fbpx
Wikipedia

Lah number

In mathematics, the Lah numbers, discovered by Ivo Lah in 1954,[1][2] are coefficients expressing rising factorials in terms of falling factorials. They are also the coefficients of the th derivatives of .[3]

Illustration of the unsigned Lah numbers for n and k between 1 and 4

Unsigned Lah numbers have an interesting meaning in combinatorics: they count the number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets.[4] Lah numbers are related to Stirling numbers.[5]

Unsigned Lah numbers (sequence A105278 in the OEIS):

Signed Lah numbers (sequence A008297 in the OEIS):

L(n, 1) is always n!; in the interpretation above, the only partition of {1, 2, 3} into 1 set can have its set ordered in 6 ways:

{(1, 2, 3)}, {(1, 3, 2)}, {(2, 1, 3)}, {(2, 3, 1)}, {(3, 1, 2)} or {(3, 2, 1)}

L(3, 2) corresponds to the 6 partitions with two ordered parts:

{(1), (2, 3)}, {(1), (3, 2)}, {(2), (1, 3)}, {(2), (3, 1)}, {(3), (1, 2)} or {(3), (2, 1)}

L(n, n) is always 1 since, e.g., partitioning {1, 2, 3} into 3 non-empty subsets results in subsets of length 1.

{(1), (2), (3)}

Adapting the KaramataKnuth notation for Stirling numbers, it has been proposed to use the following alternative notation for Lah numbers:

Table of values

Below is a table of values for the Lah numbers:

 k
n 
1 2 3 4 5 6 7 8 9 10 11 12
1 1
2 2 1
3 6 6 1
4 24 36 12 1
5 120 240 120 20 1
6 720 1800 1200 300 30 1
7 5040 15120 12600 4200 630 42 1
8 40320 141120 141120 58800 11760 1176 56 1
9 362880 1451520 1693440 846720 211680 28224 2016 72 1
10 3628800 16329600 21772800 12700800 3810240 635040 60480 3240 90 1
11 39916800 199584000 299376000 199584000 69854400 13970880 1663200 11880 4950 110 1
12 479001600 2634508800 4390848000 3293136000 1317254400 307359360 43908480 3920400 217800 7260 132 1

The row sums are   (sequence A000262 in the OEIS).

Rising and falling factorials

Let   represent the rising factorial   and let   represent the falling factorial  .

Then   and  

For example,

 

and

 

Compare the third row of the table of values.

Identities and relations

  where   are the Stirling numbers of the first kind and   are the Stirling numbers of the second kind,  , and   for all  .
 
 
 , for  .

So we have

 
 
 
 
 
  where  ,   for all  

Exponential generating function

 

Ordinary generating function

 

Practical application

In recent years, Lah numbers have been used in steganography for hiding data in images. Compared to alternatives such as DCT, DFT and DWT, it has lower complexity— —of calculation of their integer coefficients.[6][7] The Lah and Laguerre transforms naturally arise in the perturbative description of the chromatic dispersion[8][9] . In Lah-Laguerre optics, such an approach tremendously speeds up optimization problems.

See also

References

  1. ^ Lah, Ivo (1954). "A new kind of numbers and its application in the actuarial mathematics". Boletim do Instituto dos Actuários Portugueses. 9: 7–15.
  2. ^ John Riordan, Introduction to Combinatorial Analysis, Princeton University Press (1958, reissue 1980) ISBN 978-0-691-02365-6 (reprinted again in 2002 by Dover Publications).
  3. ^ Daboul, Siad; Mangaldan, Jan; Spivey, Michael Z.; Taylor, Peter J. (2013). "The Lah Numbers and the nth Derivative of  ". Mathematics Magazine. 86 (1): 39–47. doi:10.4169/math.mag.86.1.039. JSTOR 10.4169/math.mag.86.1.039. S2CID 123113404.
  4. ^ Petkovsek, Marko; Pisanski, Tomaz (Fall 2007). "Combinatorial Interpretation of Unsigned Stirling and Lah Numbers". Pi Mu Epsilon Journal. 12 (7): 417–424. JSTOR 24340704.
  5. ^ Comtet, Louis (1974). Advanced Combinatorics. Dordrecht, Holland: Reidel. p. 156. ISBN 9789027703804.
  6. ^ Ghosal, Sudipta Kr; Mukhopadhyay, Souradeep; Hossain, Sabbir; Sarkar, Ram (2020). "Application of Lah Transform for Security and Privacy of Data through Information Hiding in Telecommunication". Transactions on Emerging Telecommunications Technologies. 32 (2). doi:10.1002/ett.3984. S2CID 225866797.
  7. ^ "Image Steganography-using-Lah-Transform". MathWorks.
  8. ^ Popmintchev, Dimitar; Wang, Siyang; Xiaoshi, Zhang; Stoev, Ventzislav; Popmintchev, Tenio (2022-10-24). "Analytical Lah-Laguerre optical formalism for perturbative chromatic dispersion". Optics Express. 30 (22): 40779–40808. Bibcode:2022OExpr..3040779P. doi:10.1364/OE.457139. PMID 36299007.
  9. ^ Popmintchev, Dimitar; Wang, Siyang; Xiaoshi, Zhang; Stoev, Ventzislav; Popmintchev, Tenio (2020-08-30). "Theory of the Chromatic Dispersion, Revisited". arXiv:2011.00066 [physics.optics].

number, mathematics, discovered, 1954, coefficients, expressing, rising, factorials, terms, falling, factorials, they, also, coefficients, displaystyle, derivatives, displaystyle, illustration, unsigned, between, unsigned, have, interesting, meaning, combinato. In mathematics the Lah numbers discovered by Ivo Lah in 1954 1 2 are coefficients expressing rising factorials in terms of falling factorials They are also the coefficients of the n displaystyle n th derivatives of e 1 x displaystyle e 1 x 3 Illustration of the unsigned Lah numbers for n and k between 1 and 4 Unsigned Lah numbers have an interesting meaning in combinatorics they count the number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets 4 Lah numbers are related to Stirling numbers 5 Unsigned Lah numbers sequence A105278 in the OEIS L n k n 1 k 1 n k displaystyle L n k n 1 choose k 1 frac n k Signed Lah numbers sequence A008297 in the OEIS L n k 1 n n 1 k 1 n k displaystyle L n k 1 n n 1 choose k 1 frac n k L n 1 is always n in the interpretation above the only partition of 1 2 3 into 1 set can have its set ordered in 6 ways 1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 or 3 2 1 L 3 2 corresponds to the 6 partitions with two ordered parts 1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 or 3 2 1 L n n is always 1 since e g partitioning 1 2 3 into 3 non empty subsets results in subsets of length 1 1 2 3 Adapting the Karamata Knuth notation for Stirling numbers it has been proposed to use the following alternative notation for Lah numbers L n k j 0 n n j j k displaystyle L n k sum j 0 n left begin matrix n j end matrix right left begin matrix j k end matrix right Contents 1 Table of values 2 Rising and falling factorials 3 Identities and relations 3 1 Exponential generating function 3 2 Ordinary generating function 4 Practical application 5 See also 6 ReferencesTable of values EditBelow is a table of values for the Lah numbers kn 1 2 3 4 5 6 7 8 9 10 11 121 12 2 13 6 6 14 24 36 12 15 120 240 120 20 16 720 1800 1200 300 30 17 5040 15120 12600 4200 630 42 18 40320 141120 141120 58800 11760 1176 56 19 362880 1451520 1693440 846720 211680 28224 2016 72 110 3628800 16329600 21772800 12700800 3810240 635040 60480 3240 90 111 39916800 199584000 299376000 199584000 69854400 13970880 1663200 11880 4950 110 112 479001600 2634508800 4390848000 3293136000 1317254400 307359360 43908480 3920400 217800 7260 132 1The row sums are 1 1 3 13 73 501 4051 37633 displaystyle 1 1 3 13 73 501 4051 37633 dots sequence A000262 in the OEIS Rising and falling factorials EditMain article Falling and rising factorials Let x n displaystyle x n represent the rising factorial x x 1 x 2 x n 1 displaystyle x x 1 x 2 cdots x n 1 and let x n displaystyle x n represent the falling factorial x x 1 x 2 x n 1 displaystyle x x 1 x 2 cdots x n 1 Then x n k 1 n L n k x k displaystyle x n sum k 1 n L n k x k and x n k 1 n 1 n k L n k x k displaystyle x n sum k 1 n 1 n k L n k x k For example x x 1 x 2 6 x 6 x x 1 1 x x 1 x 2 displaystyle x x 1 x 2 color red 6 x color red 6 x x 1 color red 1 x x 1 x 2 andx x 1 x 2 6 x 6 x x 1 1 x x 1 x 2 displaystyle x x 1 x 2 color red 6 x color red 6 x x 1 color red 1 x x 1 x 2 Compare the third row of the table of values Identities and relations EditL n k j n j j k displaystyle L n k sum j left n atop j right left j atop k right where n j displaystyle left n atop j right are the Stirling numbers of the first kind and j k displaystyle left j atop k right are the Stirling numbers of the second kind L 0 0 1 displaystyle L 0 0 1 and L n k 0 displaystyle L n k 0 for all k gt n displaystyle k gt n L n k n 1 k 1 n k n k n 1 k 1 n k n 1 k 1 n k displaystyle L n k n 1 choose k 1 frac n k n choose k frac n 1 k 1 n choose k n 1 choose k 1 n k L n k n n 1 k k 1 1 n k n k 2 k n n k displaystyle L n k frac n n 1 k k 1 cdot frac 1 n k left frac n k right 2 frac k n n k L n k 1 n k k k 1 L n k displaystyle L n k 1 frac n k k k 1 L n k for k gt 0 displaystyle k gt 0 So we have L n 1 n displaystyle L n 1 n L n 2 n 1 n 2 displaystyle L n 2 n 1 n 2 L n 3 n 2 n 1 n 12 displaystyle L n 3 n 2 n 1 n 12 L n n 1 n n 1 displaystyle L n n 1 n n 1 L n n 1 displaystyle L n n 1 L n 1 k n k L n k L n k 1 displaystyle L n 1 k n k L n k L n k 1 where L n 0 0 displaystyle L n 0 0 L n k 0 displaystyle L n k 0 for all k gt n displaystyle k gt n Exponential generating function Edit n k L n k x n n 1 k x 1 x k displaystyle sum n geq k L n k frac x n n frac 1 k left frac x 1 x right k Ordinary generating function Edit n 0 L n k x n x k 1 x k 1 k x displaystyle sum n geq 0 L n k x n x prod k 1 infty frac x k 1 kx Practical application EditIn recent years Lah numbers have been used in steganography for hiding data in images Compared to alternatives such as DCT DFT and DWT it has lower complexity O n log n displaystyle O n log n of calculation of their integer coefficients 6 7 The Lah and Laguerre transforms naturally arise in the perturbative description of the chromatic dispersion 8 9 In Lah Laguerre optics such an approach tremendously speeds up optimization problems See also EditStirling numbers Pascal matrixReferences Edit Lah Ivo 1954 A new kind of numbers and its application in the actuarial mathematics Boletim do Instituto dos Actuarios Portugueses 9 7 15 John Riordan Introduction to Combinatorial Analysis Princeton University Press 1958 reissue 1980 ISBN 978 0 691 02365 6 reprinted again in 2002 by Dover Publications Daboul Siad Mangaldan Jan Spivey Michael Z Taylor Peter J 2013 The Lah Numbers and the nth Derivative of e 1 x displaystyle e 1 over x Mathematics Magazine 86 1 39 47 doi 10 4169 math mag 86 1 039 JSTOR 10 4169 math mag 86 1 039 S2CID 123113404 Petkovsek Marko Pisanski Tomaz Fall 2007 Combinatorial Interpretation of Unsigned Stirling and Lah Numbers Pi Mu Epsilon Journal 12 7 417 424 JSTOR 24340704 Comtet Louis 1974 Advanced Combinatorics Dordrecht Holland Reidel p 156 ISBN 9789027703804 Ghosal Sudipta Kr Mukhopadhyay Souradeep Hossain Sabbir Sarkar Ram 2020 Application of Lah Transform for Security and Privacy of Data through Information Hiding in Telecommunication Transactions on Emerging Telecommunications Technologies 32 2 doi 10 1002 ett 3984 S2CID 225866797 Image Steganography using Lah Transform MathWorks Popmintchev Dimitar Wang Siyang Xiaoshi Zhang Stoev Ventzislav Popmintchev Tenio 2022 10 24 Analytical Lah Laguerre optical formalism for perturbative chromatic dispersion Optics Express 30 22 40779 40808 Bibcode 2022OExpr 3040779P doi 10 1364 OE 457139 PMID 36299007 Popmintchev Dimitar Wang Siyang Xiaoshi Zhang Stoev Ventzislav Popmintchev Tenio 2020 08 30 Theory of the Chromatic Dispersion Revisited arXiv 2011 00066 physics optics Retrieved from https en wikipedia org w index php title Lah number amp oldid 1145392561, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.