit as measured by the Pearson coefficient.

Plot with random data showing homoscedasticity: at each value of x, the y-value of the dots has about the same variance.
Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increase with increasing values of x.

The existence of heteroscedasticity is a major concern in regression analysis and the analysis of variance, as it invalidates statistical tests of significance that assume that the modelling errors all have the same variance. While the ordinary least squares estimator is still unbiased in the presence of heteroscedasticity, it is inefficient and inference based on the assumption of homoskedasticity is misleading. In that case, generalized least squares (GLS) was frequently used in the past.[4][5] Nowadays, standard practice in econometrics is to include Heteroskedasticity-consistent standard errors instead of using GLS, as GLS can exhibit strong bias in small samples if the actual Skedastic function is unknown.[6]

Because heteroscedasticity concerns expectations of the second moment of the errors, its presence is referred to as misspecification of the second order.[7]

The econometrician Robert Engle was awarded the 2003 Nobel Memorial Prize for Economics for his studies on regression analysis in the presence of heteroscedasticity, which led to his formulation of the autoregressive conditional heteroscedasticity (ARCH) modeling technique.[8]

Definition Edit

Consider the linear regression equation   where the dependent random variable   equals the deterministic variable   times coefficient   plus a random disturbance term   that has mean zero. The disturbances are homoscedastic if the variance of   is a constant  ; otherwise, they are heteroscedastic. In particular, the disturbances are heteroscedastic if the variance of   depends on   or on the value of  . One way they might be heteroscedastic is if   (an example of a scedastic function), so the variance is proportional to the value of  .

More generally, if the variance-covariance matrix of disturbance   across   has a nonconstant diagonal, the disturbance is heteroscedastic.[9] The matrices below are covariances when there are just three observations across time. The disturbance in matrix A is homoscedastic; this is the simple case where OLS is the best linear unbiased estimator. The disturbances in matrices B and C are heteroscedastic. In matrix B, the variance is time-varying, increasing steadily across time; in matrix C, the variance depends on the value of  . The disturbance in matrix D is homoscedastic because the diagonal variances are constant, even though the off-diagonal covariances are non-zero and ordinary least squares is inefficient for a different reason: serial correlation.

 

Examples Edit

Heteroscedasticity often occurs when there is a large difference among the sizes of the observations.

A classic example of heteroscedasticity is that of income versus expenditure on meals. A wealthy person may eat inexpensive food sometimes and expensive food at other times. A poor person will almost always eat inexpensive food. Therefore, people with higher incomes exhibit greater variability in expenditures on food.

At a rocket launch, an observer measures the distance traveled by the rocket once per second. In the first couple of seconds, the measurements may be accurate to the nearest centimeter. After five minutes, the accuracy of the measurements may be good only to 100 m, because of the increased distance, atmospheric distortion, and a variety of other factors. So the measurements of distance may exhibit heteroscedasticity.

Consequences Edit

One of the assumptions of the classical linear regression model is that there is no heteroscedasticity. Breaking this assumption means that the Gauss–Markov theorem does not apply, meaning that OLS estimators are not the Best Linear Unbiased Estimators (BLUE) and their variance is not the lowest of all other unbiased estimators. Heteroscedasticity does not cause ordinary least squares coefficient estimates to be biased, although it can cause ordinary least squares estimates of the variance (and, thus, standard errors) of the coefficients to be biased, possibly above or below the true of population variance. Thus, regression analysis using heteroscedastic data will still provide an unbiased estimate for the relationship between the predictor variable and the outcome, but standard errors and therefore inferences obtained from data analysis are suspect. Biased standard errors lead to biased inference, so results of hypothesis tests are possibly wrong. For example, if OLS is performed on a heteroscedastic data set, yielding biased standard error estimation, a researcher might fail to reject a null hypothesis at a given significance level, when that null hypothesis was actually uncharacteristic of the actual population (making a type II error).

Under certain assumptions, the OLS estimator has a normal asymptotic distribution when properly normalized and centered (even when the data does not come from a normal distribution). This result is used to justify using a normal distribution, or a chi square distribution (depending on how the test statistic is calculated), when conducting a hypothesis test. This holds even under heteroscedasticity. More precisely, the OLS estimator in the presence of heteroscedasticity is asymptotically normal, when properly normalized and centered, with a variance-covariance matrix that differs from the case of homoscedasticity. In 1980, White proposed a consistent estimator for the variance-covariance matrix of the asymptotic distribution of the OLS estimator.[2] This validates the use of hypothesis testing using OLS estimators and White's variance-covariance estimator under heteroscedasticity.

Heteroscedasticity is also a major practical issue encountered in ANOVA problems.[10] The F test can still be used in some circumstances.[11]

However, it has been said that students in econometrics should not overreact to heteroscedasticity.[3] One author wrote, "unequal error variance is worth correcting only when the problem is severe."[12] In addition, another word of caution was in the form, "heteroscedasticity has never been a reason to throw out an otherwise good model."[3][13] With the advent of heteroscedasticity-consistent standard errors allowing for inference without specifying the conditional second moment of error term, testing conditional homoscedasticity is not as important as in the past.[6]

For any non-linear model (for instance Logit and Probit models), however, heteroscedasticity has more severe consequences: the maximum likelihood estimates (MLE) of the parameters will usually be biased, as well as inconsistent (unless the likelihood function is modified to correctly take into account the precise form of heteroscedasticity or the distribution is a member of the linear exponential family and the conditional expectation function is correctly specified).[14][15] Yet, in the context of binary choice models (Logit or Probit), heteroscedasticity will only result in a positive scaling effect on the asymptotic mean of the misspecified MLE (i.e. the model that ignores heteroscedasticity).[16] As a result, the predictions which are based on the misspecified MLE will remain correct. In addition, the misspecified Probit and Logit MLE will be asymptotically normally distributed which allows performing the usual significance tests (with the appropriate variance-covariance matrix). However, regarding the general hypothesis testing, as pointed out by Greene, “simply computing a robust covariance matrix for an otherwise inconsistent estimator does not give it redemption. Consequently, the virtue of a robust covariance matrix in this setting is unclear.”[17]

Correction Edit

There are several common corrections for heteroscedasticity. They are:

  • A stabilizing transformation of the data, e.g. logarithmized data. Non-logarithmized series that are growing exponentially often appear to have increasing variability as the series rises over time. The variability in percentage terms may, however, be rather stable.
  • Use a different specification for the model (different X variables, or perhaps non-linear transformations of the X variables).
  • Apply a weighted least squares estimation method, in which OLS is applied to transformed or weighted values of X and Y. The weights vary over observations, usually depending on the changing error variances. In one variation the weights are directly related to the magnitude of the dependent variable, and this corresponds to least squares percentage regression.[18]
  • Heteroscedasticity-consistent standard errors (HCSE), while still biased, improve upon OLS estimates.[2] HCSE is a consistent estimator of standard errors in regression models with heteroscedasticity. This method corrects for heteroscedasticity without altering the values of the coefficients. This method may be superior to regular OLS because if heteroscedasticity is present it corrects for it, however, if the data is homoscedastic, the standard errors are equivalent to conventional standard errors estimated by OLS. Several modifications of the White method of computing heteroscedasticity-consistent standard errors have been proposed as corrections with superior finite sample properties.
  • Wild bootstrapping can be used as a Resampling method that respects the differences in the conditional variance of the error term. An alternative is resampling observations instead of errors. Note resampling errors without respect for the affiliated values of the observation enforces homoskedasticity and thus yields incorrect inference.
  • Use MINQUE or even the customary estimators   (for   independent samples with   observations each), whose efficiency losses are not substantial when the number of observations per sample is large ( ), especially for small number of independent samples.[19]

Testing Edit

 
Absolute value of residuals for simulated first order heteroscedastic data

Residuals can be tested for homoscedasticity using the Breusch–Pagan test,[20] which performs an auxiliary regression of the squared residuals on the independent variables. From this auxiliary regression, the explained sum of squares is retained, divided by two, and then becomes the test statistic for a chi-squared distribution with the degrees of freedom equal to the number of independent variables.[21] The null hypothesis of this chi-squared test is homoscedasticity, and the alternative hypothesis would indicate heteroscedasticity. Since the Breusch–Pagan test is sensitive to departures from normality or small sample sizes, the Koenker–Bassett or 'generalized Breusch–Pagan' test is commonly used instead.[22][additional citation(s) needed] From the auxiliary regression, it retains the R-squared value which is then multiplied by the sample size, and then becomes the test statistic for a chi-squared distribution (and uses the same degrees of freedom). Although it is not necessary for the Koenker–Bassett test, the Breusch–Pagan test requires that the squared residuals also be divided by the residual sum of squares divided by the sample size.[22] Testing for groupwise heteroscedasticity can be done with the Goldfeld–Quandt test.[23]

Due to the standard use of heteroskedasticity-consistent Standard Errors and the problem of Pre-test, econometricians nowadays rarely use tests for conditional heteroskedasticity.[6]

List of tests Edit

Although tests for heteroscedasticity between groups can formally be considered as a special case of testing within regression models, some tests have structures specific to this case.

Generalisations Edit

Homoscedastic distributions Edit

Two or more normal distributions,   are both homoscedastic and lack Serial correlation if they share the same diagonals in their covariance matrix,   and their non-diagonal entries are zero. Homoscedastic distributions are especially useful to derive statistical pattern recognition and machine learning algorithms. One popular example of an algorithm that assumes homoscedasticity is Fisher's linear discriminant analysis. The concept of homoscedasticity can be applied to distributions on spheres.[27]

Multivariate data Edit

The study of homescedasticity and heteroscedasticity has been generalized to the multivariate case, which deals with the covariances of vector observations instead of the variance of scalar observations. One version of this is to use covariance matrices as the multivariate measure of dispersion. Several authors have considered tests in this context, for both regression and grouped-data situations.[28][29] Bartlett's test for heteroscedasticity between grouped data, used most commonly in the univariate case, has also been extended for the multivariate case, but a tractable solution only exists for 2 groups.[30] Approximations exist for more than two groups, and they are both called Box's M test.

See also Edit

References Edit

  1. ^ For the Greek etymology of the term, see McCulloch, J. Huston (1985). "On Heteros*edasticity". Econometrica. 53 (2): 483. JSTOR 1911250.
  2. ^ a b c d White, Halbert (1980). "A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity". Econometrica. 48 (4): 817–838. CiteSeerX 10.1.1.11.7646. doi:10.2307/1912934. JSTOR 1912934.
  3. ^ a b c Gujarati, D. N.; Porter, D. C. (2009). Basic Econometrics (Fifth ed.). Boston: McGraw-Hill Irwin. p. 400. ISBN 9780073375779.
  4. ^ Goldberger, Arthur S. (1964). Econometric Theory. New York: John Wiley & Sons. pp. 238–243. ISBN 9780471311010.
  5. ^ Johnston, J. (1972). Econometric Methods. New York: McGraw-Hill. pp. 214–221.
  6. ^ a b c Angrist, Joshua D.; Pischke, Jörn-Steffen (2009-12-31). Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University Press. doi:10.1515/9781400829828. ISBN 978-1-4008-2982-8.
  7. ^ Long, J. Scott; Trivedi, Pravin K. (1993). "Some Specification Tests for the Linear Regression Model". In Bollen, Kenneth A.; Long, J. Scott (eds.). Testing Structural Equation Models. London: Sage. pp. 66–110. ISBN 978-0-8039-4506-7.
  8. ^ Engle, Robert F. (July 1982). "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation". Econometrica. 50 (4): 987–1007. doi:10.2307/1912773. ISSN 0012-9682. JSTOR 1912773.
  9. ^ Peter Kennedy, A Guide to Econometrics, 5th edition, p. 137.
  10. ^ Jinadasa, Gamage; Weerahandi, Sam (1998). "Size performance of some tests in one-way anova". Communications in Statistics - Simulation and Computation. 27 (3): 625. doi:10.1080/03610919808813500.
  11. ^ Bathke, A (2004). "The ANOVA F test can still be used in some balanced designs with unequal variances and nonnormal data". Journal of Statistical Planning and Inference. 126 (2): 413–422. doi:10.1016/j.jspi.2003.09.010.
  12. ^ Fox, J. (1997). Applied Regression Analysis, Linear Models, and Related Methods. California: Sage Publications. p. 306. (Cited in Gujarati et al. 2009, p. 400)
  13. ^ Mankiw, N. G. (1990). "A Quick Refresher Course in Macroeconomics". Journal of Economic Literature. 28 (4): 1645–1660 [p. 1648]. doi:10.3386/w3256. JSTOR 2727441.
  14. ^ Giles, Dave (May 8, 2013). "Robust Standard Errors for Nonlinear Models". Econometrics Beat.
  15. ^ Gourieroux, C.; Monfort, A.; Trognon, A. (1984). "Pseudo Maximum Likelihood Methods: Theory". Econometrica. 52 (3): 681–700. doi:10.2307/1913471. ISSN 0012-9682.
  16. ^ Ginker, T.; Lieberman, O. (2017). "Robustness of binary choice models to conditional heteroscedasticity". Economics Letters. 150: 130–134. doi:10.1016/j.econlet.2016.11.024.
  17. ^ Greene, William H. (2012). "Estimation and Inference in Binary Choice Models". Econometric Analysis (Seventh ed.). Boston: Pearson Education. pp. 730–755 [p. 733]. ISBN 978-0-273-75356-8.
  18. ^ Tofallis, C (2008). "Least Squares Percentage Regression". Journal of Modern Applied Statistical Methods. 7: 526–534. doi:10.2139/ssrn.1406472. SSRN 1406472.
  19. ^ J. N. K. Rao (March 1973). "On the Estimation of Heteroscedastic Variances". Biometrics. 29 (1): 11–24. doi:10.2307/2529672. JSTOR 2529672.
  20. ^ Breusch, T. S.; Pagan, A. R. (1979). "A Simple Test for Heteroscedasticity and Random Coefficient Variation". Econometrica. 47 (5): 1287–1294. doi:10.2307/1911963. ISSN 0012-9682. JSTOR 1911963.
  21. ^ Ullah, Muhammad Imdad (2012-07-26). "Breusch Pagan Test for Heteroscedasticity". Basic Statistics and Data Analysis. Retrieved 2020-11-28.
  22. ^ a b Pryce, Gwilym. "Heteroscedasticity: Testing and Correcting in SPSS" (PDF). pp. 12–18. (PDF) from the original on 2017-03-27. Retrieved 26 March 2017.
  23. ^ Baum, Christopher F. (2006). "Stata Tip 38: Testing for Groupwise Heteroskedasticity". The Stata Journal: Promoting Communications on Statistics and Stata. 6 (4): 590–592. doi:10.1177/1536867X0600600412. ISSN 1536-867X. S2CID 117349246.
  24. ^ R. E. Park (1966). "Estimation with Heteroscedastic Error Terms". Econometrica. 34 (4): 888. doi:10.2307/1910108. JSTOR 1910108.
  25. ^ Glejser, H. (1969). "A new test for heteroscedasticity". Journal of the American Statistical Association. 64 (325): 316–323. doi:10.1080/01621459.1969.10500976.
  26. ^ Machado, José A. F.; Silva, J. M. C. Santos (2000). "Glejser's test revisited". Journal of Econometrics. 97 (1): 189–202. doi:10.1016/S0304-4076(00)00016-6.
  27. ^ Hamsici, Onur C.; Martinez, Aleix M. (2007) "Spherical-Homoscedastic Distributions: The Equivalency of Spherical and Normal Distributions in Classification", Journal of Machine Learning Research, 8, 1583-1623
  28. ^ Holgersson, H. E. T.; Shukur, G. (2004). "Testing for multivariate heteroscedasticity". Journal of Statistical Computation and Simulation. 74 (12): 879. doi:10.1080/00949650410001646979. hdl:2077/24416. S2CID 121576769.
  29. ^ Gupta, A. K.; Tang, J. (1984). "Distribution of likelihood ratio statistic for testing equality of covariance matrices of multivariate Gaussian models". Biometrika. 71 (3): 555–559. doi:10.1093/biomet/71.3.555. JSTOR 2336564.
  30. ^ d'Agostino, R. B.; Russell, H. K. (2005). "Multivariate Bartlett Test". Encyclopedia of Biostatistics. doi:10.1002/0470011815.b2a13048. ISBN 978-0470849071.

Further reading Edit

Most statistics textbooks will include at least some material on homoscedasticity and heteroscedasticity. Some examples are:

External links Edit

homoscedasticity, heteroscedasticity, statistics, sequence, vector, random, variables, homoscedastic, random, variables, have, same, finite, variance, this, also, known, homogeneity, variance, complementary, notion, called, heteroscedasticity, also, known, het. In statistics a sequence or a vector of random variables is homoscedastic ˌ h oʊ m oʊ s k e ˈ d ae s t ɪ k if all its random variables have the same finite variance this is also known as homogeneity of variance The complementary notion is called heteroscedasticity also known as heterogeneity of variance The spellings homoskedasticity and heteroskedasticity are also frequently used 1 2 3 Assuming a variable is homoscedastic when in reality it is heteroscedastic ˌ h ɛ t er oʊ s k e ˈ d ae s t ɪ k results in unbiased but inefficient point estimates and in biased estimates of standard errors and may result in overestimating the goodness of fit as measured by the Pearson coefficient Plot with random data showing homoscedasticity at each value of x the y value of the dots has about the same variance Plot with random data showing heteroscedasticity The variance of the y values of the dots increase with increasing values of x The existence of heteroscedasticity is a major concern in regression analysis and the analysis of variance as it invalidates statistical tests of significance that assume that the modelling errors all have the same variance While the ordinary least squares estimator is still unbiased in the presence of heteroscedasticity it is inefficient and inference based on the assumption of homoskedasticity is misleading In that case generalized least squares GLS was frequently used in the past 4 5 Nowadays standard practice in econometrics is to include Heteroskedasticity consistent standard errors instead of using GLS as GLS can exhibit strong bias in small samples if the actual Skedastic function is unknown 6 Because heteroscedasticity concerns expectations of the second moment of the errors its presence is referred to as misspecification of the second order 7 The econometrician Robert Engle was awarded the 2003 Nobel Memorial Prize for Economics for his studies on regression analysis in the presence of heteroscedasticity which led to his formulation of the autoregressive conditional heteroscedasticity ARCH modeling technique 8 Contents 1 Definition 2 Examples 3 Consequences 4 Correction 5 Testing 5 1 List of tests 6 Generalisations 6 1 Homoscedastic distributions 6 2 Multivariate data 7 See also 8 References 9 Further reading 10 External linksDefinition EditConsider the linear regression equation y i x i b i e i i 1 N displaystyle y i x i beta i varepsilon i i 1 ldots N nbsp where the dependent random variable y i displaystyle y i nbsp equals the deterministic variable x i displaystyle x i nbsp times coefficient b displaystyle beta nbsp plus a random disturbance term e i displaystyle varepsilon i nbsp that has mean zero The disturbances are homoscedastic if the variance of e i displaystyle varepsilon i nbsp is a constant s 2 displaystyle sigma 2 nbsp otherwise they are heteroscedastic In particular the disturbances are heteroscedastic if the variance of e i displaystyle varepsilon i nbsp depends on i displaystyle i nbsp or on the value of x i displaystyle x i nbsp One way they might be heteroscedastic is if s i 2 x i s 2 displaystyle sigma i 2 x i sigma 2 nbsp an example of a scedastic function so the variance is proportional to the value of x displaystyle x nbsp More generally if the variance covariance matrix of disturbance e i displaystyle varepsilon i nbsp across i displaystyle i nbsp has a nonconstant diagonal the disturbance is heteroscedastic 9 The matrices below are covariances when there are just three observations across time The disturbance in matrix A is homoscedastic this is the simple case where OLS is the best linear unbiased estimator The disturbances in matrices B and C are heteroscedastic In matrix B the variance is time varying increasing steadily across time in matrix C the variance depends on the value of x displaystyle x nbsp The disturbance in matrix D is homoscedastic because the diagonal variances are constant even though the off diagonal covariances are non zero and ordinary least squares is inefficient for a different reason serial correlation A s 2 1 0 0 0 1 0 0 0 1 B s 2 1 0 0 0 2 0 0 0 3 C s 2 x 1 0 0 0 x 2 0 0 0 x 3 D s 2 1 r r 2 r 1 r r 2 r 1 displaystyle begin aligned A amp sigma 2 begin bmatrix 1 amp 0 amp 0 0 amp 1 amp 0 0 amp 0 amp 1 end bmatrix amp B amp sigma 2 begin bmatrix 1 amp 0 amp 0 0 amp 2 amp 0 0 amp 0 amp 3 end bmatrix amp C amp sigma 2 begin bmatrix x 1 amp 0 amp 0 0 amp x 2 amp 0 0 amp 0 amp x 3 end bmatrix amp D amp sigma 2 begin bmatrix 1 amp rho amp rho 2 rho amp 1 amp rho rho 2 amp rho amp 1 end bmatrix end aligned nbsp Examples EditHeteroscedasticity often occurs when there is a large difference among the sizes of the observations A classic example of heteroscedasticity is that of income versus expenditure on meals A wealthy person may eat inexpensive food sometimes and expensive food at other times A poor person will almost always eat inexpensive food Therefore people with higher incomes exhibit greater variability in expenditures on food At a rocket launch an observer measures the distance traveled by the rocket once per second In the first couple of seconds the measurements may be accurate to the nearest centimeter After five minutes the accuracy of the measurements may be good only to 100 m because of the increased distance atmospheric distortion and a variety of other factors So the measurements of distance may exhibit heteroscedasticity Consequences EditOne of the assumptions of the classical linear regression model is that there is no heteroscedasticity Breaking this assumption means that the Gauss Markov theorem does not apply meaning that OLS estimators are not the Best Linear Unbiased Estimators BLUE and their variance is not the lowest of all other unbiased estimators Heteroscedasticity does not cause ordinary least squares coefficient estimates to be biased although it can cause ordinary least squares estimates of the variance and thus standard errors of the coefficients to be biased possibly above or below the true of population variance Thus regression analysis using heteroscedastic data will still provide an unbiased estimate for the relationship between the predictor variable and the outcome but standard errors and therefore inferences obtained from data analysis are suspect Biased standard errors lead to biased inference so results of hypothesis tests are possibly wrong For example if OLS is performed on a heteroscedastic data set yielding biased standard error estimation a researcher might fail to reject a null hypothesis at a given significance level when that null hypothesis was actually uncharacteristic of the actual population making a type II error Under certain assumptions the OLS estimator has a normal asymptotic distribution when properly normalized and centered even when the data does not come from a normal distribution This result is used to justify using a normal distribution or a chi square distribution depending on how the test statistic is calculated when conducting a hypothesis test This holds even under heteroscedasticity More precisely the OLS estimator in the presence of heteroscedasticity is asymptotically normal when properly normalized and centered with a variance covariance matrix that differs from the case of homoscedasticity In 1980 White proposed a consistent estimator for the variance covariance matrix of the asymptotic distribution of the OLS estimator 2 This validates the use of hypothesis testing using OLS estimators and White s variance covariance estimator under heteroscedasticity Heteroscedasticity is also a major practical issue encountered in ANOVA problems 10 The F test can still be used in some circumstances 11 However it has been said that students in econometrics should not overreact to heteroscedasticity 3 One author wrote unequal error variance is worth correcting only when the problem is severe 12 In addition another word of caution was in the form heteroscedasticity has never been a reason to throw out an otherwise good model 3 13 With the advent of heteroscedasticity consistent standard errors allowing for inference without specifying the conditional second moment of error term testing conditional homoscedasticity is not as important as in the past 6 For any non linear model for instance Logit and Probit models however heteroscedasticity has more severe consequences the maximum likelihood estimates MLE of the parameters will usually be biased as well as inconsistent unless the likelihood function is modified to correctly take into account the precise form of heteroscedasticity or the distribution is a member of the linear exponential family and the conditional expectation function is correctly specified 14 15 Yet in the context of binary choice models Logit or Probit heteroscedasticity will only result in a positive scaling effect on the asymptotic mean of the misspecified MLE i e the model that ignores heteroscedasticity 16 As a result the predictions which are based on the misspecified MLE will remain correct In addition the misspecified Probit and Logit MLE will be asymptotically normally distributed which allows performing the usual significance tests with the appropriate variance covariance matrix However regarding the general hypothesis testing as pointed out by Greene simply computing a robust covariance matrix for an otherwise inconsistent estimator does not give it redemption Consequently the virtue of a robust covariance matrix in this setting is unclear 17 Correction EditThere are several common corrections for heteroscedasticity They are A stabilizing transformation of the data e g logarithmized data Non logarithmized series that are growing exponentially often appear to have increasing variability as the series rises over time The variability in percentage terms may however be rather stable Use a different specification for the model different X variables or perhaps non linear transformations of the X variables Apply a weighted least squares estimation method in which OLS is applied to transformed or weighted values of X and Y The weights vary over observations usually depending on the changing error variances In one variation the weights are directly related to the magnitude of the dependent variable and this corresponds to least squares percentage regression 18 Heteroscedasticity consistent standard errors HCSE while still biased improve upon OLS estimates 2 HCSE is a consistent estimator of standard errors in regression models with heteroscedasticity This method corrects for heteroscedasticity without altering the values of the coefficients This method may be superior to regular OLS because if heteroscedasticity is present it corrects for it however if the data is homoscedastic the standard errors are equivalent to conventional standard errors estimated by OLS Several modifications of the White method of computing heteroscedasticity consistent standard errors have been proposed as corrections with superior finite sample properties Wild bootstrapping can be used as a Resampling method that respects the differences in the conditional variance of the error term An alternative is resampling observations instead of errors Note resampling errors without respect for the affiliated values of the observation enforces homoskedasticity and thus yields incorrect inference Use MINQUE or even the customary estimators s i 2 n i 1 1 j y i j y i 2 textstyle s i 2 n i 1 1 sum j left y ij bar y i right 2 nbsp for i 1 2 k displaystyle i 1 2 k nbsp independent samples with j 1 2 n i displaystyle j 1 2 n i nbsp observations each whose efficiency losses are not substantial when the number of observations per sample is large n i gt 5 displaystyle n i gt 5 nbsp especially for small number of independent samples 19 Testing Edit nbsp Absolute value of residuals for simulated first order heteroscedastic dataResiduals can be tested for homoscedasticity using the Breusch Pagan test 20 which performs an auxiliary regression of the squared residuals on the independent variables From this auxiliary regression the explained sum of squares is retained divided by two and then becomes the test statistic for a chi squared distribution with the degrees of freedom equal to the number of independent variables 21 The null hypothesis of this chi squared test is homoscedasticity and the alternative hypothesis would indicate heteroscedasticity Since the Breusch Pagan test is sensitive to departures from normality or small sample sizes the Koenker Bassett or generalized Breusch Pagan test is commonly used instead 22 additional citation s needed From the auxiliary regression it retains the R squared value which is then multiplied by the sample size and then becomes the test statistic for a chi squared distribution and uses the same degrees of freedom Although it is not necessary for the Koenker Bassett test the Breusch Pagan test requires that the squared residuals also be divided by the residual sum of squares divided by the sample size 22 Testing for groupwise heteroscedasticity can be done with the Goldfeld Quandt test 23 Due to the standard use of heteroskedasticity consistent Standard Errors and the problem of Pre test econometricians nowadays rarely use tests for conditional heteroskedasticity 6 List of tests Edit Although tests for heteroscedasticity between groups can formally be considered as a special case of testing within regression models some tests have structures specific to this case Tests in regressionLevene s test Goldfeld Quandt test Park test 24 Glejser test 25 26 Brown Forsythe test Harrison McCabe test Breusch Pagan test White test 2 Cook Weisberg testTests for grouped dataF test of equality of variances Cochran s C test Hartley s test Bartlett s testGeneralisations EditHomoscedastic distributions Edit Two or more normal distributions N m 1 S 1 N m 2 S 2 displaystyle N mu 1 Sigma 1 N mu 2 Sigma 2 nbsp are both homoscedastic and lack Serial correlation if they share the same diagonals in their covariance matrix S 1 i i S 2 j j i j displaystyle Sigma 1 ii Sigma 2 jj forall i j nbsp and their non diagonal entries are zero Homoscedastic distributions are especially useful to derive statistical pattern recognition and machine learning algorithms One popular example of an algorithm that assumes homoscedasticity is Fisher s linear discriminant analysis The concept of homoscedasticity can be applied to distributions on spheres 27 Multivariate data Edit The study of homescedasticity and heteroscedasticity has been generalized to the multivariate case which deals with the covariances of vector observations instead of the variance of scalar observations One version of this is to use covariance matrices as the multivariate measure of dispersion Several authors have considered tests in this context for both regression and grouped data situations 28 29 Bartlett s test for heteroscedasticity between grouped data used most commonly in the univariate case has also been extended for the multivariate case but a tractable solution only exists for 2 groups 30 Approximations exist for more than two groups and they are both called Box s M test See also EditHeterogeneity Spherical error Heteroskedasticity consistent standard errorsReferences Edit For the Greek etymology of the term see McCulloch J Huston 1985 On Heteros edasticity Econometrica 53 2 483 JSTOR 1911250 a b c d White Halbert 1980 A heteroskedasticity consistent covariance matrix estimator and a direct test for heteroskedasticity Econometrica 48 4 817 838 CiteSeerX 10 1 1 11 7646 doi 10 2307 1912934 JSTOR 1912934 a b c Gujarati D N Porter D C 2009 Basic Econometrics Fifth ed Boston McGraw Hill Irwin p 400 ISBN 9780073375779 Goldberger Arthur S 1964 Econometric Theory New York John Wiley amp Sons pp 238 243 ISBN 9780471311010 Johnston J 1972 Econometric Methods New York McGraw Hill pp 214 221 a b c Angrist Joshua D Pischke Jorn Steffen 2009 12 31 Mostly Harmless Econometrics An Empiricist s Companion Princeton University Press doi 10 1515 9781400829828 ISBN 978 1 4008 2982 8 Long J Scott Trivedi Pravin K 1993 Some Specification Tests for the Linear Regression Model In Bollen Kenneth A Long J Scott eds Testing Structural Equation Models London Sage pp 66 110 ISBN 978 0 8039 4506 7 Engle Robert F July 1982 Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation Econometrica 50 4 987 1007 doi 10 2307 1912773 ISSN 0012 9682 JSTOR 1912773 Peter Kennedy A Guide to Econometrics 5th edition p 137 Jinadasa Gamage Weerahandi Sam 1998 Size performance of some tests in one way anova Communications in Statistics Simulation and Computation 27 3 625 doi 10 1080 03610919808813500 Bathke A 2004 The ANOVA F test can still be used in some balanced designs with unequal variances and nonnormal data Journal of Statistical Planning and Inference 126 2 413 422 doi 10 1016 j jspi 2003 09 010 Fox J 1997 Applied Regression Analysis Linear Models and Related Methods California Sage Publications p 306 Cited in Gujarati et al 2009 p 400 Mankiw N G 1990 A Quick Refresher Course in Macroeconomics Journal of Economic Literature 28 4 1645 1660 p 1648 doi 10 3386 w3256 JSTOR 2727441 Giles Dave May 8 2013 Robust Standard Errors for Nonlinear Models Econometrics Beat Gourieroux C Monfort A Trognon A 1984 Pseudo Maximum Likelihood Methods Theory Econometrica 52 3 681 700 doi 10 2307 1913471 ISSN 0012 9682 Ginker T Lieberman O 2017 Robustness of binary choice models to conditional heteroscedasticity Economics Letters 150 130 134 doi 10 1016 j econlet 2016 11 024 Greene William H 2012 Estimation and Inference in Binary Choice Models Econometric Analysis Seventh ed Boston Pearson Education pp 730 755 p 733 ISBN 978 0 273 75356 8 Tofallis C 2008 Least Squares Percentage Regression Journal of Modern Applied Statistical Methods 7 526 534 doi 10 2139 ssrn 1406472 SSRN 1406472 J N K Rao March 1973 On the Estimation of Heteroscedastic Variances Biometrics 29 1 11 24 doi 10 2307 2529672 JSTOR 2529672 Breusch T S Pagan A R 1979 A Simple Test for Heteroscedasticity and Random Coefficient Variation Econometrica 47 5 1287 1294 doi 10 2307 1911963 ISSN 0012 9682 JSTOR 1911963 Ullah Muhammad Imdad 2012 07 26 Breusch Pagan Test for Heteroscedasticity Basic Statistics and Data Analysis Retrieved 2020 11 28 a b Pryce Gwilym Heteroscedasticity Testing and Correcting in SPSS PDF pp 12 18 Archived PDF from the original on 2017 03 27 Retrieved 26 March 2017 Baum Christopher F 2006 Stata Tip 38 Testing for Groupwise Heteroskedasticity The Stata Journal Promoting Communications on Statistics and Stata 6 4 590 592 doi 10 1177 1536867X0600600412 ISSN 1536 867X S2CID 117349246 R E Park 1966 Estimation with Heteroscedastic Error Terms Econometrica 34 4 888 doi 10 2307 1910108 JSTOR 1910108 Glejser H 1969 A new test for heteroscedasticity Journal of the American Statistical Association 64 325 316 323 doi 10 1080 01621459 1969 10500976 Machado Jose A F Silva J M C Santos 2000 Glejser s test revisited Journal of Econometrics 97 1 189 202 doi 10 1016 S0304 4076 00 00016 6 Hamsici Onur C Martinez Aleix M 2007 Spherical Homoscedastic Distributions The Equivalency of Spherical and Normal Distributions in Classification Journal of Machine Learning Research 8 1583 1623 Holgersson H E T Shukur G 2004 Testing for multivariate heteroscedasticity Journal of Statistical Computation and Simulation 74 12 879 doi 10 1080 00949650410001646979 hdl 2077 24416 S2CID 121576769 Gupta A K Tang J 1984 Distribution of likelihood ratio statistic for testing equality of covariance matrices of multivariate Gaussian models Biometrika 71 3 555 559 doi 10 1093 biomet 71 3 555 JSTOR 2336564 d Agostino R B Russell H K 2005 Multivariate Bartlett Test Encyclopedia of Biostatistics doi 10 1002 0470011815 b2a13048 ISBN 978 0470849071 Further reading EditMost statistics textbooks will include at least some material on homoscedasticity and heteroscedasticity Some examples are Asteriou Dimitros Hall Stephen G 2011 Applied Econometrics Second ed Palgrave MacMillan pp 109 147 ISBN 978 0 230 27182 1 Davidson Russell MacKinnon James G 1993 Estimation and Inference in Econometrics New York Oxford University Press pp 547 582 ISBN 978 0 19 506011 9 Dougherty Christopher 2011 Introduction to Econometrics New York Oxford University Press pp 280 299 ISBN 978 0 19 956708 9 Gujarati Damodar N Porter Dawn C 2009 Basic Econometrics Fifth ed New York McGraw Hill Irwin pp 365 411 ISBN 978 0 07 337577 9 Kmenta Jan 1986 Elements of Econometrics Second ed New York Macmillan pp 269 298 ISBN 978 0 02 365070 3 Maddala G S Lahiri Kajal 2009 Introduction to Econometrics Fourth ed New York Wiley pp 211 238 ISBN 978 0 470 01512 4 External links EditEconometrics lecture topic heteroscedasticity on YouTube by Mark Thoma Retrieved from https en wikipedia org w index php title Homoscedasticity and heteroscedasticity amp oldid 1166891905, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.