fbpx
Wikipedia

LaserWriter

The LaserWriter is a laser printer with built-in PostScript interpreter sold by Apple, Inc. from 1985 to 1988. It was one of the first laser printers available to the mass market. In combination with WYSIWYG publishing software like PageMaker, that operated on top of the graphical user interface of Macintosh computers, the LaserWriter was a key component at the beginning of the desktop publishing revolution.[1][2]

LaserWriter
Apple LaserWriter
IntroducedMarch 1, 1985 (1985-03-01)
DiscontinuedFebruary 1, 1988 (1988-02-01)
CostUS$6,995 (equivalent to $19,030 in 2022)
TypeLaser
ProcessorMotorola 68000
Frequency12 MHz
Memory1.5 MB
Slots1
ROM512 KB
PortsSerial, LocalTalk, AppleTalk
Power consumption760 watts
ColorMonochrome
DPI300
Speed8 pages per minute
LanguagePostScript, Diablo 630
Weight77 lb (35 kg)
Dimensions(H × W × D) 11.5×18.5×16.2 in (29×47×41 cm)

History edit

Development of laser printing edit

Laser printing traces its history to efforts by Gary Starkweather at Xerox in 1969, which resulted in a commercial system called the Xerox 9700. IBM followed this with the IBM 3800 system in 1976. Both machines were large, room-filling devices handling the combined output of many users.[3] During the mid-1970s, Canon started working on similar machines, and partnered with Hewlett-Packard to produce 1980's HP 2680, which filled only part of a room.[4] Other copier companies also started development of similar systems.

HP introduced their first desktop model with a Ricoh engine for $12,800 in 1983. Sales of the non-networked product were unsurprisingly poor.[4] In 1983, Canon introduced the LBP-CX, a desktop laser printer engine using a laser diode and featuring an output resolution of 300 dpi.[5] In 1984, HP released the first commercially available system based on the LBP-CX, the HP LaserJet.[3]

Apple's development edit

Steve Jobs of Apple Computer had seen the LBP-CX while negotiating for supplies of 3.5" floppy disk drives for the upcoming Apple Macintosh computer. Meanwhile, John Warnock had left Xerox to found Adobe Systems to commercialize PostScript and AppleTalk in a laser printer they intended to market. Jobs was aware of Warnock's efforts, and upon his return to California he began convincing Warnock to allow Apple to license PostScript for a new printer that Apple would sell. Negotiations between Apple and Adobe over the use of PostScript began in 1983 and an agreement was reached in December 1983, one month before Macintosh was announced.[6] Jobs eventually arranged for Apple to buy $2.5 million in Adobe stock.

At about the same time, Jonathan Seybold (John W. Seybold's son) introduced Paul Brainerd to Apple, where he learned of Apple's laser printer efforts and saw the potential for a new program using the Mac's GUI to produce PostScript output for the new printer. Arranging his own funding through a venture capital firm, Brainerd formed Aldus and began development of what would become PageMaker. The VC[clarification needed] coined the term "desktop publishing" during this time.[7]

Release edit

The LaserWriter was announced at Apple's annual shareholder meeting on January 23, 1985,[8] the same day Aldus announced PageMaker.[9] Shipments began in March 1985[10] at the retail price of US$6,995, significantly more than the HP model. However, the LaserWriter featured AppleTalk support that allowed the printer to be shared among as many as sixteen Macs, meaning that its per-user price could fall to under $450, far less expensive than HP's less-advanced model.

The combination of the LaserWriter, PostScript, PageMaker and the Mac's GUI and built-in AppleTalk networking would ultimately transform the landscape of computer desktop publishing.[6] At the time, Apple planned to release a suite of AppleTalk products as part of the Macintosh Office, with the LaserWriter being only the first component.[11]

While competing printers and their associated control languages offered some of the capabilities of PostScript, they were limited in their ability to reproduce free-form layouts (as a desktop publishing application might produce), use outline fonts, or offer the level of detail and control over the page layout. HP's own LaserJet was driven by a simple page description language, known as Printer Command Language, or PCL. The version for the LaserJet, PCL4, was adapted from earlier inkjet printers with the addition of downloadable bitmapped fonts.[4] It lacked the power and flexibility of PostScript until several upgrades provided some level of parity.[12] It was some time before similar products became available on other platforms, by which time the Mac had ridden the desktop publishing market to success.

Description edit

Hardware edit

The LaserWriter used the same Canon CX printing engine as the HP LaserJet, and as a consequence early LaserWriters and LaserJets shared the same toner cartridges and paper trays.[13] PostScript is a complete programming language that has to be run in a suitable interpreter and then sent to a software rasterizer program, all inside the printer. To support this, the LaserWriter featured a Motorola 68000 CPU running at 12 MHz, 512 KB of workspace RAM, and a 1 MB frame buffer.[14]

At introduction, the LaserWriter had the most processing power in Apple's product line—more than the 8 MHz Macintosh. As a result, the LaserWriter was also one of Apple's most expensive offerings. For implementation purposes, the LaserWriter employed a small number of medium-scale-integration Monolithic Memories PALs, and no custom LSI, whereas the LaserJet employed a large number of small-scale-integration Texas Instruments 74-Series gates, and one custom LSI. The LaserWriter was, thereby, in the same form factor (for its RIP), able to provide much greater function, and, indeed, much greater performance, all within the very same LBP-CX form factor, although the external packaging was, for marketing purposes, somewhat different.

Networking edit

Since the cost of a LaserWriter was several times that of a dot-matrix impact printer, some means to share the printer with several Macs was desired. LANs were complex and expensive, so Apple developed its own networking scheme, LocalTalk. Based on the AppleTalk protocol stack, LocalTalk connected the LaserWriter to the Mac over an RS-422 serial port. At 230.4 kbit/s LocalTalk was slower than the Centronics PC parallel interface, but allowed several computers to share a single LaserWriter. PostScript enabled the LaserWriter to print complex pages containing high-resolution bitmap graphics, outline fonts, and vector illustrations. The LaserWriter could print more complex layouts than the HP LaserJet and other non-Postscript printers. Paired with the program Aldus PageMaker, the LaserWriter gave the layout editor an exact replica of the printed page. The LaserWriter offered a generally faithful proofing tool for preparing documents for quantity publication, and could print smaller quantities directly. The Mac platform quickly gained the favor of the emerging desktop-publishing industry, a market in which the Mac is still important.[15]

Design edit

The LaserWriter was the first major printer designed by Apple to use the new Snow White design language created by Frog Design. It also continued a departure from the beige color that characterized the Apple and Macintosh products to that time by using the same brighter, creamy off-white color first introduced with the Apple IIc and Apple Scribe Printer 8 months earlier. In that regard it and its successors stood out among all of Apple's Macintosh product offerings until 1987, when Apple adopted a unifying warm gray color they called Platinum across its entire product line, which was to last for over a decade.

The LaserWriter was also the first peripheral to use the LocalTalk connector and Apple's unified round AppleTalk Connector Family, which allowed any variety of mechanical networking systems to be plugged into the ports on the computers or printers. A common solution was the 3rd party PhoneNET which used conventional telephone cables for networking.

Legacy edit

Apple's RIP was of its own design, and was implemented using few ICs, including PALs for most combinatorial logic; with the subsystem timing DRAM refreshing, and rasterization functions being implemented in very few medium-scale-integration PALs. Apple's competitors (i.e., QMS, NEC, and others) generally used a variation of one of Adobe's RIPs with their large quantity of small-scale-integration (i.e., Texas Instruments' 7400 series) ICs.

In the same time-frame as Apple's LaserWriter, Adobe was licensing the very same version of PostScript to Apple's potential competitors (Apple's PostScript licensing terms were non-exclusive); however, all non-Apple licensees of PostScript generally employed one of Adobe's PostScript "reference models" (Atlas, Redstone, etc.) and even Linotype's first image setter which featured PostScript employed such a "reference model" (but with customization for the Linotronic's different video interface, plus the necessary implementation of "banding" and a hard drive frame buffer and font storage mechanism). Indeed, the PostScript language itself was concurrently enhanced and extended to support these high-resolution "banding" devices (as contrasted to the lower resolution "framing" devices, such as the LaserWriter, in which the entire "frame" could be contained within the available RAM).

In most cases, such RAM was fixed in size and was soldered to the logic board. In late PostScript Level 1, and in early PostScript Level 2, the RAM size was made variable and was generally extensible, through plug-in DIMMs, beyond the 2.0 to 2.5 MB minimum (0.5 to 1.0 MB for instructions, depending upon PostScript version, and 1.5 MB minimum for the "frame buffer", for the lowest resolution devices, 300 dpi), as more than 300 dpi of course required more RAM, and some LaserWriters were able to change between 300 dpi and 600 dpi, depending upon how much RAM was installed. 600 dpi, for example, required 6 MB of RAM, but 8 MB of RAM was more commonly found.

At this point, Apple's LaserWriters were employing generic non-parity RAM, whereas HP's LaserJets, especially the ones which offered a plug-in PostScript interpreter card, required special parity-type PS/2 RAM modules with a "presence detect" function according to IBM specs.

Other LaserWriter models edit

Building on the success of the original LaserWriter, Apple developed many further models. Later LaserWriters offered faster printing, higher resolutions, Ethernet connectivity, and eventually color output in the Color LaserWriter. To compete, many other laser printer manufacturers licensed Adobe PostScript for inclusion into their own models. Eventually the standardization on Ethernet for connectivity and the ubiquity of PostScript undermined the unique position of Apple's printers: Macintosh computers functioned equally well with any Postscript printer. After the LaserWriter 8500, Apple discontinued the LaserWriter product line in 1997 when Steve Jobs returned to Apple.

LaserWriter II edit

 
Apple LaserWriter II

In 1988, to address the need for both an affordable printer and a professional printer, the LaserWriter II was designed to allow for complete replacement of the computer circuit board that operates the printer. Across all the different models, the print engine was the same.

  • For low-end users, there was the LaserWriter IISC,[16] a host-based QuickDraw printer connected via SCSI that did not use PostScript and did not require a license from Adobe. It had two SCSI ports to allow daisy-chaining of the printer with other SCSI devices such as hard drives. It did not support AppleTalk.
  • For midrange users, the LaserWriter IINT[17] provided PostScript support and AppleTalk networking.
  • For high-end users, the LaserWriter IINTX[18] also included a SCSI controller for storage of printer fonts on a hard drive dedicated for use by the printer.

Three years later in 1991, two updated versions of the LaserWriter II were produced.

  • The LaserWriter IIf[19] had a faster processor than the IINTX, a newer version of PostScript and also HP PCL, and included the SCSI interface for font storage on an external hard drive.
  • The LaserWriter IIg[20] had the capabilities of the IIf, and was also the first LaserWriter with a built-in Ethernet network interface.

References edit

  1. ^ H. A. Tucker: Desktop Publishing. January 27, 2017, at the Wayback Machine In: Maurice M. de Ruiter: Advances in Computer Graphics III. Springer, 1988, ISBN 3-540-18788-X, P. 296.
  2. ^ Michael B. Spring: Electronic printing and publishing: the document processing revolution. January 27, 2017, at the Wayback Machine CRC Press, 1991, ISBN 0-8247-8544-4, Page 46.
  3. ^ a b Benji Edwards: Apple's Five Most Important Printers. April 17, 2010, at the Wayback Machine macworld.com, December 10, 2009.
  4. ^ a b c Jim Hall, "HP LaserJet – The Early History" June 8, 2021, at the Wayback Machine
  5. ^ . fixyourownprinter.com. Archived from the original on July 24, 2008. Retrieved September 23, 2009.
  6. ^ a b Pamela Pfiffner: Inside the Publishing Revolution. The Adobe Story. Adobe Press, 2003. ISBN 0-321-11564-3. Chapter Steve Jobs and the LaserWriter. Pages 33-46. A PDF of the chapter is available at "Inside the Publishing Revolution". CreativePro.com. December 3, 2002. from the original on January 6, 2010. Retrieved September 23, 2009.
  7. ^ David Wilma, "Brainerd, Paul (b. 1947)" February 7, 2012, at the Wayback Machine, HistoryLink, February 22, 2006
  8. ^ Jim Bartimo, Michael McCarthy: "Is Apple's LaserWriter on Target?" December 24, 2016, at the Wayback Machine, InfoWorld, Volume 7 Issue 6 (February 11, 1985), pp. 15-18.
  9. ^ Aldus Announces Desktop Publishing System ... BusinessWire, January 23, 1985.
  10. ^ "Macintosh Timeline". from the original on June 10, 2011. Retrieved April 13, 2010.
  11. ^ Owen W. Linzmayer (2004). Apple Confidential 2.0. ISBN 978-1-59327-010-0. from the original on June 21, 2013. Retrieved September 23, 2009. Chapter Why 1984 Wasn't like 1984. Pages 143-146.
  12. ^ "HP's History Of Printer Command Language (PCL)" February 24, 2012, at the Wayback Machine, HP
  13. ^ "Printerworks.com: Apple LaserWriter and LaserWriter Plus Printers". from the original on August 1, 2013. Retrieved January 18, 2014.
  14. ^ "LaserWriter: Technical Specifications" August 11, 2011, at the Wayback Machine, Apple
  15. ^ Apple Company News & Product Updates April 17, 2011, at the Wayback Machine. Businessweek. Retrieved on July 21, 2013.
  16. ^ LaserWriter IISC: Technical Specifications August 11, 2011, at the Wayback Machine. Support.apple.com (April 15, 2013). Retrieved on July 21, 2013.
  17. ^ LaserWriter IINT: Technical Specifications August 11, 2011, at the Wayback Machine. Support.apple.com (April 15, 2013). Retrieved on July 21, 2013.
  18. ^ LaserWriter IINTX: Technical Specifications August 11, 2011, at the Wayback Machine. Support.apple.com (April 15, 2013). Retrieved on July 21, 2013.
  19. ^ LaserWriter IIf: Technical Specifications August 11, 2011, at the Wayback Machine. Support.apple.com (April 15, 2013). Retrieved on July 21, 2013.
  20. ^ LaserWriter IIg: Technical Specifications August 11, 2011, at the Wayback Machine. Support.apple.com (April 15, 2013). Retrieved on July 21, 2013.

External links edit

laserwriter, laser, printer, with, built, postscript, interpreter, sold, apple, from, 1985, 1988, first, laser, printers, available, mass, market, combination, with, wysiwyg, publishing, software, like, pagemaker, that, operated, graphical, user, interface, ma. The LaserWriter is a laser printer with built in PostScript interpreter sold by Apple Inc from 1985 to 1988 It was one of the first laser printers available to the mass market In combination with WYSIWYG publishing software like PageMaker that operated on top of the graphical user interface of Macintosh computers the LaserWriter was a key component at the beginning of the desktop publishing revolution 1 2 LaserWriterApple LaserWriterIntroducedMarch 1 1985 1985 03 01 DiscontinuedFebruary 1 1988 1988 02 01 CostUS 6 995 equivalent to 19 030 in 2022 TypeLaserProcessorMotorola 68000Frequency12 MHzMemory1 5 MBSlots1ROM512 KBPortsSerial LocalTalk AppleTalkPower consumption760 wattsColorMonochromeDPI300Speed8 pages per minuteLanguagePostScript Diablo 630Weight77 lb 35 kg Dimensions H W D 11 5 18 5 16 2 in 29 47 41 cm Contents 1 History 1 1 Development of laser printing 1 2 Apple s development 1 3 Release 2 Description 2 1 Hardware 2 2 Networking 2 3 Design 2 4 Legacy 3 Other LaserWriter models 3 1 LaserWriter II 4 References 5 External linksHistory editDevelopment of laser printing edit Main article Laser printing Laser printing traces its history to efforts by Gary Starkweather at Xerox in 1969 which resulted in a commercial system called the Xerox 9700 IBM followed this with the IBM 3800 system in 1976 Both machines were large room filling devices handling the combined output of many users 3 During the mid 1970s Canon started working on similar machines and partnered with Hewlett Packard to produce 1980 s HP 2680 which filled only part of a room 4 Other copier companies also started development of similar systems HP introduced their first desktop model with a Ricoh engine for 12 800 in 1983 Sales of the non networked product were unsurprisingly poor 4 In 1983 Canon introduced the LBP CX a desktop laser printer engine using a laser diode and featuring an output resolution of 300 dpi 5 In 1984 HP released the first commercially available system based on the LBP CX the HP LaserJet 3 Apple s development edit Steve Jobs of Apple Computer had seen the LBP CX while negotiating for supplies of 3 5 floppy disk drives for the upcoming Apple Macintosh computer Meanwhile John Warnock had left Xerox to found Adobe Systems to commercialize PostScript and AppleTalk in a laser printer they intended to market Jobs was aware of Warnock s efforts and upon his return to California he began convincing Warnock to allow Apple to license PostScript for a new printer that Apple would sell Negotiations between Apple and Adobe over the use of PostScript began in 1983 and an agreement was reached in December 1983 one month before Macintosh was announced 6 Jobs eventually arranged for Apple to buy 2 5 million in Adobe stock At about the same time Jonathan Seybold John W Seybold s son introduced Paul Brainerd to Apple where he learned of Apple s laser printer efforts and saw the potential for a new program using the Mac s GUI to produce PostScript output for the new printer Arranging his own funding through a venture capital firm Brainerd formed Aldus and began development of what would become PageMaker The VC clarification needed coined the term desktop publishing during this time 7 Release edit The LaserWriter was announced at Apple s annual shareholder meeting on January 23 1985 8 the same day Aldus announced PageMaker 9 Shipments began in March 1985 10 at the retail price of US 6 995 significantly more than the HP model However the LaserWriter featured AppleTalk support that allowed the printer to be shared among as many as sixteen Macs meaning that its per user price could fall to under 450 far less expensive than HP s less advanced model The combination of the LaserWriter PostScript PageMaker and the Mac s GUI and built in AppleTalk networking would ultimately transform the landscape of computer desktop publishing 6 At the time Apple planned to release a suite of AppleTalk products as part of the Macintosh Office with the LaserWriter being only the first component 11 While competing printers and their associated control languages offered some of the capabilities of PostScript they were limited in their ability to reproduce free form layouts as a desktop publishing application might produce use outline fonts or offer the level of detail and control over the page layout HP s own LaserJet was driven by a simple page description language known as Printer Command Language or PCL The version for the LaserJet PCL4 was adapted from earlier inkjet printers with the addition of downloadable bitmapped fonts 4 It lacked the power and flexibility of PostScript until several upgrades provided some level of parity 12 It was some time before similar products became available on other platforms by which time the Mac had ridden the desktop publishing market to success Description editHardware edit The LaserWriter used the same Canon CX printing engine as the HP LaserJet and as a consequence early LaserWriters and LaserJets shared the same toner cartridges and paper trays 13 PostScript is a complete programming language that has to be run in a suitable interpreter and then sent to a software rasterizer program all inside the printer To support this the LaserWriter featured a Motorola 68000 CPU running at 12 MHz 512 KB of workspace RAM and a 1 MB frame buffer 14 At introduction the LaserWriter had the most processing power in Apple s product line more than the 8 MHz Macintosh As a result the LaserWriter was also one of Apple s most expensive offerings For implementation purposes the LaserWriter employed a small number of medium scale integration Monolithic Memories PALs and no custom LSI whereas the LaserJet employed a large number of small scale integration Texas Instruments 74 Series gates and one custom LSI The LaserWriter was thereby in the same form factor for its RIP able to provide much greater function and indeed much greater performance all within the very same LBP CX form factor although the external packaging was for marketing purposes somewhat different Networking edit Since the cost of a LaserWriter was several times that of a dot matrix impact printer some means to share the printer with several Macs was desired LANs were complex and expensive so Apple developed its own networking scheme LocalTalk Based on the AppleTalk protocol stack LocalTalk connected the LaserWriter to the Mac over an RS 422 serial port At 230 4 kbit s LocalTalk was slower than the Centronics PC parallel interface but allowed several computers to share a single LaserWriter PostScript enabled the LaserWriter to print complex pages containing high resolution bitmap graphics outline fonts and vector illustrations The LaserWriter could print more complex layouts than the HP LaserJet and other non Postscript printers Paired with the program Aldus PageMaker the LaserWriter gave the layout editor an exact replica of the printed page The LaserWriter offered a generally faithful proofing tool for preparing documents for quantity publication and could print smaller quantities directly The Mac platform quickly gained the favor of the emerging desktop publishing industry a market in which the Mac is still important 15 Design edit The LaserWriter was the first major printer designed by Apple to use the new Snow White design language created by Frog Design It also continued a departure from the beige color that characterized the Apple and Macintosh products to that time by using the same brighter creamy off white color first introduced with the Apple IIc and Apple Scribe Printer 8 months earlier In that regard it and its successors stood out among all of Apple s Macintosh product offerings until 1987 when Apple adopted a unifying warm gray color they called Platinum across its entire product line which was to last for over a decade The LaserWriter was also the first peripheral to use the LocalTalk connector and Apple s unified round AppleTalk Connector Family which allowed any variety of mechanical networking systems to be plugged into the ports on the computers or printers A common solution was the 3rd party PhoneNET which used conventional telephone cables for networking Legacy edit Apple s RIP was of its own design and was implemented using few ICs including PALs for most combinatorial logic with the subsystem timing DRAM refreshing and rasterization functions being implemented in very few medium scale integration PALs Apple s competitors i e QMS NEC and others generally used a variation of one of Adobe s RIPs with their large quantity of small scale integration i e Texas Instruments 7400 series ICs In the same time frame as Apple s LaserWriter Adobe was licensing the very same version of PostScript to Apple s potential competitors Apple s PostScript licensing terms were non exclusive however all non Apple licensees of PostScript generally employed one of Adobe s PostScript reference models Atlas Redstone etc and even Linotype s first image setter which featured PostScript employed such a reference model but with customization for the Linotronic s different video interface plus the necessary implementation of banding and a hard drive frame buffer and font storage mechanism Indeed the PostScript language itself was concurrently enhanced and extended to support these high resolution banding devices as contrasted to the lower resolution framing devices such as the LaserWriter in which the entire frame could be contained within the available RAM In most cases such RAM was fixed in size and was soldered to the logic board In late PostScript Level 1 and in early PostScript Level 2 the RAM size was made variable and was generally extensible through plug in DIMMs beyond the 2 0 to 2 5 MB minimum 0 5 to 1 0 MB for instructions depending upon PostScript version and 1 5 MB minimum for the frame buffer for the lowest resolution devices 300 dpi as more than 300 dpi of course required more RAM and some LaserWriters were able to change between 300 dpi and 600 dpi depending upon how much RAM was installed 600 dpi for example required 6 MB of RAM but 8 MB of RAM was more commonly found At this point Apple s LaserWriters were employing generic non parity RAM whereas HP s LaserJets especially the ones which offered a plug in PostScript interpreter card required special parity type PS 2 RAM modules with a presence detect function according to IBM specs Other LaserWriter models editSee also List of Apple printers Laser printer series Building on the success of the original LaserWriter Apple developed many further models Later LaserWriters offered faster printing higher resolutions Ethernet connectivity and eventually color output in the Color LaserWriter To compete many other laser printer manufacturers licensed Adobe PostScript for inclusion into their own models Eventually the standardization on Ethernet for connectivity and the ubiquity of PostScript undermined the unique position of Apple s printers Macintosh computers functioned equally well with any Postscript printer After the LaserWriter 8500 Apple discontinued the LaserWriter product line in 1997 when Steve Jobs returned to Apple LaserWriter II edit nbsp Apple LaserWriter IIIn 1988 to address the need for both an affordable printer and a professional printer the LaserWriter II was designed to allow for complete replacement of the computer circuit board that operates the printer Across all the different models the print engine was the same For low end users there was the LaserWriter IISC 16 a host based QuickDraw printer connected via SCSI that did not use PostScript and did not require a license from Adobe It had two SCSI ports to allow daisy chaining of the printer with other SCSI devices such as hard drives It did not support AppleTalk For midrange users the LaserWriter IINT 17 provided PostScript support and AppleTalk networking For high end users the LaserWriter IINTX 18 also included a SCSI controller for storage of printer fonts on a hard drive dedicated for use by the printer Three years later in 1991 two updated versions of the LaserWriter II were produced The LaserWriter IIf 19 had a faster processor than the IINTX a newer version of PostScript and also HP PCL and included the SCSI interface for font storage on an external hard drive The LaserWriter IIg 20 had the capabilities of the IIf and was also the first LaserWriter with a built in Ethernet network interface References edit H A Tucker Desktop Publishing Archived January 27 2017 at the Wayback Machine In Maurice M de Ruiter Advances in Computer Graphics III Springer 1988 ISBN 3 540 18788 X P 296 Michael B Spring Electronic printing and publishing the document processing revolution Archived January 27 2017 at the Wayback Machine CRC Press 1991 ISBN 0 8247 8544 4 Page 46 a b Benji Edwards Apple s Five Most Important Printers Archived April 17 2010 at the Wayback Machine macworld com December 10 2009 a b c Jim Hall HP LaserJet The Early History Archived June 8 2021 at the Wayback Machine Canon LBP CX Engine fixyourownprinter com Archived from the original on July 24 2008 Retrieved September 23 2009 a b Pamela Pfiffner Inside the Publishing Revolution The Adobe Story Adobe Press 2003 ISBN 0 321 11564 3 Chapter Steve Jobs and the LaserWriter Pages 33 46 A PDF of the chapter is available at Inside the Publishing Revolution CreativePro com December 3 2002 Archived from the original on January 6 2010 Retrieved September 23 2009 David Wilma Brainerd Paul b 1947 Archived February 7 2012 at the Wayback Machine HistoryLink February 22 2006 Jim Bartimo Michael McCarthy Is Apple s LaserWriter on Target Archived December 24 2016 at the Wayback Machine InfoWorld Volume 7 Issue 6 February 11 1985 pp 15 18 Aldus Announces Desktop Publishing System BusinessWire January 23 1985 Macintosh Timeline Archived from the original on June 10 2011 Retrieved April 13 2010 Owen W Linzmayer 2004 Apple Confidential 2 0 ISBN 978 1 59327 010 0 Archived from the original on June 21 2013 Retrieved September 23 2009 Chapter Why 1984 Wasn t like 1984 Pages 143 146 HP s History Of Printer Command Language PCL Archived February 24 2012 at the Wayback Machine HP Printerworks com Apple LaserWriter and LaserWriter Plus Printers Archived from the original on August 1 2013 Retrieved January 18 2014 LaserWriter Technical Specifications Archived August 11 2011 at the Wayback Machine Apple Apple Company News amp Product Updates Archived April 17 2011 at the Wayback Machine Businessweek Retrieved on July 21 2013 LaserWriter IISC Technical Specifications Archived August 11 2011 at the Wayback Machine Support apple com April 15 2013 Retrieved on July 21 2013 LaserWriter IINT Technical Specifications Archived August 11 2011 at the Wayback Machine Support apple com April 15 2013 Retrieved on July 21 2013 LaserWriter IINTX Technical Specifications Archived August 11 2011 at the Wayback Machine Support apple com April 15 2013 Retrieved on July 21 2013 LaserWriter IIf Technical Specifications Archived August 11 2011 at the Wayback Machine Support apple com April 15 2013 Retrieved on July 21 2013 LaserWriter IIg Technical Specifications Archived August 11 2011 at the Wayback Machine Support apple com April 15 2013 Retrieved on July 21 2013 External links edit nbsp Wikimedia Commons has media related to Apple Inc laser printers Retrieved from https en wikipedia org w index php title LaserWriter amp oldid 1190863451, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.