fbpx
Wikipedia

Kronos (computer)

Kronos is a series of 32-bit processor equipped printed circuit board systems,[1] and the workstations based thereon,[1] of a proprietary hardware architecture developed in the mid-1980s in Akademgorodok, a research city in Siberia, by the Academy of Sciences of the Soviet Union, Siberian branch, Novosibirsk Computing Center, Modular Asynchronous Developable Systems (MARS) project, Kronos Research Group (KRG).[1][2][3]

Kronos
DeveloperAcademy of Sciences of the Soviet Union, Siberian branch, Novosibirsk Computing Center, Modular Asynchronous Developable Systems (MARS) project, Kronos Research Group (KRG)
Product familyWirth Lilith
Typeworkstation
Release date1988; 36 years ago (1988)
Availabilitynone
DiscontinuedYes
Operating systemExcelsior
CPU32-bit
Displaymonochrome bitmapped
Marketing targetResearch
Websitekronos.ru

History edit

In 1984, the Kronos Research Group (KRG) was founded by four students of the Novosibirsk State University, two from the mathematics department (Dmitry "Leo" Kuznetsov, Alex Nedoria) and two from the physics department (Eugene Tarasov, Vladimir Vasekin). At that time, the main objective was to build home computers for the KRG members.[citation needed]

In 1985, the group joined the Russian fifth generation computer project START, in which Kronos became a platform for developing multiprocessor reconfigurable Modular Asynchronous Developable Systems (MARS),[4] and played a lead role in developing the first Russian full 32-bit workstation and its software.[citation needed]

During 7 years (1984–1991) the group designed and implemented:[citation needed]

  • Kronos 2.1 and 2.2 – 32-bit processor boards for DEC LSI-11
  • Kronos 2.5 – 32-bit processor board for Labtam computers
  • Kronos 2.6 – 32-bit workstation

The project START was finished in 1988. During the post-START years (1988–1991), several Russian industrial organizations expressed interest in continuing the Kronos development and some had been involved in facilitating the construction of Kronos and MARS prototypes, including the design of a Kronos-on-chip. However, changing funding levels and the chaotic economic situation during perestroika kept those plans from being realized.[citation needed]

Architecture edit

The Kronos instruction set architecture was based on Niklaus Wirth's Modula-2 workstation Lilith, developed at the Swiss Federal Institute of Technology (ETH Zurich) of Zürich Switzerland, which in turn was inspired by the Xerox Alto developed at Xerox PARC.[1]

The Modula-2-based Kronos was quite amenable to the basic principles of MARS, as Modula-2 is fundamentally modular, allowing programs to be partitioned into units with relatively well defined interfaces. These interfaces supported separate compiling of modules, and separating of module specifications from their implementation. The primary difference between Lilith and Kronos was that the processor of Lilith was 16-bit, while Kronos was 32-bit and incorporated several extensions to the instruction set to accommodate the inter-processor communication needed in MARS.[citation needed]

Kronos satisfied many aspects of the reduced instruction set computer (RISC) design, although it was not pure RISC: the evaluation stack was used to evaluate expressions and to hold parameters for procedure calls. Since most executed instructions were encoded in a single byte, the object code for Kronos was very compact. Although Kronos was a proprietary processor, it was well suited to applications which were sensitive to high programmability rather than to software compatibility. For example, embedded control systems require fast and reliable design of new original applications for controlling unique objects and processes. Modula-2 was then a perfect language for this purpose, and Kronos was a perfect processor to effectively run the Modula-2 software.[citation needed]

Hardware edit

An advanced version of Kronos was based on a 32-bit stack-type КА1845ВМ1 processor, КА1845ВС1 data processing unit, and УУП memory control unit. All the three were designed and fabricated by КНИИМП, Kiev Research Institute of Microdevices.

  • КА1845ВМ1 had 246 commands, which allowed supporting Modula-2 language. It also featured hardware support of interrupts and process synchronization. The CPU was fabricated in a 2.5 um CMOS technology with two layers of metallization and packaged in a planar 84-pin metal-polymer case. It contains 199 thousands elements and has area of 8.55x8.1 mm^2. The maximum clock frequency is 10 MHz.
  • КА1845ВС1 contained ALU, 8x32 stack, matrix shifter, 16x32 register block, and status flag multiplexers. The amount of addressable memory is 4 GB. The chip area is 5.8x5.25 mm^2, 16 thousand elements.
  • УУП provided operation with virtual memory up to 4 GB. It contains a data cache (128x32), a redirect buffer (128x40), a dynamic RAM controller, and an error detection and correction circuit. Memory access time does nor exceed 100 ns. УУП chip contains 102 thousands elements and has area of 9.1x7.3 mm^2.

Software edit

The Kronos software included:[citation needed]

  • Versions of the proprietary operating system Excelsior
  • Compilers for Modula-2, C, and Fortran
  • CAD systems
  • Other applications

Operating system edit

Excelsior
DeveloperKronos Research Group (KRG)
Written inModula-2
Working stateDiscontinued
Source modelproprietary
Initial release1988; 36 years ago (1988)
Marketing targetResearch
Available inRussian
Update methodCompile from source code
Package managerModula-2 modules
PlatformsKronos
Kernel typeModular
Preceded byMedos-2
Official websitewww.kronos.ru/literature/processors

The Kronos workstation includes an operating system named Excelsior, developed by the Kronos Research Group (KRG). It is a single user system based on Modula-2 modules.[5]

In design, it is similar to the OS Medos-2, developed for the Lilith workstation, at ETH Zurich, by Svend Erik Knudsen with advice from Niklaus Wirth.[6][7]

References edit

  1. ^ a b c d "Kronos: History of a Project" (in Russian). xTech. Retrieved 8 April 2021.
  2. ^ Kuznetsov, D.N.; Nedorya, A.E.; Osipov, A.V.; Tarasov, E.V. (1986). Kotov, V.E. (ed.). "The processor Kronos in a multiprocessor system". Computer Systems and Software (in Russian). Novosibirsk: 13–19.
  3. ^ Wolcott, P.; Goodman, S.E. (September 1988). "High-Speed Computers of the Soviet Union". Computer. 21 (9). Institute of Electrical and Electronics Engineers: 32–41. doi:10.1109/2.14345. S2CID 15721973.
  4. ^ Kotov, V.E. (1991). "Concurrency + modularity + programmability = MARS". Communications of the ACM. 34 (5): 32–45. doi:10.1145/103701.103707. S2CID 10320717.
  5. ^ Kuznetsov, D.N.; Nedorya, A.E.; Tarasov, E.V.; Filippov, V.E. "Kronos: a family of processors for high-level languages". Kronos: History of a Project (in Russian). xTech. Retrieved 13 April 2021.
  6. ^ Knudsen, Svend Erik (1983). Medos-2: A Modula-2 Oriented Operating System for the Personal Computer Lilith (PhD). ETH Zurich. doi:10.3929/ethz-a-000300091.
  7. ^ Knudsen, Svend Erik (25 October 2000). "Medos in Retrospect". In Böszörményi, László; Gutknecht, Jürg; Pomberger, Gustav (eds.). The School of Niklaus Wirth: The Art of Simplicity. Morgan Kaufmann. pp. 69–86. ISBN 978-1558607231. ISBN 1-55860-723-4 & dpunkt, ISBN 3-932588-85-1.

External links edit

  • Official website, history in Russian
  • recovered from Internet Archive
  • A Brief History of Modula and Lilith
  • Acquisition of a Kronos workstation and more by the National Museum of Science and Industry in London
  • Historical source code from Kronos 198x USSR 32-bit workstation
  • (via Internet Archive) runs on Windows-NT; tested thereon successfully. Two logins are possible: sys or guest, both password free. See also: More Documentation of Kronos in Russian

kronos, computer, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, kronos, computer, news, newspapers, books, scholar. This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Kronos computer news newspapers books scholar JSTOR December 2013 Learn how and when to remove this template message Kronos is a series of 32 bit processor equipped printed circuit board systems 1 and the workstations based thereon 1 of a proprietary hardware architecture developed in the mid 1980s in Akademgorodok a research city in Siberia by the Academy of Sciences of the Soviet Union Siberian branch Novosibirsk Computing Center Modular Asynchronous Developable Systems MARS project Kronos Research Group KRG 1 2 3 KronosDeveloperAcademy of Sciences of the Soviet Union Siberian branch Novosibirsk Computing Center Modular Asynchronous Developable Systems MARS project Kronos Research Group KRG Product familyWirth LilithTypeworkstationRelease date1988 36 years ago 1988 AvailabilitynoneDiscontinuedYesOperating systemExcelsiorCPU32 bitDisplaymonochrome bitmappedMarketing targetResearchWebsitekronos wbr ru Contents 1 History 2 Architecture 3 Hardware 4 Software 4 1 Operating system 5 References 6 External linksHistory editIn 1984 the Kronos Research Group KRG was founded by four students of the Novosibirsk State University two from the mathematics department Dmitry Leo Kuznetsov Alex Nedoria and two from the physics department Eugene Tarasov Vladimir Vasekin At that time the main objective was to build home computers for the KRG members citation needed In 1985 the group joined the Russian fifth generation computer project START in which Kronos became a platform for developing multiprocessor reconfigurable Modular Asynchronous Developable Systems MARS 4 and played a lead role in developing the first Russian full 32 bit workstation and its software citation needed During 7 years 1984 1991 the group designed and implemented citation needed Kronos 2 1 and 2 2 32 bit processor boards for DEC LSI 11 Kronos 2 5 32 bit processor board for Labtam computers Kronos 2 6 32 bit workstationThe project START was finished in 1988 During the post START years 1988 1991 several Russian industrial organizations expressed interest in continuing the Kronos development and some had been involved in facilitating the construction of Kronos and MARS prototypes including the design of a Kronos on chip However changing funding levels and the chaotic economic situation during perestroika kept those plans from being realized citation needed Architecture editThe Kronos instruction set architecture was based on Niklaus Wirth s Modula 2 workstation Lilith developed at the Swiss Federal Institute of Technology ETH Zurich of Zurich Switzerland which in turn was inspired by the Xerox Alto developed at Xerox PARC 1 The Modula 2 based Kronos was quite amenable to the basic principles of MARS as Modula 2 is fundamentally modular allowing programs to be partitioned into units with relatively well defined interfaces These interfaces supported separate compiling of modules and separating of module specifications from their implementation The primary difference between Lilith and Kronos was that the processor of Lilith was 16 bit while Kronos was 32 bit and incorporated several extensions to the instruction set to accommodate the inter processor communication needed in MARS citation needed Kronos satisfied many aspects of the reduced instruction set computer RISC design although it was not pure RISC the evaluation stack was used to evaluate expressions and to hold parameters for procedure calls Since most executed instructions were encoded in a single byte the object code for Kronos was very compact Although Kronos was a proprietary processor it was well suited to applications which were sensitive to high programmability rather than to software compatibility For example embedded control systems require fast and reliable design of new original applications for controlling unique objects and processes Modula 2 was then a perfect language for this purpose and Kronos was a perfect processor to effectively run the Modula 2 software citation needed Hardware editAn advanced version of Kronos was based on a 32 bit stack type KA1845VM1 processor KA1845VS1 data processing unit and UUP memory control unit All the three were designed and fabricated by KNIIMP Kiev Research Institute of Microdevices KA1845VM1 had 246 commands which allowed supporting Modula 2 language It also featured hardware support of interrupts and process synchronization The CPU was fabricated in a 2 5 um CMOS technology with two layers of metallization and packaged in a planar 84 pin metal polymer case It contains 199 thousands elements and has area of 8 55x8 1 mm 2 The maximum clock frequency is 10 MHz KA1845VS1 contained ALU 8x32 stack matrix shifter 16x32 register block and status flag multiplexers The amount of addressable memory is 4 GB The chip area is 5 8x5 25 mm 2 16 thousand elements UUP provided operation with virtual memory up to 4 GB It contains a data cache 128x32 a redirect buffer 128x40 a dynamic RAM controller and an error detection and correction circuit Memory access time does nor exceed 100 ns UUP chip contains 102 thousands elements and has area of 9 1x7 3 mm 2 Software editThe Kronos software included citation needed Versions of the proprietary operating system Excelsior Compilers for Modula 2 C and Fortran CAD systems Other applicationsOperating system edit ExcelsiorDeveloperKronos Research Group KRG Written inModula 2Working stateDiscontinuedSource modelproprietaryInitial release1988 36 years ago 1988 Marketing targetResearchAvailable inRussianUpdate methodCompile from source codePackage managerModula 2 modulesPlatformsKronosKernel typeModularPreceded byMedos 2Official websitewww wbr kronos wbr ru wbr literature wbr processorsThe Kronos workstation includes an operating system named Excelsior developed by the Kronos Research Group KRG It is a single user system based on Modula 2 modules 5 In design it is similar to the OS Medos 2 developed for the Lilith workstation at ETH Zurich by Svend Erik Knudsen with advice from Niklaus Wirth 6 7 References edit a b c d Kronos History of a Project in Russian xTech Retrieved 8 April 2021 Kuznetsov D N Nedorya A E Osipov A V Tarasov E V 1986 Kotov V E ed The processor Kronos in a multiprocessor system Computer Systems and Software in Russian Novosibirsk 13 19 Wolcott P Goodman S E September 1988 High Speed Computers of the Soviet Union Computer 21 9 Institute of Electrical and Electronics Engineers 32 41 doi 10 1109 2 14345 S2CID 15721973 Kotov V E 1991 Concurrency modularity programmability MARS Communications of the ACM 34 5 32 45 doi 10 1145 103701 103707 S2CID 10320717 Kuznetsov D N Nedorya A E Tarasov E V Filippov V E Kronos a family of processors for high level languages Kronos History of a Project in Russian xTech Retrieved 13 April 2021 Knudsen Svend Erik 1983 Medos 2 A Modula 2 Oriented Operating System for the Personal Computer Lilith PhD ETH Zurich doi 10 3929 ethz a 000300091 Knudsen Svend Erik 25 October 2000 Medos in Retrospect In Boszormenyi Laszlo Gutknecht Jurg Pomberger Gustav eds The School of Niklaus Wirth The Art of Simplicity Morgan Kaufmann pp 69 86 ISBN 978 1558607231 ISBN 1 55860 723 4 amp dpunkt ISBN 3 932588 85 1 External links editOfficial website history in Russian The Kronos Research Group recovered from Internet Archive A Brief History of Modula and Lilith Acquisition of a Kronos workstation and more by the National Museum of Science and Industry in London Historical source code from Kronos 198x USSR 32 bit workstation Emulator for the Kronos workstation via Internet Archive runs on Windows NT tested thereon successfully Two logins are possible sys or guest both password free See also More Documentation of Kronos in Russian Retrieved from https en wikipedia org w index php title Kronos computer amp oldid 1214215308, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.