fbpx
Wikipedia

Kiwa hirsuta

Kiwa hirsuta is a crustacean discovered in 2005 in the South Pacific Ocean.[1] This decapod, which is approximately 15 cm (5.9 in) long, is notable for the quantity of silky blond setae (resembling fur) covering its pereiopods (thoracic legs, including claws). Its discoverers dubbed it the "yeti lobster" or "yeti crab".[2]

Kiwa hirsuta
Scientific classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Malacostraca
Order: Decapoda
Suborder: Pleocyemata
Infraorder: Anomura
Family: Kiwaidae
Genus: Kiwa
Species:
K. hirsuta
Binomial name
Kiwa hirsuta
Macpherson, Jones & Segonzac, 2006

Identification edit

K. hirsuta was discovered in March 2005 by a group organized by Robert Vrijenhoek of the Monterey Bay Aquarium Research Institute in Monterey, California, Michel Segonzac of the Ifremer and a Census of Marine Life scientist using the submarine DSV Alvin, operating from RV Atlantis.[3] The discovery was announced on 7 March 2006. It was found along the Pacific-Antarctic Ridge, 1,500 kilometres (930 mi) south of Easter Island at a depth of 2,200 metres (7,200 ft), living on hydrothermal vents.[1] Based on both morphology and molecular data, the organism was deemed to form a new biological family (Kiwaidae);[4] a second species, Kiwa puravida, was discovered in 2006 and described in 2011.[5] Yeti Crabs live in hydrothermal vents, which are deep within the ocean. These vents provide hot water, which makes up the environment where these crabs live. The crabs regulate their ecosystem by using their hairy arms to collect toxins released from the hydrothermal vents.[6]

Characteristics edit

The animal has strongly reduced eyes that lack pigment, and is thought to be blind. The "hairy" pincers contain filamentous bacteria, which the creature may use to detoxify poisonous minerals from the water emitted by the hydrothermal vents where it lives. This process is known as chemosynthesis. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida has highly modified setae (hairs) on its 3rd maxilliped (a mouth appendage) which it uses to harvest these bacteria. Yeti crabs receive most of their essential nutrients from chemosynthetic episymbiotic bacteria which grows on hairlike setae. This chemosynthetic episymbiotic bacteria can be found growing from numerous areas of their ventral surface as well as their appendages. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts.[7] Alternatively, it may be a carnivore, although it is generally thought to feed on bacteria.[2]

Although it is often referred to as the "furry lobster" outside the scientific literature,[2] Kiwa hirsuta is a squat lobster,[1] more closely related to crabs and hermit crabs than true lobsters. The term "furry lobster" is more commonly used for the family Synaxidae.[8] The "yeti crab" was found in a recently discovered family called the Kiwaidae. This family is closely associated with the two families, Epsilon and Gammaproteobacteria.

Etymology edit

Macpherson et al. named the genus Kiwa after "the god(dess) of the shellfish in the Polynesian mythology." Hirsuta is Latin for "hairy."

Reproduction and life cycle edit

Kiwa hirsuta exhibits a unique reproductive strategy. Unlike many other crustaceans, the females of this species carry their eggs in a specialized brooding structure on their abdomen. The eggs are attached to setae, and the female cares for them until they hatch into larvae. This method of parental care is distinctive among deep-sea organisms.[9]

Genomic studies edit

Genomic studies of Kiwa hirsuta have provided insights into its evolutionary history and adaptation to the extreme environment of hydrothermal vents. The analysis of its genome may offer clues about the genetic basis of its unique characteristics, such as the adaptation to low-light conditions and the utilization of chemosynthetic bacteria for nutrition.[10]

Population dynamics and conservation edit

Studies on the population dynamics of Kiwa hirsuta are ongoing to understand factors such as population size, growth rates, and potential threats to its habitat. Conservation efforts are also being explored to mitigate the impact of deep-sea mining and other human activities on the hydrothermal vent ecosystems where these crabs reside.[10]

Behavioral observations edit

Observations of Kiwa hirsuta in its natural habitat have provided valuable information about its behavior. For example, researchers have documented interactions between individuals, including potential mating behaviors and social dynamics within populations living around hydrothermal vents.[11]

References edit

  1. ^ a b c E. Macpherson, W. Jones & M. Segonzac (2006). "A new squat lobster family of Galatheoidea (Crustacea, Decapoda, Anomura) from the hydrothermal vents of the Pacific–Antarctic Ridge" (PDF). Zoosystema. 27 (4): 709–723.
  2. ^ a b c "'Furry lobster' found in Pacific". BBC News. March 8, 2006.
  3. ^ "Easter Microplate Expedition March 12–April 6, 2005". Monterey Bay Aquarium Research Institute.
  4. ^ Cornelia Dean (March 14, 2006). "In the deep, deep sea, the 'yeti crab'". New York Times. Retrieved December 6, 2010.
  5. ^ Andrew R. Thurber, William J. Jones & Kareen Schnabel (2011). "Dancing for food in the deep sea: bacterial farming by a new species of yeti crab". PLOS ONE. 6 (11): e26243. Bibcode:2011PLoSO...626243T. doi:10.1371/journal.pone.0026243. PMC 3227565. PMID 22140426.
  6. ^ Thurber, Andrew R.; Jones, William J.; Schnabel, Kareen (2011-11-30). "Dancing for Food in the Deep Sea: Bacterial Farming by a New Species of Yeti Crab". PLOS ONE. 6 (11): e26243. Bibcode:2011PLoSO...626243T. doi:10.1371/journal.pone.0026243. ISSN 1932-6203. PMC 3227565. PMID 22140426.
  7. ^ Thurber Andrew R (2011). "Dancing for Food in the Deep Sea: Bacterial Farming by a New Species of Yeti Crab". PLOS ONE. 6 (11): e26243. Bibcode:2011PLoSO...626243T. doi:10.1371/journal.pone.0026243. PMC 3227565. PMID 22140426.
  8. ^ Thurber, Andrew R. (November 30, 2011). "Dancing for Food in the Deep Sea: Bacterial Farming by a New Species of Yeti Crab". PLOS ONE. 6 (11): e26243. Bibcode:2011PLoSO...626243T. CiteSeerX 10.1.1.288.5286. doi:10.1371/journal.pone.0026243. PMC 3227565. PMID 22140426.
  9. ^ Ruppert, Edward E. "Invertebrate zoology : a functional evolutionary approach". (No Title).
  10. ^ a b Roterman, C. N.; Copley, J. T.; Linse, K. T.; Tyler, P. A.; Rogers, A. D. (2013-08-07). "The biogeography of the yeti crabs (Kiwaidae) with notes on the phylogeny of the Chirostyloidea (Decapoda: Anomura)". Proceedings of the Royal Society B: Biological Sciences. 280 (1764): 20130718. doi:10.1098/rspb.2013.0718. ISSN 0962-8452. PMC 3712414. PMID 23782878.
  11. ^ admin (2018-08-11). "Yeti Crabs: Characteristics, alimentation habits,habitat and more..." Discovering All Marine Species (in Spanish). Retrieved 2023-09-28.

Goffredi, Shana K.; Gregory, Ann; Jones, William J.; Morella, Norma M.; Sakamoto, Reid I. (2014). "Ontogenetic variation in epibiont community structure in the deep‐sea yeti crab, Kiwa puravida: Convergence among crustaceans". Molecular Ecology. 23 (6): 1457–1472. doi:10.1111/mec.12439. PMID 23952239. S2CID 206180217.


Further reading edit

  • Goffredi, Shana K.; Jones, William J.; Erhich, Hermann; Springer, Armin; Vrijenhoek, Robert C. (2008). "Epibiotic bacteria associated with the recently discovered yeti crab, Kiwa hirsuta". Environmental Microbiology. 10 (10): 2623–2634. doi:10.1111/j.1462-2920.2008.01684.x. PMID 18564185.
  • C. N. Roterman; J. T. Copley; K. T. Linse; P. A. Tyler; A. D. Rogers (2013). "The biogeography of the yeti crabs (Kiwaidae) with notes on the phylogeny of the Chirostyloidea (Decapoda: Anomura)". Proceedings of the Royal Society B: Biological Sciences. 280 (1764): 20130718. doi:10.1098/rspb.2013.0718. PMC 3712414. PMID 23782878.

Goffredi, Shana K.; Gregory, Ann; Jones, William J.; Morella, Norma M.; Sakamoto, Reid I. (2014). "Ontogenetic variation in epibiont community structure in the deep‐sea yeti crab, Kiwa puravida: Convergence among crustaceans". Molecular Ecology. 23 (6): 1457–1472. doi:10.1111/mec.12439. PMID 23952239. S2CID 206180217.


External links edit

  •   Data related to Kiwa hirsuta at Wikispecies.

kiwa, hirsuta, crustacean, discovered, 2005, south, pacific, ocean, this, decapod, which, approximately, long, notable, quantity, silky, blond, setae, resembling, covering, pereiopods, thoracic, legs, including, claws, discoverers, dubbed, yeti, lobster, yeti,. Kiwa hirsuta is a crustacean discovered in 2005 in the South Pacific Ocean 1 This decapod which is approximately 15 cm 5 9 in long is notable for the quantity of silky blond setae resembling fur covering its pereiopods thoracic legs including claws Its discoverers dubbed it the yeti lobster or yeti crab 2 Kiwa hirsutaScientific classificationDomain EukaryotaKingdom AnimaliaPhylum ArthropodaClass MalacostracaOrder DecapodaSuborder PleocyemataInfraorder AnomuraFamily KiwaidaeGenus KiwaSpecies K hirsutaBinomial nameKiwa hirsutaMacpherson Jones amp Segonzac 2006 Contents 1 Identification 2 Characteristics 3 Etymology 4 Reproduction and life cycle 5 Genomic studies 6 Population dynamics and conservation 7 Behavioral observations 8 References 9 Further reading 10 External linksIdentification editK hirsuta was discovered in March 2005 by a group organized by Robert Vrijenhoek of the Monterey Bay Aquarium Research Institute in Monterey California Michel Segonzac of the Ifremer and a Census of Marine Life scientist using the submarine DSV Alvin operating from RV Atlantis 3 The discovery was announced on 7 March 2006 It was found along the Pacific Antarctic Ridge 1 500 kilometres 930 mi south of Easter Island at a depth of 2 200 metres 7 200 ft living on hydrothermal vents 1 Based on both morphology and molecular data the organism was deemed to form a new biological family Kiwaidae 4 a second species Kiwa puravida was discovered in 2006 and described in 2011 5 Yeti Crabs live in hydrothermal vents which are deep within the ocean These vents provide hot water which makes up the environment where these crabs live The crabs regulate their ecosystem by using their hairy arms to collect toxins released from the hydrothermal vents 6 Characteristics editThe animal has strongly reduced eyes that lack pigment and is thought to be blind The hairy pincers contain filamentous bacteria which the creature may use to detoxify poisonous minerals from the water emitted by the hydrothermal vents where it lives This process is known as chemosynthesis Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab s main food source and K puravida has highly modified setae hairs on its 3rd maxilliped a mouth appendage which it uses to harvest these bacteria Yeti crabs receive most of their essential nutrients from chemosynthetic episymbiotic bacteria which grows on hairlike setae This chemosynthetic episymbiotic bacteria can be found growing from numerous areas of their ventral surface as well as their appendages The e and g proteobacteria that this methane seep species farms are closely related to hydrothermal vent decapod epibionts 7 Alternatively it may be a carnivore although it is generally thought to feed on bacteria 2 Although it is often referred to as the furry lobster outside the scientific literature 2 Kiwa hirsuta is a squat lobster 1 more closely related to crabs and hermit crabs than true lobsters The term furry lobster is more commonly used for the family Synaxidae 8 The yeti crab was found in a recently discovered family called the Kiwaidae This family is closely associated with the two families Epsilon and Gammaproteobacteria Etymology editMacpherson et al named the genus Kiwa after the god dess of the shellfish in the Polynesian mythology Hirsuta is Latin for hairy Reproduction and life cycle editKiwa hirsuta exhibits a unique reproductive strategy Unlike many other crustaceans the females of this species carry their eggs in a specialized brooding structure on their abdomen The eggs are attached to setae and the female cares for them until they hatch into larvae This method of parental care is distinctive among deep sea organisms 9 Genomic studies editGenomic studies of Kiwa hirsuta have provided insights into its evolutionary history and adaptation to the extreme environment of hydrothermal vents The analysis of its genome may offer clues about the genetic basis of its unique characteristics such as the adaptation to low light conditions and the utilization of chemosynthetic bacteria for nutrition 10 Population dynamics and conservation editStudies on the population dynamics of Kiwa hirsuta are ongoing to understand factors such as population size growth rates and potential threats to its habitat Conservation efforts are also being explored to mitigate the impact of deep sea mining and other human activities on the hydrothermal vent ecosystems where these crabs reside 10 Behavioral observations editObservations of Kiwa hirsuta in its natural habitat have provided valuable information about its behavior For example researchers have documented interactions between individuals including potential mating behaviors and social dynamics within populations living around hydrothermal vents 11 References edit a b c E Macpherson W Jones amp M Segonzac 2006 A new squat lobster family of Galatheoidea Crustacea Decapoda Anomura from the hydrothermal vents of the Pacific Antarctic Ridge PDF Zoosystema 27 4 709 723 a b c Furry lobster found in Pacific BBC News March 8 2006 Easter Microplate Expedition March 12 April 6 2005 Monterey Bay Aquarium Research Institute Cornelia Dean March 14 2006 In the deep deep sea the yeti crab New York Times Retrieved December 6 2010 Andrew R Thurber William J Jones amp Kareen Schnabel 2011 Dancing for food in the deep sea bacterial farming by a new species of yeti crab PLOS ONE 6 11 e26243 Bibcode 2011PLoSO 626243T doi 10 1371 journal pone 0026243 PMC 3227565 PMID 22140426 Thurber Andrew R Jones William J Schnabel Kareen 2011 11 30 Dancing for Food in the Deep Sea Bacterial Farming by a New Species of Yeti Crab PLOS ONE 6 11 e26243 Bibcode 2011PLoSO 626243T doi 10 1371 journal pone 0026243 ISSN 1932 6203 PMC 3227565 PMID 22140426 Thurber Andrew R 2011 Dancing for Food in the Deep Sea Bacterial Farming by a New Species of Yeti Crab PLOS ONE 6 11 e26243 Bibcode 2011PLoSO 626243T doi 10 1371 journal pone 0026243 PMC 3227565 PMID 22140426 Thurber Andrew R November 30 2011 Dancing for Food in the Deep Sea Bacterial Farming by a New Species of Yeti Crab PLOS ONE 6 11 e26243 Bibcode 2011PLoSO 626243T CiteSeerX 10 1 1 288 5286 doi 10 1371 journal pone 0026243 PMC 3227565 PMID 22140426 Ruppert Edward E Invertebrate zoology a functional evolutionary approach No Title a b Roterman C N Copley J T Linse K T Tyler P A Rogers A D 2013 08 07 The biogeography of the yeti crabs Kiwaidae with notes on the phylogeny of the Chirostyloidea Decapoda Anomura Proceedings of the Royal Society B Biological Sciences 280 1764 20130718 doi 10 1098 rspb 2013 0718 ISSN 0962 8452 PMC 3712414 PMID 23782878 admin 2018 08 11 Yeti Crabs Characteristics alimentation habits habitat and more Discovering All Marine Species in Spanish Retrieved 2023 09 28 Goffredi Shana K Gregory Ann Jones William J Morella Norma M Sakamoto Reid I 2014 Ontogenetic variation in epibiont community structure in the deep sea yeti crab Kiwa puravida Convergence among crustaceans Molecular Ecology 23 6 1457 1472 doi 10 1111 mec 12439 PMID 23952239 S2CID 206180217 Further reading editGoffredi Shana K Jones William J Erhich Hermann Springer Armin Vrijenhoek Robert C 2008 Epibiotic bacteria associated with the recently discovered yeti crab Kiwa hirsuta Environmental Microbiology 10 10 2623 2634 doi 10 1111 j 1462 2920 2008 01684 x PMID 18564185 C N Roterman J T Copley K T Linse P A Tyler A D Rogers 2013 The biogeography of the yeti crabs Kiwaidae with notes on the phylogeny of the Chirostyloidea Decapoda Anomura Proceedings of the Royal Society B Biological Sciences 280 1764 20130718 doi 10 1098 rspb 2013 0718 PMC 3712414 PMID 23782878 Goffredi Shana K Gregory Ann Jones William J Morella Norma M Sakamoto Reid I 2014 Ontogenetic variation in epibiont community structure in the deep sea yeti crab Kiwa puravida Convergence among crustaceans Molecular Ecology 23 6 1457 1472 doi 10 1111 mec 12439 PMID 23952239 S2CID 206180217 External links edit nbsp Data related to Kiwa hirsuta at Wikispecies Retrieved from https en wikipedia org w index php title Kiwa hirsuta amp oldid 1213679501, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.