fbpx
Wikipedia

Kaprekar's routine

In number theory, Kaprekar's routine is an iterative algorithm named after its inventor, Indian mathematician D. R. Kaprekar. Each iteration starts with a number, sorts the digits into descending and ascending order, and calculates the difference between the two new numbers.

As an example, starting with the number 8991 in base 10:

9981 – 1899 = 8082
8820 – 0288 = 8532
8532 – 2358 = 6174
7641 – 1467 = 6174

6174, known as Kaprekar's constant, is a fixed point of this algorithm. Any four-digit number (in base 10) with at least two distinct digits will reach 6174 within seven iterations.[1] The algorithm runs on any natural number in any given number base.

Definition and properties edit

The algorithm is as follows:[2]

  1. Choose any natural number   in a given number base  . This is the first number of the sequence.
  2. Create a new number   by sorting the digits of   in descending order, and another number   by sorting the digits of   in ascending order. These numbers may have leading zeros, which can be ignored. Subtract   to produce the next number of the sequence.
  3. Repeat step 2.

The sequence is called a Kaprekar sequence and the function   is the Kaprekar mapping. Some numbers map to themselves; these are the fixed points of the Kaprekar mapping,[3] and are called Kaprekar's constants. Zero is a Kaprekar's constant for all bases  , and so is called a trivial Kaprekar's constant. All other Kaprekar's constant are nontrivial Kaprekar's constants.

For example, in base 10, starting with 3524,

 
 
 
 

with 6174 as a Kaprekar's constant.

All Kaprekar sequences will either reach one of these fixed points or will result in a repeating cycle. Either way, the end result is reached in a fairly small number of steps.

Note that the numbers   and   have the same digit sum and hence the same remainder modulo  . Therefore, each number in a Kaprekar sequence of base   numbers (other than possibly the first) is a multiple of  .

When leading zeroes are retained, only repdigits lead to the trivial Kaprekar's constant.

Families of Kaprekar's constants edit

In base 4, it can easily be shown that all numbers of the form 3021, 310221, 31102221, 3...111...02...222...1 (where the length of the "1" sequence and the length of the "2" sequence are the same) are fixed points of the Kaprekar mapping.

In base 10, it can easily be shown that all numbers of the form 6174, 631764, 63317664, 6...333...17...666...4 (where the length of the "3" sequence and the length of the "6" sequence are the same) are fixed points of the Kaprekar mapping.

b = 2k edit

It can be shown that all natural numbers

 

are fixed points of the Kaprekar mapping in even base b = 2k for all natural numbers n.

Proof

 

 

 

Perfect digital invariants
k b m
1 2 011, 101101, 110111001, 111011110001...
2 4 132, 213312, 221333112, 222133331112...
3 6 253, 325523, 332555223, 333255552223...
4 8 374, 437734, 443777334, 444377773334...
5 10 495, 549945, 554999445, 555499994445...
6 12 5B6, 65BB56, 665BBB556, 6665BBBB5556...
7 14 6D7, 76DD67, 776DDD667, 7776DDDD6667...
8 16 7F8, 87FF78, 887FFF778, 8887FFeFF7778...
9 18 8H9, 98HH89, 998HHH889, 9998HHHH8889...

Kaprekar's constants and cycles of the Kaprekar mapping for specific base b edit

All numbers are expressed in base b, using A−Z to represent digit values 10 to 35.

Base b Digit length Nontrivial (nonzero) Kaprekar's constants Cycles
2 2 01[note 1]
3 011[note 1]
4 0111,[note 1] 1001
5 01111,[note 1] 10101
6 011111,[note 1] 101101, 110001
7 0111111,[note 1] 1011101, 1101001
8 01111111,[note 1] 10111101, 11011001, 11100001
9 011111111,[note 1] 101111101, 110111001, 111010001
3 2
3 022 → 121 → 022[note 1]
4 1012 → 1221 → 1012
5 20211
6 102212 → 210111 → 122221 → 102212
7 2202101 2022211 → 2102111 → 2022211
8 21022111
9 222021001

220222101 → 221021101 → 220222101

202222211 → 210222111 → 211021111 → 202222211

4 2 03 → 21 → 03[note 1]
3 132
4 3021 1332 → 2022 → 1332
5 20322 → 23331 → 20322
6 213312, 310221, 330201
7 3203211
8 31102221, 33102201, 33302001 22033212 → 31333311 → 22133112 → 22033212
9 221333112, 321032211, 332032101
5 2 13
3 143 → 242 → 143
4 3032
6 2 05 → 41 → 23 → 05[note 1]
3 253
4 1554 → 4042 → 4132 → 3043 → 3552 → 3133 → 1554
5 41532 31533 → 35552 → 31533
6 325523, 420432, 530421 205544 → 525521 → 432222 → 205544
7 4405412 → 5315321 → 4405412
8 43155322, 55304201

31104443 → 43255222 → 33204323 → 41055442 → 54155311 → 44404112 → 43313222 → 31104443

42104432 → 43204322 → 42104432

53104421 → 53304221 → 53104421

7 2
3 264 → 363 → 264
4 3054 → 5052 → 5232 → 3054
8 2 25 07 → 61 → 43 → 07[note 1]
3 374
4

1776 → 6062 → 6332 → 3774 → 4244 → 1776

3065 → 6152 → 5243 → 3065

5

42744 → 47773 → 42744

51753 → 61752 → 63732 → 52743 → 51753

6 437734, 640632 310665 → 651522 → 532443 → 310665
9 2 17 → 53 → 17
3 385 → 484 → 385
4

3076 → 7252 → 5254 → 3076

5074 → 7072 → 7432 → 5074

10[4] 2 09 → 81 → 63 → 27 → 45 → 09[note 1]
3 495
4 6174
5

53955 → 59994 → 53955

61974 → 82962 → 75933 → 63954 → 61974

62964 → 71973 → 83952 → 74943 → 62964

6 549945, 631764 420876 → 851742 → 750843 → 840852 → 860832 → 862632 → 642654 → 420876
7 7509843 → 9529641 → 8719722 → 8649432 → 7519743 → 8429652 → 7619733 → 8439552 → 7509843
8 63317664, 97508421 43208766 → 85317642 → 75308643 → 84308652 → 86308632 → 86326632 → 64326654 → 43208766

64308654 → 83208762 → 86526432 → 64308654

9 554999445, 864197532

865296432 → 763197633 → 844296552 → 762098733 → 964395531 → 863098632 → 965296431 → 873197622 → 865395432 →753098643 → 954197541 → 883098612 → 976494321 → 874197522 → 865296432

10 6333176664, 9753086421, 9975084201 8655264432 → 6431088654 → 8732087622 → 8655264432

8653266432 → 6433086654 → 8332087662 → 8653266432

8765264322 → 6543086544 → 8321088762 → 8765264322

8633086632 → 8633266632 → 6433266654 → 4332087666 → 8533176642 → 7533086643 → 8433086652 → 8633086632

9775084221 → 9755084421 → 9751088421 → 9775084221

11 2 37
3 4A6 → 5A5 → 4A6
4

3098 → 9452 → 7094 → 9272 → 7454 → 3098

5096 → 9092 → 9632 → 7274 → 5276 → 5096

12 2 0B → A1 → 83 → 47 → 29 → 65 → 0B[note 1]
3 5B6
4

3BB8 → 8284 → 6376 → 3BB8

4198 → 8374 → 5287 → 6196 → 7BB4 → 7375 → 4198

5 83B74 64B66 → 6BBB5 → 64B66
6 65BB56 420A98 → A73742 → 842874 → 642876 → 62BB86 → 951963 → 860A54 → A40A72 → A82832 → 864654 → 420A98
7 962B853 841B974 → A53B762 → 971B943 → A64B652 → 960BA53 → B73B741 → A82B832 → 984B633 → 863B754 → 841B974
8 873BB744, A850A632 4210AA98 → A9737422 → 87428744 → 64328876 → 652BB866 → 961BB953 → A8428732 → 86528654 → 6410AA76 → A92BB822 → 9980A323 → A7646542 → 8320A984 → A7537642 → 8430A874 → A5428762 → 8630A854 → A540X762 → A830A832 → A8546632 → 8520A964 → A740A742 → A8328832 → 86546654
13 2 1B → 93 → 57 → 1B
3 5C7 → 6C6 → 5C7
14 2 49

2B → 85 → 2B

0D → C1 → A3 → 67 → 0D[note 1]

3 6D7
15 2
3 6E8 → 7E7 → 6E8
16[5] 2

2D → A5 → 4B → 69 → 2D

0F → E1 → C3 → 87 → 0F[note 1]

3 7F8
4

3FFC → C2C4 → A776 → 3FFC

A596 → 52CB → A596

E0E2 → EB32 → C774 → 7FF8 → 8688 → 1FFE → E0E2

E952 → C3B4 → 9687 → 30ED → E952

5

86F88 → 8FFF7 → 86F88

A3FB6 → C4FA4 → B7F75 → A3FB6

A4FA6 → B3FB5 → C5F94 → B6F85 → A4FA6

6 87FF78

310EED → ED9522 → CB3B44 → 976887 → 310EED

532CCB → A95966 → 532CCB

840EB8 → E6FF82 → D95963 → A42CB6 → A73B86 → 840EB8

A80E76 → E40EB2 → EC6832 → C91D64 → C82C74 → A80E76

C60E94 → E82C72 → CA0E54 → E84A72 → C60E94

7 C83FB74

B62FC95 → D74FA83 → C92FC64 → D85F973 → C81FD74 → E94FA62 → DA3FB53 → CA5F954 → B74FA85 → B62FC95

B71FD85 → E83FB72 → DB3FB43 → CA6F854 → B73FB85 → C63FB94 → C84FA74 → B82FC75 → D73FB83 → CA3FB54 → C85F974 → B71FD85

8

3110EEED → EDD95222 → CBB3B444 → 97768887 → 3110EEED

5332CCCB → A9959666 → 5332CCCB

7530ECA9 → E951DA62 → DB52CA43 → B974A865 → 7530ECA9

A832CC76 → A940EB66 → E742CB82 → CA70E854 → E850EA72 → EC50EA32 → EC94A632 → C962C964 → A832CC76

C610EE94 → ED82C722 → CBA0E544 → E874A872 → C610EE94

C630EC94 → E982C762 → CA30EC54 → E984A762 → C630EC94

C650EA94 → E852CA72 → CA50EA54 → E854AA72 → C650EA94

CA10EE54 → ED84A722 → CB60E944 → E872C872 → CA10EE54

  1. ^ a b c d e f g h i j k l m n o p Leading zeroes retained.

Kaprekar's constants in base 10 edit

Numbers of length four digits edit

In 1949 D. R. Kaprekar discovered[6] that if the above process is applied to four-digit numbers in base 10, the sequence converges to 6174 within seven iterations or, more rarely, converges to 0. The number 6174 is the first Kaprekar's constant to be discovered, and thus is sometimes known as Kaprekar's constant.[7][8][9]

The set of numbers that converge to zero depends on whether leading zeros are discarded (the usual formulation) or are retained (as in Kaprekar's original formulation). In the usual formulation, there are 77 four-digit numbers that converge to zero,[10] for example 2111. However, in Kaprekar's original formulation the leading zeros are retained, and only repdigits such as 1111 or 2222 map to zero. This contrast is illustrated below:

discard leading zeros retain leading zeros

2111 − 1112 = 999
999 − 999 = 0

2111 − 1112 = 0999
9990 − 0999 = 8991
9981 − 1899 = 8082
8820 − 0288 = 8532
8532 − 2358 = 6174

Below is a flowchart. Leading zeros are retained, however the only difference when leading zeros are discarded is that instead of 0999 connecting to 8991, we get 999 connecting to 0.

 
Sequence of Kaprekar transformations ending in 6174

Numbers of length three digits edit

If the Kaprekar routine is applied to numbers of three digits in base 10, the resulting sequence will almost always converge to the value 495 in at most six iterations, except for a small set of initial numbers which converge instead to 0.[7]

The set of numbers that converge to zero depends on whether leading zeros are discarded (the usual formulation) or are retained (as in Kaprekar's original formulation). In the usual formulation, there are 60 three-digit numbers that converge to zero,[11] for example 211. However, in Kaprekar's original formulation the leading zeros are retained, and only repdigits such as 111 or 222 map to zero.

Below is a flowchart. Leading zeros are retained, however the only difference when leading zeros are discarded is that instead of 099 connecting to 891, we get 99 connecting to 0.

 
Sequence of three digit Kaprekar transformations ending in 495

Other digit lengths edit

For digit lengths other than three or four (in base 10), the routine may terminate at one of several fixed points or may enter one of several cycles instead, depending on the starting value of the sequence.[7] See the table in the section above for base 10 fixed points and cycles.

The number of cycles increases rapidly with larger digit lengths, and all but a small handful of these cycles are of length three. For example, for 20-digit numbers in base 10, there are fourteen constants (cycles of length one) and ninety-six cycles of length greater than one, all but two of which are of length three. Odd digit lengths produce fewer different end results than even digit lengths.[12][13]

Programming example edit

The example below implements the Kaprekar mapping described in the definition above to search for Kaprekar's constants and cycles in Python.

import string from collections import deque from collections.abc import Sequence, Generator BASE36_DIGITS = f"{string.digits}{string.ascii_uppercase}" def digit_count(x: int, /, base: int = 10) -> int: count = 0 while x > 0: count += 1 x //= base return count def get_digits(x: int, /, base: int = 10, init_k: int = 0) -> str: if init_k > 0: k = digit_count(x, base) digits = deque() while x > 0: digits.appendleft(BASE36_DIGITS[x % base]) x //= base if init_k > 0: for _ in range(k, init_k): digits.appendleft("0") return "".join(digits) def kaprekar_map(x: int, /, base: int = 10, init_k: int = 0) -> int: digits = "".join(sorted(get_digits(x, base, init_k))) descending = int("".join(reversed(digits)), base) ascending = int(digits, base) return descending - ascending def kaprekar_cycle( x: int | str | bytes | bytearray, /, base: int = 10 ) -> list[int | str]:  """  Return Kaprekar's cycles as list  >>> kaprekar_cycle(8991)  [6174]  >>> kaprekar_cycle(865296432)  [865296432, 763197633, 844296552, 762098733, 964395531, 863098632, 965296431, 873197622, 865395432, 753098643, 954197541, 883098612, 976494321, 874197522]  >>> kaprekar_cycle('09')  [9, 81, 63, 27, 45]  >>> kaprekar_cycle('0F', 16)  ['0F', 'E1', 'C3', '87']  >>> kaprekar_cycle('B71FD85', 16)  ['B71FD85', 'E83FB72', 'DB3FB43', 'CA6F854', 'B73FB85', 'C63FB94', 'C84FA74', 'B82FC75', 'D73FB83', 'CA3FB54', 'C85F974']  """ leading_zeroes_retained = not isinstance(x, int) init_k = len(x) if leading_zeroes_retained else 0 x = int(x) if base == 10 else int(x, base) seen = [] while x not in seen: seen.append(x) x = kaprekar_map(x, base, init_k) cycle = [] while x not in cycle: cycle.append(x) x = kaprekar_map(x, base, init_k) return cycle if base == 10 else [get_digits(x, base, init_k) for x in cycle] if __name__ == "__main__": import doctest doctest.testmod() 

See also edit

Citations edit

  1. ^ Hanover 2017, p. 1, Overview.
  2. ^ Hanover 2017, p. 3, Methodology.
  3. ^ (sequence A099009 in the OEIS)
  4. ^ "Sample Kaprekar Series".
  5. ^ "Sample Kaprekar Series for hexadecimal numbers".
  6. ^ Kaprekar DR (1955). "An Interesting Property of the Number 6174". Scripta Mathematica. 15: 244–245.
  7. ^ a b c Weisstein, Eric W. "Kaprekar Routine". MathWorld.
  8. ^ Yutaka Nishiyama, Mysterious number 6174
  9. ^ Kaprekar DR (1980). "On Kaprekar Numbers". Journal of Recreational Mathematics. 13 (2): 81–82.
  10. ^ (sequence A069746 in the OEIS)
  11. ^ (sequence A090429 in the OEIS)
  12. ^ "Sample Kaprekar Series".
  13. ^ "Playing with Numbers".

References edit

  • Hanover, Daniel (2017). "The Base Dependent Behavior of Kaprekar's Routine: A Theoretical and Computational Study Revealing New Regularities". International Journal of Pure and Applied Mathematics. arXiv:1710.06308.

External links edit

  • Bowley, Roger. "6174 is Kaprekar's Constant". Numberphile. University of Nottingham: Brady Haran. Retrieved 2024-01-17.
  • Working link to YouTube
  • Sample (Perl) code to walk any four-digit number to Kaprekar's Constant

kaprekar, routine, number, theory, iterative, algorithm, named, after, inventor, indian, mathematician, kaprekar, each, iteration, starts, with, number, sorts, digits, into, descending, ascending, order, calculates, difference, between, numbers, example, start. In number theory Kaprekar s routine is an iterative algorithm named after its inventor Indian mathematician D R Kaprekar Each iteration starts with a number sorts the digits into descending and ascending order and calculates the difference between the two new numbers As an example starting with the number 8991 in base 10 9981 1899 8082 8820 0288 8532 8532 2358 6174 7641 1467 61746174 known as Kaprekar s constant is a fixed point of this algorithm Any four digit number in base 10 with at least two distinct digits will reach 6174 within seven iterations 1 The algorithm runs on any natural number in any given number base Contents 1 Definition and properties 2 Families of Kaprekar s constants 2 1 b 2k 3 Kaprekar s constants and cycles of the Kaprekar mapping for specific base b 4 Kaprekar s constants in base 10 4 1 Numbers of length four digits 4 2 Numbers of length three digits 4 3 Other digit lengths 5 Programming example 6 See also 7 Citations 8 References 9 External linksDefinition and properties editThe algorithm is as follows 2 Choose any natural number n displaystyle n nbsp in a given number base b displaystyle b nbsp This is the first number of the sequence Create a new number a displaystyle alpha nbsp by sorting the digits of n displaystyle n nbsp in descending order and another number b displaystyle beta nbsp by sorting the digits of n displaystyle n nbsp in ascending order These numbers may have leading zeros which can be ignored Subtract a b displaystyle alpha beta nbsp to produce the next number of the sequence Repeat step 2 The sequence is called a Kaprekar sequence and the function K b n a b displaystyle K b n alpha beta nbsp is the Kaprekar mapping Some numbers map to themselves these are the fixed points of the Kaprekar mapping 3 and are called Kaprekar s constants Zero is a Kaprekar s constant for all bases b displaystyle b nbsp and so is called a trivial Kaprekar s constant All other Kaprekar s constant are nontrivial Kaprekar s constants For example in base 10 starting with 3524 K 10 3524 5432 2345 3087 displaystyle K 10 3524 5432 2345 3087 nbsp K 10 3087 8730 378 8352 displaystyle K 10 3087 8730 378 8352 nbsp K 10 8352 8532 2358 6174 displaystyle K 10 8352 8532 2358 6174 nbsp K 10 6174 7641 1467 6174 displaystyle K 10 6174 7641 1467 6174 nbsp with 6174 as a Kaprekar s constant All Kaprekar sequences will either reach one of these fixed points or will result in a repeating cycle Either way the end result is reached in a fairly small number of steps Note that the numbers a displaystyle alpha nbsp and b displaystyle beta nbsp have the same digit sum and hence the same remainder modulo b 1 displaystyle b 1 nbsp Therefore each number in a Kaprekar sequence of base b displaystyle b nbsp numbers other than possibly the first is a multiple of b 1 displaystyle b 1 nbsp When leading zeroes are retained only repdigits lead to the trivial Kaprekar s constant Families of Kaprekar s constants editIn base 4 it can easily be shown that all numbers of the form 3021 310221 31102221 3 111 02 222 1 where the length of the 1 sequence and the length of the 2 sequence are the same are fixed points of the Kaprekar mapping In base 10 it can easily be shown that all numbers of the form 6174 631764 63317664 6 333 17 666 4 where the length of the 3 sequence and the length of the 6 sequence are the same are fixed points of the Kaprekar mapping b 2k edit It can be shown that all natural numbers m k b 2 n 3 i 0 n 1 b i k 1 b 2 n 2 2 k 1 b n 1 i 0 n b i k 1 b i 0 n 1 b i k displaystyle m k b 2n 3 left sum i 0 n 1 b i right k 1 b 2n 2 2k 1 b n 1 left sum i 0 n b i right k 1 b left sum i 0 n 1 b i right k nbsp are fixed points of the Kaprekar mapping in even base b 2k for all natural numbers n Proof a 2 k 1 b 2 n 2 i 0 n b i k b n 1 i 0 n b i k 1 i 0 n b i displaystyle alpha 2k 1 b 2n 2 left sum i 0 n b i right k b n 1 left sum i 0 n b i right k 1 left sum i 0 n b i right nbsp b k 1 b 2 n 2 i 0 n b i k b n 1 i 0 n b i 2 k 1 i 0 n b i displaystyle beta k 1 b 2n 2 left sum i 0 n b i right k b n 1 left sum i 0 n b i right 2k 1 left sum i 0 n b i right nbsp K b m a b 2 k 1 k 1 b 2 n 2 i 0 n b i k k b n 1 i 0 n b i k 1 2 k 1 i 0 n b i k b 2 n 2 i 0 n b i k i 0 n b i k b 2 n 3 i 0 n b i k 1 b 2 n 2 b 2 n 2 k i 0 n b i k b 2 n 3 i 0 n b i k 1 b 2 n 2 2 k b 2 n 1 k i 0 n b i k b 2 n 3 i 0 n b i k 1 b 2 n 2 2 k 1 b 2 n 1 b 2 n 1 k i 0 n b i k b 2 n 3 i 0 n b i k 1 b 2 n 2 2 k 1 b 2 n 1 1 i 0 1 b i b 2 n 1 1 k i 0 n b i k b 2 n 3 i 0 n b i k 1 b 2 n 2 2 k 1 b 2 n 1 n i 0 n b i b 2 n 1 n k i 0 n b i k b 2 n 3 i 0 n b i k 1 b 2 n 2 2 k 1 b n 1 i 0 n b i b n 1 k i 0 n b i k b 2 n 3 i 0 n b i k 1 b 2 n 2 2 k 1 b n 1 i 0 n b i 2 k b n k i 0 n b i k b 2 n 3 i 0 n b i k 1 b 2 n 2 2 k 1 b n 1 i 0 n b i k b n k i 0 n 1 b i k b 2 n 3 i 0 n b i k 1 b 2 n 2 2 k 1 b n 1 i 0 n b i k 1 b n 1 1 b n 1 1 k i 0 n n b i k b 2 n 3 i 0 n b i k 1 b 2 n 2 2 k 1 b n 1 i 0 n b i k 1 b n 1 n i 0 n b i b n 1 n k i 0 n n b i k b 2 n 3 i 0 n b i k 1 b 2 n 2 2 k 1 b n 1 i 0 n b i k 1 b i 0 n b i b k k b 2 n 3 i 0 n b i k 1 b 2 n 2 2 k 1 b n 1 i 0 n b i k 1 b i 0 n b i 2 k k k b 2 n 3 i 0 n b i k 1 b 2 n 2 2 k 1 b n 1 i 0 n b i k 1 b i 0 n b i k m displaystyle begin aligned K b m amp alpha beta amp 2k 1 k 1 b 2n 2 left sum i 0 n b i right k k b n 1 left sum i 0 n b i right k 1 2k 1 left sum i 0 n b i right amp kb 2n 2 left sum i 0 n b i right k left sum i 0 n b i right amp kb 2n 3 left sum i 0 n b i right k 1 b 2n 2 b 2n 2 k left sum i 0 n b i right amp kb 2n 3 left sum i 0 n b i right k 1 b 2n 2 2k b 2n 1 k left sum i 0 n b i right amp kb 2n 3 left sum i 0 n b i right k 1 b 2n 2 2k 1 b 2n 1 b 2n 1 k left sum i 0 n b i right amp kb 2n 3 left sum i 0 n b i right k 1 b 2n 2 2k 1 b 2n 1 1 left sum i 0 1 b i right b 2n 1 1 k left sum i 0 n b i right amp kb 2n 3 left sum i 0 n b i right k 1 b 2n 2 2k 1 b 2n 1 n left sum i 0 n b i right b 2n 1 n k left sum i 0 n b i right amp kb 2n 3 left sum i 0 n b i right k 1 b 2n 2 2k 1 b n 1 left sum i 0 n b i right b n 1 k left sum i 0 n b i right amp kb 2n 3 left sum i 0 n b i right k 1 b 2n 2 2k 1 b n 1 left sum i 0 n b i right 2k b n k left sum i 0 n b i right amp kb 2n 3 left sum i 0 n b i right k 1 b 2n 2 2k 1 b n 1 left sum i 0 n b i right kb n k left sum i 0 n 1 b i right amp kb 2n 3 left sum i 0 n b i right k 1 b 2n 2 2k 1 b n 1 left sum i 0 n b i right k 1 b n 1 1 b n 1 1 k left sum i 0 n n b i right amp kb 2n 3 left sum i 0 n b i right k 1 b 2n 2 2k 1 b n 1 left sum i 0 n b i right k 1 b n 1 n left sum i 0 n b i right b n 1 n k left sum i 0 n n b i right amp kb 2n 3 left sum i 0 n b i right k 1 b 2n 2 2k 1 b n 1 left sum i 0 n b i right k 1 b left sum i 0 n b i right b k amp kb 2n 3 left sum i 0 n b i right k 1 b 2n 2 2k 1 b n 1 left sum i 0 n b i right k 1 b left sum i 0 n b i right 2k k amp kb 2n 3 left sum i 0 n b i right k 1 b 2n 2 2k 1 b n 1 left sum i 0 n b i right k 1 b left sum i 0 n b i right k amp m end aligned nbsp Perfect digital invariants k b m1 2 011 101101 110111001 111011110001 2 4 132 213312 221333112 222133331112 3 6 253 325523 332555223 333255552223 4 8 374 437734 443777334 444377773334 5 10 495 549945 554999445 555499994445 6 12 5B6 65BB56 665BBB556 6665BBBB5556 7 14 6D7 76DD67 776DDD667 7776DDDD6667 8 16 7F8 87FF78 887FFF778 8887FFeFF7778 9 18 8H9 98HH89 998HHH889 9998HHHH8889 Kaprekar s constants and cycles of the Kaprekar mapping for specific base b editAll numbers are expressed in base b using A Z to represent digit values 10 to 35 Base b Digit length Nontrivial nonzero Kaprekar s constants Cycles2 2 01 note 1 3 011 note 1 4 0111 note 1 1001 5 01111 note 1 10101 6 011111 note 1 101101 110001 7 0111111 note 1 1011101 1101001 8 01111111 note 1 10111101 11011001 11100001 9 011111111 note 1 101111101 110111001 111010001 3 2 3 022 121 022 note 1 4 1012 1221 10125 20211 6 102212 210111 122221 1022127 2202101 2022211 2102111 20222118 21022111 9 222021001 220222101 221021101 220222101202222211 210222111 211021111 2022222114 2 03 21 03 note 1 3 132 4 3021 1332 2022 13325 20322 23331 203226 213312 310221 330201 7 3203211 8 31102221 33102201 33302001 22033212 31333311 22133112 220332129 221333112 321032211 332032101 5 2 13 3 143 242 1434 3032 6 2 05 41 23 05 note 1 3 253 4 1554 4042 4132 3043 3552 3133 15545 41532 31533 35552 315336 325523 420432 530421 205544 525521 432222 2055447 4405412 5315321 44054128 43155322 55304201 31104443 43255222 33204323 41055442 54155311 44404112 43313222 3110444342104432 43204322 4210443253104421 53304221 531044217 2 3 264 363 2644 3054 5052 5232 30548 2 25 07 61 43 07 note 1 3 374 4 1776 6062 6332 3774 4244 17763065 6152 5243 30655 42744 47773 4274451753 61752 63732 52743 517536 437734 640632 310665 651522 532443 3106659 2 17 53 173 385 484 3854 3076 7252 5254 30765074 7072 7432 507410 4 2 09 81 63 27 45 09 note 1 3 495 4 6174 5 53955 59994 5395561974 82962 75933 63954 6197462964 71973 83952 74943 629646 549945 631764 420876 851742 750843 840852 860832 862632 642654 4208767 7509843 9529641 8719722 8649432 7519743 8429652 7619733 8439552 75098438 63317664 97508421 43208766 85317642 75308643 84308652 86308632 86326632 64326654 43208766 64308654 83208762 86526432 643086549 554999445 864197532 865296432 763197633 844296552 762098733 964395531 863098632 965296431 873197622 865395432 753098643 954197541 883098612 976494321 874197522 86529643210 6333176664 9753086421 9975084201 8655264432 6431088654 8732087622 8655264432 8653266432 6433086654 8332087662 86532664328765264322 6543086544 8321088762 87652643228633086632 8633266632 6433266654 4332087666 8533176642 7533086643 8433086652 86330866329775084221 9755084421 9751088421 977508422111 2 37 3 4A6 5A5 4A64 3098 9452 7094 9272 7454 30985096 9092 9632 7274 5276 509612 2 0B A1 83 47 29 65 0B note 1 3 5B6 4 3BB8 8284 6376 3BB84198 8374 5287 6196 7BB4 7375 41985 83B74 64B66 6BBB5 64B666 65BB56 420A98 A73742 842874 642876 62BB86 951963 860A54 A40A72 A82832 864654 420A987 962B853 841B974 A53B762 971B943 A64B652 960BA53 B73B741 A82B832 984B633 863B754 841B9748 873BB744 A850A632 4210AA98 A9737422 87428744 64328876 652BB866 961BB953 A8428732 86528654 6410AA76 A92BB822 9980A323 A7646542 8320A984 A7537642 8430A874 A5428762 8630A854 A540X762 A830A832 A8546632 8520A964 A740A742 A8328832 8654665413 2 1B 93 57 1B3 5C7 6C6 5C714 2 49 2B 85 2B0D C1 A3 67 0D note 1 3 6D7 15 2 3 6E8 7E7 6E816 5 2 2D A5 4B 69 2D0F E1 C3 87 0F note 1 3 7F8 4 3FFC C2C4 A776 3FFCA596 52CB A596E0E2 EB32 C774 7FF8 8688 1FFE E0E2E952 C3B4 9687 30ED E9525 86F88 8FFF7 86F88A3FB6 C4FA4 B7F75 A3FB6A4FA6 B3FB5 C5F94 B6F85 A4FA66 87FF78 310EED ED9522 CB3B44 976887 310EED532CCB A95966 532CCB840EB8 E6FF82 D95963 A42CB6 A73B86 840EB8A80E76 E40EB2 EC6832 C91D64 C82C74 A80E76C60E94 E82C72 CA0E54 E84A72 C60E947 C83FB74 B62FC95 D74FA83 C92FC64 D85F973 C81FD74 E94FA62 DA3FB53 CA5F954 B74FA85 B62FC95B71FD85 E83FB72 DB3FB43 CA6F854 B73FB85 C63FB94 C84FA74 B82FC75 D73FB83 CA3FB54 C85F974 B71FD858 3110EEED EDD95222 CBB3B444 97768887 3110EEED5332CCCB A9959666 5332CCCB7530ECA9 E951DA62 DB52CA43 B974A865 7530ECA9A832CC76 A940EB66 E742CB82 CA70E854 E850EA72 EC50EA32 EC94A632 C962C964 A832CC76C610EE94 ED82C722 CBA0E544 E874A872 C610EE94C630EC94 E982C762 CA30EC54 E984A762 C630EC94C650EA94 E852CA72 CA50EA54 E854AA72 C650EA94CA10EE54 ED84A722 CB60E944 E872C872 CA10EE54 a b c d e f g h i j k l m n o p Leading zeroes retained Kaprekar s constants in base 10 editNumbers of length four digits edit In 1949 D R Kaprekar discovered 6 that if the above process is applied to four digit numbers in base 10 the sequence converges to 6174 within seven iterations or more rarely converges to 0 The number 6174 is the first Kaprekar s constant to be discovered and thus is sometimes known as Kaprekar s constant 7 8 9 The set of numbers that converge to zero depends on whether leading zeros are discarded the usual formulation or are retained as in Kaprekar s original formulation In the usual formulation there are 77 four digit numbers that converge to zero 10 for example 2111 However in Kaprekar s original formulation the leading zeros are retained and only repdigits such as 1111 or 2222 map to zero This contrast is illustrated below discard leading zeros retain leading zeros2111 1112 999 999 999 0 2111 1112 0999 9990 0999 8991 9981 1899 8082 8820 0288 8532 8532 2358 6174Below is a flowchart Leading zeros are retained however the only difference when leading zeros are discarded is that instead of 0999 connecting to 8991 we get 999 connecting to 0 nbsp Sequence of Kaprekar transformations ending in 6174Numbers of length three digits edit If the Kaprekar routine is applied to numbers of three digits in base 10 the resulting sequence will almost always converge to the value 495 in at most six iterations except for a small set of initial numbers which converge instead to 0 7 The set of numbers that converge to zero depends on whether leading zeros are discarded the usual formulation or are retained as in Kaprekar s original formulation In the usual formulation there are 60 three digit numbers that converge to zero 11 for example 211 However in Kaprekar s original formulation the leading zeros are retained and only repdigits such as 111 or 222 map to zero Below is a flowchart Leading zeros are retained however the only difference when leading zeros are discarded is that instead of 099 connecting to 891 we get 99 connecting to 0 nbsp Sequence of three digit Kaprekar transformations ending in 495Other digit lengths edit For digit lengths other than three or four in base 10 the routine may terminate at one of several fixed points or may enter one of several cycles instead depending on the starting value of the sequence 7 See the table in the section above for base 10 fixed points and cycles The number of cycles increases rapidly with larger digit lengths and all but a small handful of these cycles are of length three For example for 20 digit numbers in base 10 there are fourteen constants cycles of length one and ninety six cycles of length greater than one all but two of which are of length three Odd digit lengths produce fewer different end results than even digit lengths 12 13 Programming example editThe example below implements the Kaprekar mapping described in the definition above to search for Kaprekar s constants and cycles in Python import string from collections import deque from collections abc import Sequence Generator BASE36 DIGITS f string digits string ascii uppercase def digit count x int base int 10 gt int count 0 while x gt 0 count 1 x base return count def get digits x int base int 10 init k int 0 gt str if init k gt 0 k digit count x base digits deque while x gt 0 digits appendleft BASE36 DIGITS x base x base if init k gt 0 for in range k init k digits appendleft 0 return join digits def kaprekar map x int base int 10 init k int 0 gt int digits join sorted get digits x base init k descending int join reversed digits base ascending int digits base return descending ascending def kaprekar cycle x int str bytes bytearray base int 10 gt list int str Return Kaprekar s cycles as list gt gt gt kaprekar cycle 8991 6174 gt gt gt kaprekar cycle 865296432 865296432 763197633 844296552 762098733 964395531 863098632 965296431 873197622 865395432 753098643 954197541 883098612 976494321 874197522 gt gt gt kaprekar cycle 09 9 81 63 27 45 gt gt gt kaprekar cycle 0F 16 0F E1 C3 87 gt gt gt kaprekar cycle B71FD85 16 B71FD85 E83FB72 DB3FB43 CA6F854 B73FB85 C63FB94 C84FA74 B82FC75 D73FB83 CA3FB54 C85F974 leading zeroes retained not isinstance x int init k len x if leading zeroes retained else 0 x int x if base 10 else int x base seen while x not in seen seen append x x kaprekar map x base init k cycle while x not in cycle cycle append x x kaprekar map x base init k return cycle if base 10 else get digits x base init k for x in cycle if name main import doctest doctest testmod See also editArithmetic dynamics Collatz conjecture Dudeney number Factorion Happy number Kaprekar number Meertens number Narcissistic number Perfect digit to digit invariant Perfect digital invariant Sum product number Sorting algorithmCitations edit Hanover 2017 p 1 Overview Hanover 2017 p 3 Methodology sequence A099009 in the OEIS Sample Kaprekar Series Sample Kaprekar Series for hexadecimal numbers Kaprekar DR 1955 An Interesting Property of the Number 6174 Scripta Mathematica 15 244 245 a b c Weisstein Eric W Kaprekar Routine MathWorld Yutaka Nishiyama Mysterious number 6174 Kaprekar DR 1980 On Kaprekar Numbers Journal of Recreational Mathematics 13 2 81 82 sequence A069746 in the OEIS sequence A090429 in the OEIS Sample Kaprekar Series Playing with Numbers References editHanover Daniel 2017 The Base Dependent Behavior of Kaprekar s Routine A Theoretical and Computational Study Revealing New Regularities International Journal of Pure and Applied Mathematics arXiv 1710 06308 External links edit nbsp Wikimedia Commons has media related to Kaprekar s constant Bowley Roger 6174 is Kaprekar s Constant Numberphile University of Nottingham Brady Haran Retrieved 2024 01 17 Working link to YouTube Sample Perl code to walk any four digit number to Kaprekar s Constant Retrieved from https en wikipedia org w index php title Kaprekar 27s routine amp oldid 1198131051, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.