fbpx
Wikipedia

Logarithmic number system

A logarithmic number system (LNS) is an arithmetic system used for representing real numbers in computer and digital hardware, especially for digital signal processing.

Overview

In an LNS, a number,  , is represented by the logarithm,  , of its absolute value as follows:

 

where   is a bit denoting the sign of   (  if   and   if  ).

The number   is represented by a binary word which usually is in the two's complement format. An LNS can be considered as a floating-point number with the significand being always equal to 1 and a non-integer exponent. This formulation simplifies the operations of multiplication, division, powers and roots, since they are reduced down to addition, subtraction, multiplication, and division, respectively.

On the other hand, the operations of addition and subtraction are more complicated and they are calculated by the formula:

 
 

where the "sum" function is defined by  , and the "difference" function by  . These functions   and   are also known as Gaussian logarithms.

The simplification of multiplication, division, roots, and powers is counterbalanced by the cost of evaluating these functions for addition and subtraction. This added cost of evaluation may not be critical when using an LNS primarily for increasing the precision of floating-point math operations.

History

Logarithmic number systems have been independently invented and published at least three times as an alternative to fixed-point and floating-point number systems.[1]

Nicholas Kingsbury and Peter Rayner introduced "logarithmic arithmetic" for digital signal processing (DSP) in 1971.[2]

A similar LNS named "signed logarithmic number system" (SLNS) was described in 1975 by Earl Swartzlander and Aristides Alexopoulos; rather than use two's complement notation for the logarithms, they offset them (scale the numbers being represented) to avoid negative logs.[3]

Samuel Lee and Albert Edgar described a similar system, which they called the "Focus" number system, in 1977.[4][1][5][6]

The mathematical foundations for addition and subtraction in an LNS trace back to Zecchini Leonelli and Carl Friedrich Gauss in the early 1800s.[7][8][9][10][11]

In the late 1800s, the Spanish engineer Leonardo Torres y Quevedo built a series of analogue calculating mechanical machines and developed one that could solve algebraic equations with eight terms, finding the roots, including the complex ones. One part of this machine called an "endless spindle" allowed the mechanical expression of the relation  , with the aim of extracting the logarithm of a sum as a sum of logarithms.[12][13]

Applications

A LNS has been used in the Gravity Pipe (GRAPE-5) special-purpose supercomputer[14] that won the Gordon Bell Prize in 1999.

A substantial effort to explore the applicability of LNSs as a viable alternative to floating point for general-purpose processing of single-precision real numbers is described in the context of the European Logarithmic Microprocessor (ELM).[15][16] A fabricated prototype of the processor, which has a 32-bit cotransformation-based LNS arithmetic logic unit (ALU), demonstrated LNSs as a "more accurate alternative to floating-point", with improved speed. Further improvement of the LNS design based on the ELM architecture has shown its capability to offer significantly higher speed and accuracy than floating-point as well.[17]

LNSs are sometimes used in FPGA-based applications where most arithmetic operations are multiplication or division.[18]

See also

References

  1. ^ a b Lee, Samuel C.; Edgar, Albert D. (September 1979). "Addendum to "The Focus Number System"". IEEE Transactions on Computers. IEEE. C-28 (9): 693. doi:10.1109/TC.1979.1675442. ISSN 0018-9340. (NB. Nicholas Kingsbury's name is incorrectly spelled in this citation.)
  2. ^ Kingsbury, Nicholas G.; Rayner, Peter J. W. (1971-01-28). "Digital filtering using logarithmic arithmetic". Electronics Letters. Institution of Engineering and Technology (IET). 7 (2): 56–58. doi:10.1049/el:19710039. ISSN 0013-5194. Also reprinted in: Swartzlander, Jr., Earl E., ed. (1990). Computer Arithmetic. Vol. I. Los Alamitos, CA, USA: IEEE Computer Society Press.
  3. ^ Swartzlander, Jr., Earl E.; Alexopoulos, Aristides Georgiou (December 1975). "The Sign/Logarithm Number System". IEEE Transactions on Computers. IEEE. C-24 (12): 1238–1242. doi:10.1109/T-C.1975.224172. ISSN 0018-9340. Also reprinted in: Swartzlander, Jr., Earl E., ed. (1990). Computer Arithmetic. Vol. I. Los Alamitos, CA, USA: IEEE Computer Society Press.
  4. ^ Lee, Samuel C.; Edgar, Albert D. (November 1977). "The Focus Number System". IEEE Transactions on Computers. IEEE. C-26 (11): 1167–1170. doi:10.1109/TC.1977.1674770. ISSN 0018-9340.
  5. ^ Lee, Samuel C.; Edgar, Albert D. (1977). "Chapter I.1.: Microcomputer Design – Focus Microcomputer Number System". In Lee, Samuel C. (ed.). Microcomputer Design and Applications. Academic Press, Inc. pp. 1–40. doi:10.1016/B978-0-12-442350-3.50005-5. ISBN 0-12-442350-7. [1]
  6. ^ Edgar, Albert D.; Lee, Samuel C. (March 1979). "FOCUS Microcomputer Number System". Communications of the ACM. ACM Press. 22 (3): 166–177. doi:10.1145/359080.359085.
  7. ^ Leonelli, Zecchini (1803) [1802]. Supplément logarithmique. Théorie des logarithmes additionels et diductifs (in French). Bordeaux: Brossier. (NB. 1802/1803 is the year XI. in the French Republican Calendar.)
  8. ^ Leonhardi, Gottfried Wilhelm (1806). LEONELLIs logarithmische Supplemente, als ein Beitrag, Mängel der gewöhnlichen Logarithmentafeln zu ersetzen. Aus dem Französischen nebst einigen Zusätzen von GOTTFRIED WILHELM LEONHARDI, Souslieutenant beim kurfürstlichen sächsischen Feldartilleriecorps (in German). Dresden: Walther'sche Hofbuchhandlung. (NB. An expanded translation of Zecchini Leonelli's Supplément logarithmique. Théorie des logarithmes additionels et diductifs.)
  9. ^ Gauß, Johann Carl Friedrich (1808-02-12). "LEONELLI, Logarithmische Supplemente". Allgemeine Literaturzeitung (in German). Halle-Leipzig (45): 353–356.
  10. ^ "Logarithm: Addition and Subtraction, or Gaussian Logarithms". Encyclopædia Britannica Eleventh Edition.
  11. ^ Dunnington, Guy Waldo (2004) [1955]. Gray, Jeremy; Dohse, Fritz-Egbert (eds.). Carl Friedrich Gauss – Titan of Science. Spectrum series (revised ed.). Mathematical Association of America (MAA). ISBN 978-0-88385-547-8.
  12. ^ Horsburg, Ellice Martin (1914). "The Instrumental Solution of Numerical Equations by D. Gibb, M.A.". Written at Napier Tercentenary Exhibition. Modern instruments and methods of calculation: a handbook of the Napier Tercentenary Exhibition. Gerstein – University of Toronto. London, UK: G. Bell. p. 263.
  13. ^ Mehmke, Rudolf [in German] (1908). "I23". Encyclopédie des sciences mathematiques pures et appliquées. Paris, France: Gauthier-Villars. p. 351.
  14. ^ Makino, Junichiro; Taiji, Makoto (1998). Scientific Simulations with Special Purpose Computers: The GRAPE Systems. John Wiley & Sons. Bibcode:1998sssc.book.....M. ISBN 978-0-471-96946-4.
  15. ^ Coleman, John Nicholas; Softley, Christopher I.; Kadlec, Jiri; Matousek, Rudolf; Licko, Miroslav; Pohl, Zdenek; Hermanek, Antonin (2002-08-07) [2001-11-04]. "The European Logarithmic Microprocessor – a QR RLS application". Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256). Vol. 1. Monterey, CA, USA: IEEE. pp. 155–159. doi:10.1109/ACSSC.2001.986897. ISBN 0-7803-7147-X. ISSN 1058-6393.
  16. ^ Coleman, John Nicholas; Softley, Christopher I.; Kadlec, Jiri; Matousek, Rudolf; Tichy, Milan; Pohl, Zdenek; Hermanek, Antonin; Benschop, Nico F. (April 2008) [2008-02-26]. "The European Logarithmic Microprocessor". IEEE Transactions on Computers. IEEE. 57 (4): 532–546. doi:10.1109/TC.2007.70791. ISSN 0018-9340.
  17. ^ Ismail, R. Che; Coleman, John Nicholas (2011-08-18) [2011-07-25]. "ROM-less LNS". 2011 IEEE 20th Symposium on Computer Arithmetic. IEEE. pp. 43–51. doi:10.1109/ARITH.2011.15. ISBN 978-1-4244-9457-6. ISSN 1063-6889.
  18. ^ Fu, Haohuan; Mencer, Oskar; Luk, Wayne (2007-01-02) [2006-12-13]. "Comparing floating-point and logarithmic number representations for reconfigurable acceleration". 2006 IEEE International Conference on Field Programmable Technology. IEEE. pp. 337–340. doi:10.1109/FPT.2006.270342. ISBN 978-0-7803-9728-6.

Further reading

  • Muller, Jean-Michel; Scherbyna, Alexandre; Tisserand, Arnaud (February 1998). "Semi-Logarithmic Number Systems" (PDF). IEEE Transactions on Computers. 47 (2): 145–151. doi:10.1109/12.663760. ISSN 0018-9340. (PDF) from the original on 2018-07-13. Retrieved 2018-07-11. Previously published in: Muller, Jean-Michel; Scherbyna, Alexandre; Tisserand, Arnaud (July 1995). "Semi-Logarithmic Number Systems". Proceedings of the 12th IEEE Symposium on Computer Arithmetic (ARITH 12). Bath, UK.
  • Kahrs, Mark; Brandenburg, Karlheinz, eds. (2002) [1998]. Applications of Digital Signal Processing to Audio and Acoustics (PDF). Kluwer Academic Publishing. ISBN 0-7923-8130-0. (PDF) from the original on 2018-07-07. Retrieved 2018-07-07. (NB. Describes a 13-bit LNS used in Yamaha music synthesizers during the 1980s.)
  • Kremer, Hermann (2002-08-29). "Gauss'sche Additionslogarithmen feiern 200. Geburtstag". de.sci.mathematik (in German). Archived from the original on 2018-07-07. Retrieved 2018-07-07.
  • Zehendner, Eberhard (Summer 2008). "Rechnerarithmetik: Logarithmische Zahlensysteme" (PDF) (Lecture script) (in German). Friedrich-Schiller-Universität Jena. (PDF) from the original on 2018-07-09. Retrieved 2018-07-09.
  • Hayes, Brian (September–October 2009). "The Higher Arithmetic". American Scientist. 97 (5): 364–368. doi:10.1511/2009.80.364. from the original on 2018-07-09. Retrieved 2018-07-09. [3]. Also reprinted in: Hayes, Brian (2017). "Chapter 8: Higher Arithmetic". Foolproof, and Other Mathematical Meditations (1 ed.). The MIT Press. pp. 113–126. ISBN 978-0-26203686-3. ISBN 0-26203686-X.
  • Amir Sabbagh, Molahosseini; de Sousa, Leonel Seabra; Chip-Hong Chang, eds. (2017-03-21). Embedded Systems Design with Special Arithmetic and Number Systems (1 ed.). Springer International Publishing AG. doi:10.1007/978-3-319-49742-6. ISBN 978-3-319-49741-9. LCCN 2017934074. (389 pages)

External links

  • A site that lists LNS papers
  • esprit – European Logarithmic Microprocessor (formerly the 'High Speed Logarithmic Arithmetic' (HSLA) project)
  • A VHDL library for LNS hardware generation

logarithmic, number, system, logarithmic, number, system, arithmetic, system, used, representing, real, numbers, computer, digital, hardware, especially, digital, signal, processing, contents, overview, history, applications, also, references, further, reading. A logarithmic number system LNS is an arithmetic system used for representing real numbers in computer and digital hardware especially for digital signal processing Contents 1 Overview 2 History 3 Applications 4 See also 5 References 6 Further reading 7 External linksOverview EditIn an LNS a number X displaystyle X is represented by the logarithm x displaystyle x of its absolute value as follows X s x log b X displaystyle X rightarrow s x log b X where s displaystyle s is a bit denoting the sign of X displaystyle X s 0 displaystyle s 0 if X gt 0 displaystyle X gt 0 and s 1 displaystyle s 1 if X lt 0 displaystyle X lt 0 The number x displaystyle x is represented by a binary word which usually is in the two s complement format An LNS can be considered as a floating point number with the significand being always equal to 1 and a non integer exponent This formulation simplifies the operations of multiplication division powers and roots since they are reduced down to addition subtraction multiplication and division respectively On the other hand the operations of addition and subtraction are more complicated and they are calculated by the formula log b X Y x s b y x displaystyle log b X Y x s b y x log b X Y x d b y x displaystyle log b X Y x d b y x where the sum function is defined by s b z log b 1 b z displaystyle s b z log b 1 b z and the difference function by d b z log b 1 b z displaystyle d b z log b 1 b z These functions s b z displaystyle s b z and d b z displaystyle d b z are also known as Gaussian logarithms The simplification of multiplication division roots and powers is counterbalanced by the cost of evaluating these functions for addition and subtraction This added cost of evaluation may not be critical when using an LNS primarily for increasing the precision of floating point math operations History EditLogarithmic number systems have been independently invented and published at least three times as an alternative to fixed point and floating point number systems 1 Nicholas Kingsbury and Peter Rayner introduced logarithmic arithmetic for digital signal processing DSP in 1971 2 A similar LNS named signed logarithmic number system SLNS was described in 1975 by Earl Swartzlander and Aristides Alexopoulos rather than use two s complement notation for the logarithms they offset them scale the numbers being represented to avoid negative logs 3 Samuel Lee and Albert Edgar described a similar system which they called the Focus number system in 1977 4 1 5 6 The mathematical foundations for addition and subtraction in an LNS trace back to Zecchini Leonelli and Carl Friedrich Gauss in the early 1800s 7 8 9 10 11 In the late 1800s the Spanish engineer Leonardo Torres y Quevedo built a series of analogue calculating mechanical machines and developed one that could solve algebraic equations with eight terms finding the roots including the complex ones One part of this machine called an endless spindle allowed the mechanical expression of the relation y log 1 10 x displaystyle y log 1 10 x with the aim of extracting the logarithm of a sum as a sum of logarithms 12 13 Applications EditA LNS has been used in the Gravity Pipe GRAPE 5 special purpose supercomputer 14 that won the Gordon Bell Prize in 1999 A substantial effort to explore the applicability of LNSs as a viable alternative to floating point for general purpose processing of single precision real numbers is described in the context of the European Logarithmic Microprocessor ELM 15 16 A fabricated prototype of the processor which has a 32 bit cotransformation based LNS arithmetic logic unit ALU demonstrated LNSs as a more accurate alternative to floating point with improved speed Further improvement of the LNS design based on the ELM architecture has shown its capability to offer significantly higher speed and accuracy than floating point as well 17 LNSs are sometimes used in FPGA based applications where most arithmetic operations are multiplication or division 18 See also EditDecibel Subnormal number Tapered floating point TFP Level index arithmetic LI and symmetric level index arithmetic SLI Gaussian logarithm Zech s logarithm ITU T G 711 A law algorithm m law algorithmReferences Edit a b Lee Samuel C Edgar Albert D September 1979 Addendum to The Focus Number System IEEE Transactions on Computers IEEE C 28 9 693 doi 10 1109 TC 1979 1675442 ISSN 0018 9340 NB Nicholas Kingsbury s name is incorrectly spelled in this citation Kingsbury Nicholas G Rayner Peter J W 1971 01 28 Digital filtering using logarithmic arithmetic Electronics Letters Institution of Engineering and Technology IET 7 2 56 58 doi 10 1049 el 19710039 ISSN 0013 5194 Also reprinted in Swartzlander Jr Earl E ed 1990 Computer Arithmetic Vol I Los Alamitos CA USA IEEE Computer Society Press Swartzlander Jr Earl E Alexopoulos Aristides Georgiou December 1975 The Sign Logarithm Number System IEEE Transactions on Computers IEEE C 24 12 1238 1242 doi 10 1109 T C 1975 224172 ISSN 0018 9340 Also reprinted in Swartzlander Jr Earl E ed 1990 Computer Arithmetic Vol I Los Alamitos CA USA IEEE Computer Society Press Lee Samuel C Edgar Albert D November 1977 The Focus Number System IEEE Transactions on Computers IEEE C 26 11 1167 1170 doi 10 1109 TC 1977 1674770 ISSN 0018 9340 Lee Samuel C Edgar Albert D 1977 Chapter I 1 Microcomputer Design Focus Microcomputer Number System In Lee Samuel C ed Microcomputer Design and Applications Academic Press Inc pp 1 40 doi 10 1016 B978 0 12 442350 3 50005 5 ISBN 0 12 442350 7 1 Edgar Albert D Lee Samuel C March 1979 FOCUS Microcomputer Number System Communications of the ACM ACM Press 22 3 166 177 doi 10 1145 359080 359085 Leonelli Zecchini 1803 1802 Supplement logarithmique Theorie des logarithmes additionels et diductifs in French Bordeaux Brossier NB 1802 1803 is the year XI in the French Republican Calendar Leonhardi Gottfried Wilhelm 1806 LEONELLIs logarithmische Supplemente als ein Beitrag Mangel der gewohnlichen Logarithmentafeln zu ersetzen Aus dem Franzosischen nebst einigen Zusatzen von GOTTFRIED WILHELM LEONHARDI Souslieutenant beim kurfurstlichen sachsischen Feldartilleriecorps in German Dresden Walther sche Hofbuchhandlung NB An expanded translation of Zecchini Leonelli s Supplement logarithmique Theorie des logarithmes additionels et diductifs Gauss Johann Carl Friedrich 1808 02 12 LEONELLI Logarithmische Supplemente Allgemeine Literaturzeitung in German Halle Leipzig 45 353 356 Logarithm Addition and Subtraction or Gaussian Logarithms Encyclopaedia Britannica Eleventh Edition Dunnington Guy Waldo 2004 1955 Gray Jeremy Dohse Fritz Egbert eds Carl Friedrich Gauss Titan of Science Spectrum series revised ed Mathematical Association of America MAA ISBN 978 0 88385 547 8 Horsburg Ellice Martin 1914 The Instrumental Solution of Numerical Equations by D Gibb M A Written at Napier Tercentenary Exhibition Modern instruments and methods of calculation a handbook of the Napier Tercentenary Exhibition Gerstein University of Toronto London UK G Bell p 263 Mehmke Rudolf in German 1908 I23 Encyclopedie des sciences mathematiques pures et appliquees Paris France Gauthier Villars p 351 Makino Junichiro Taiji Makoto 1998 Scientific Simulations with Special Purpose Computers The GRAPE Systems John Wiley amp Sons Bibcode 1998sssc book M ISBN 978 0 471 96946 4 Coleman John Nicholas Softley Christopher I Kadlec Jiri Matousek Rudolf Licko Miroslav Pohl Zdenek Hermanek Antonin 2002 08 07 2001 11 04 The European Logarithmic Microprocessor a QR RLS application Conference Record of Thirty Fifth Asilomar Conference on Signals Systems and Computers Cat No 01CH37256 Vol 1 Monterey CA USA IEEE pp 155 159 doi 10 1109 ACSSC 2001 986897 ISBN 0 7803 7147 X ISSN 1058 6393 Coleman John Nicholas Softley Christopher I Kadlec Jiri Matousek Rudolf Tichy Milan Pohl Zdenek Hermanek Antonin Benschop Nico F April 2008 2008 02 26 The European Logarithmic Microprocessor IEEE Transactions on Computers IEEE 57 4 532 546 doi 10 1109 TC 2007 70791 ISSN 0018 9340 Ismail R Che Coleman John Nicholas 2011 08 18 2011 07 25 ROM less LNS 2011 IEEE 20th Symposium on Computer Arithmetic IEEE pp 43 51 doi 10 1109 ARITH 2011 15 ISBN 978 1 4244 9457 6 ISSN 1063 6889 Fu Haohuan Mencer Oskar Luk Wayne 2007 01 02 2006 12 13 Comparing floating point and logarithmic number representations for reconfigurable acceleration 2006 IEEE International Conference on Field Programmable Technology IEEE pp 337 340 doi 10 1109 FPT 2006 270342 ISBN 978 0 7803 9728 6 Further reading EditMuller Jean Michel Scherbyna Alexandre Tisserand Arnaud February 1998 Semi Logarithmic Number Systems PDF IEEE Transactions on Computers 47 2 145 151 doi 10 1109 12 663760 ISSN 0018 9340 Archived PDF from the original on 2018 07 13 Retrieved 2018 07 11 Previously published in Muller Jean Michel Scherbyna Alexandre Tisserand Arnaud July 1995 Semi Logarithmic Number Systems Proceedings of the 12th IEEE Symposium on Computer Arithmetic ARITH 12 Bath UK Kahrs Mark Brandenburg Karlheinz eds 2002 1998 Applications of Digital Signal Processing to Audio and Acoustics PDF Kluwer Academic Publishing ISBN 0 7923 8130 0 Archived PDF from the original on 2018 07 07 Retrieved 2018 07 07 NB Describes a 13 bit LNS used in Yamaha music synthesizers during the 1980s Kremer Hermann 2002 08 29 Gauss sche Additionslogarithmen feiern 200 Geburtstag de sci mathematik in German Archived from the original on 2018 07 07 Retrieved 2018 07 07 Zehendner Eberhard Summer 2008 Rechnerarithmetik Logarithmische Zahlensysteme PDF Lecture script in German Friedrich Schiller Universitat Jena Archived PDF from the original on 2018 07 09 Retrieved 2018 07 09 2 Hayes Brian September October 2009 The Higher Arithmetic American Scientist 97 5 364 368 doi 10 1511 2009 80 364 Archived from the original on 2018 07 09 Retrieved 2018 07 09 3 Also reprinted in Hayes Brian 2017 Chapter 8 Higher Arithmetic Foolproof and Other Mathematical Meditations 1 ed The MIT Press pp 113 126 ISBN 978 0 26203686 3 ISBN 0 26203686 X Amir Sabbagh Molahosseini de Sousa Leonel Seabra Chip Hong Chang eds 2017 03 21 Embedded Systems Design with Special Arithmetic and Number Systems 1 ed Springer International Publishing AG doi 10 1007 978 3 319 49742 6 ISBN 978 3 319 49741 9 LCCN 2017934074 389 pages External links EditA site that lists LNS papers esprit European Logarithmic Microprocessor formerly the High Speed Logarithmic Arithmetic HSLA project A VHDL library for LNS hardware generation A Short Account on Leonardo Torres Endless Spindle Retrieved from https en wikipedia org w index php title Logarithmic number system amp oldid 1139936232, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.