fbpx
Wikipedia

James W. Cannon

James W. Cannon (born January 30, 1943) is an American mathematician working in the areas of low-dimensional topology and geometric group theory. He was an Orson Pratt Professor of Mathematics at Brigham Young University.

James W. Cannon
Born (1943-01-30) January 30, 1943 (age 80)
NationalityAmerican
CitizenshipUnited States
Alma materPh.D. (1969), University of Utah
Known forwork in low-dimensional topology, geometric group theory
AwardsFellow of the American Mathematical Society
Sloan Fellowship
Scientific career
FieldsMathematics
InstitutionsUniversity of Wisconsin-Madison
Brigham Young University
Doctoral advisorCecil Burgess
Doctoral studentsColin Adams

Biographical data edit

James W. Cannon was born on January 30, 1943, in Bellefonte, Pennsylvania.[1] Cannon received a Ph.D. in Mathematics from the University of Utah in 1969, under the direction of C. Edmund Burgess.

He was a professor at the University of Wisconsin, Madison from 1977 to 1985.[1] In 1986 Cannon was appointed an Orson Pratt Professor of Mathematics at Brigham Young University.[2] He held this position until his retirement in September 2012.[3]

Cannon gave an AMS Invited address at the meeting of the American Mathematical Society in Seattle in August 1977, an invited address at the International Congress of Mathematicians in Helsinki 1978, and delivered the 1982 Mathematical Association of America Hedrick Lectures in Toronto, Canada.[1][4]

Cannon was elected to the American Mathematical Society Council in 2003 with the term of service February 1, 2004, to January 31, 2007.[2][5] In 2012 he became a fellow of the American Mathematical Society.[6]

In 1993 Cannon delivered the 30-th annual Karl G. Maeser Distinguished Faculty Lecture at Brigham Young University.[7]

James Cannon is a devout member of the Church of Jesus Christ of Latter-day Saints.[8]

Mathematical contributions edit

Early work edit

Cannon's early work concerned topological aspects of embedded surfaces in R3 and understanding the difference between "tame" and "wild" surfaces.

His first famous result came in late 1970s when Cannon gave a complete solution to a long-standing "double suspension" problem posed by John Milnor. Cannon proved that the double suspension of a homology sphere is a topological sphere.[9][10] R. D. Edwards had previously proven this in many cases.

The results of Cannon's paper[10] were used by Cannon, Bryant and Lacher to prove (1979)[11] an important case of the so-called characterization conjecture for topological manifolds. The conjecture says that a generalized n-manifold  , where  , which satisfies the "disjoint disk property" is a topological manifold. Cannon, Bryant and Lacher established[11] that the conjecture holds under the assumption that   be a manifold except possibly at a set of dimension  . Later Frank Quinn[12] completed the proof that the characterization conjecture holds if there is even a single manifold point. In general, the conjecture is false as was proved by John Bryant, Steven Ferry, Washington Mio and Shmuel Weinberger.[13]

1980s: Hyperbolic geometry, 3-manifolds and geometric group theory edit

In 1980s the focus of Cannon's work shifted to the study of 3-manifolds, hyperbolic geometry and Kleinian groups and he is considered one of the key figures in the birth of geometric group theory as a distinct subject in late 1980s and early 1990s. Cannon's 1984 paper "The combinatorial structure of cocompact discrete hyperbolic groups"[14] was one of the forerunners in the development of the theory of word-hyperbolic groups, a notion that was introduced and developed three years later in a seminal 1987 monograph of Mikhail Gromov.[15] Cannon's paper explored combinatorial and algorithmic aspects of the Cayley graphs of Kleinian groups and related them to the geometric features of the actions of these groups on the hyperbolic space. In particular, Cannon proved that convex-cocompact Kleinian groups admit finite presentations where the Dehn algorithm solves the word problem. The latter condition later turned out to give one of equivalent characterization of being word-hyperbolic and, moreover, Cannon's original proof essentially went through without change to show that the word problem in word-hyperbolic groups is solvable by Dehn's algorithm.[16] Cannon's 1984 paper[14] also introduced an important notion a cone type of an element of a finitely generated group (roughly, the set of all geodesic extensions of an element). Cannon proved that a convex-cocompact Kleinian group has only finitely many cone types (with respect to a fixed finite generating set of that group) and showed how to use this fact to conclude that the growth series of the group is a rational function. These arguments also turned out to generalize to the word-hyperbolic group context.[15] Now standard proofs[17] of the fact that the set of geodesic words in a word-hyperbolic group is a regular language also use finiteness of the number of cone types.

Cannon's work also introduced an important notion of almost convexity for Cayley graphs of finitely generated groups,[18] a notion that led to substantial further study and generalizations.[19][20][21]

An influential paper of Cannon and William Thurston "Group invariant Peano curves",[22] that first circulated in a preprint form in the mid-1980s,[23] introduced the notion of what is now called the Cannon–Thurston map. They considered the case of a closed hyperbolic 3-manifold M that fibers over the circle with the fiber being a closed hyperbolic surface S. In this case the universal cover of S, which is identified with the hyperbolic plane, admits an embedding into the universal cover of M, which is the hyperbolic 3-space. Cannon and Thurston proved that this embedding extends to a continuous π1(S)-equivariant surjective map (now called the Cannon–Thurston map) from the ideal boundary of the hyperbolic plane (the circle) to the ideal boundary of the hyperbolic 3-space (the 2-sphere). Although the paper of Cannon and Thurston was finally published only in 2007, in the meantime it has generated considerable further research and a number of significant generalizations (both in the contexts of Kleinian groups and of word-hyperbolic groups), including the work of Mahan Mitra,[24][25] Erica Klarreich,[26] Brian Bowditch[27] and others.

1990s and 2000s: Automatic groups, discrete conformal geometry and Cannon's conjecture edit

Cannon was one of the co-authors of the 1992 book Word Processing in Groups[17] which introduced, formalized and developed the theory of automatic groups. The theory of automatic groups brought new computational ideas from computer science to geometric group theory and played an important role in the development of the subject in 1990s.

A 1994 paper of Cannon gave a proof of the "combinatorial Riemann mapping theorem"[28] that was motivated by the classic Riemann mapping theorem in complex analysis. The goal was to understand when an action of a group by homeomorphisms on a 2-sphere is (up to a topological conjugation) an action on the standard Riemann sphere by Möbius transformations. The "combinatorial Riemann mapping theorem" of Cannon gave a set of sufficient conditions when a sequence of finer and finer combinatorial subdivisions of a topological surface determine, in the appropriate sense and after passing to the limit, an actual conformal structure on that surface. This paper of Cannon led to an important conjecture, first explicitly formulated by Cannon and Swenson in 1998[29] (but also suggested in implicit form in Section 8 of Cannon's 1994 paper) and now known as Cannon's conjecture, regarding characterizing word-hyperbolic groups with the 2-sphere as the boundary. The conjecture (Conjecture 5.1 in [29]) states that if the ideal boundary of a word-hyperbolic group G is homeomorphic to the 2-sphere, then G admits a properly discontinuous cocompact isometric action on the hyperbolic 3-space (so that G is essentially a 3-dimensional Kleinian group). In analytic terms Cannon's conjecture is equivalent to saying that if the ideal boundary of a word-hyperbolic group G is homeomorphic to the 2-sphere then this boundary, with the visual metric coming from the Cayley graph of G, is quasisymmetric to the standard 2-sphere.

The 1998 paper of Cannon and Swenson[29] gave an initial approach to this conjecture by proving that the conjecture holds under an extra assumption that the family of standard "disks" in the boundary of the group satisfies a combinatorial "conformal" property. The main result of Cannon's 1994 paper[28] played a key role in the proof. This approach to Cannon's conjecture and related problems was pushed further later in the joint work of Cannon, Floyd and Parry.[30][31][32]

Cannon's conjecture motivated much of subsequent work by other mathematicians and to a substantial degree informed subsequent interaction between geometric group theory and the theory of analysis on metric spaces.[33][34][35][36][37][38] Cannon's conjecture was motivated (see [29]) by Thurston's Geometrization Conjecture and by trying to understand why in dimension three variable negative curvature can be promoted to constant negative curvature. Although the Geometrization conjecture was recently settled by Perelman, Cannon's conjecture remains wide open and is considered one of the key outstanding open problems in geometric group theory and geometric topology.

Applications to biology edit

The ideas of combinatorial conformal geometry that underlie Cannon's proof of the "combinatorial Riemann mapping theorem",[28] were applied by Cannon, Floyd and Parry (2000) to the study of large-scale growth patterns of biological organisms.[39] Cannon, Floyd and Parry produced a mathematical growth model which demonstrated that some systems determined by simple finite subdivision rules can results in objects (in their example, a tree trunk) whose large-scale form oscillates wildly over time even though the local subdivision laws remain the same.[39] Cannon, Floyd and Parry also applied their model to the analysis of the growth patterns of rat tissue.[39] They suggested that the "negatively curved" (or non-euclidean) nature of microscopic growth patterns of biological organisms is one of the key reasons why large-scale organisms do not look like crystals or polyhedral shapes but in fact in many cases resemble self-similar fractals.[39] In particular they suggested (see section 3.4 of [39]) that such "negatively curved" local structure is manifested in highly folded and highly connected nature of the brain and the lung tissue.

Selected publications edit

  • Cannon, James W. (1979), "Shrinking cell-like decompositions of manifolds. Codimension three.", Annals of Mathematics, Second Series, 110 (1): 83–112, doi:10.2307/1971245, JSTOR 1971245, MR 0541330
  • Cannon, James W. (1984), "The combinatorial structure of cocompact discrete hyperbolic groups.", Geometriae Dedicata, 16 (2): 123–148, doi:10.1007/BF00146825, MR 0758901, S2CID 120759717
  • Cannon, James W. (1987), "Almost convex groups.", Geometriae Dedicata, 22 (2): 197–210, doi:10.1007/BF00181266, MR 0877210, S2CID 121345025
  • Epstein, David B. A.; Cannon, James W.; Holt, Derek F.; Levy, Silvio V.; Paterson, Michael S.; Thurston, William P. (1992), Word processing in groups., Boston, MA: Jones and Bartlett Publishers, ISBN 978-0-86720-244-1
  • Cannon, James W. (1994), "The combinatorial Riemann mapping theorem.", Acta Mathematica, 173 (2): 155–234, doi:10.1007/BF02398434, MR 1301392
  • Cannon, James W.; Thurston, William P. (2007), "Group invariant Peano curves.", Geometry & Topology, 11 (3): 1315–1355, doi:10.2140/gt.2007.11.1315, MR 2326947

See also edit

References edit

  1. ^ a b c Biographies of Candidates 2003. Notices of the American Mathematical Society, vol. 50 (2003), no. 8, pp. 973–986.
  2. ^ a b (PDF). Brigham Young University. February 2004. Archived from the original (PDF) on February 15, 2009. Retrieved September 20, 2008.
  3. ^ 44 Years of Mathematics. Brigham Young University. 2016-10-22 at the Wayback Machine Accessed July 25, 2013.
  4. ^ The Mathematical Association of America's Earle Raymond Hedrick Lecturers. Mathematical Association of America. Accessed September 20, 2008.
  5. ^ 2003 Election Results. Notices of the American Mathematical Society vol 51 (2004), no. 2, p. 269.
  6. ^ List of Fellows of the American Mathematical Society, retrieved 2012-11-10.
  7. ^ Math Professor to Give Lecture Wednesday at Y. Deseret News. February 18, 1993.
  8. ^ Susan Easton Black.Expressions of Faith: Testimonies of Latter-Day Saint Scholars. Foundation for Ancient Research and Mormon Studies, 1996. ISBN 978-1-57345-091-1.
  9. ^ J. W. Cannon, The recognition problem: what is a topological manifold? Bulletin of the American Mathematical Society, vol. 84 (1978), no. 5, pp. 832–866.
  10. ^ a b J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three. Annals of Mathematics (2), 110 (1979), no. 1, 83–112.
  11. ^ a b J. W. Cannon, J. L. Bryant and R. C. Lacher, The structure of generalized manifolds having nonmanifold set of trivial dimension. Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), pp. 261–300, Academic Press, New York-London, 1979. ISBN 0-12-158860-2.
  12. ^ Frank Quinn. Resolutions of homology manifolds, and the topological characterization of manifolds. Inventiones Mathematicae, vol. 72 (1983), no. 2, pp. 267–284.
  13. ^ John Bryant, Steven Ferry, Washington Mio and Shmuel Weinberger, Topology of homology manifolds, Annals of Mathematics 143 (1996), pp. 435-467; MR1394965
  14. ^ a b J. W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups. Geometriae Dedicata, vol. 16 (1984), no. 2, pp. 123–148.
  15. ^ a b M. Gromov, Hyperbolic Groups, in: "Essays in Group Theory" (G. M. Gersten, ed.), MSRI Publ. 8, 1987, pp. 75–263.
  16. ^ R. B. Sher, R. J. Daverman. Handbook of Geometric Topology. Elsevier, 2001. ISBN 978-0-444-82432-5; p. 299.
  17. ^ a b David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. Levy, Michael S. Paterson, William P. Thurston. Word processing in groups. Jones and Bartlett Publishers, Boston, MA, 1992. ISBN 0-86720-244-0. Reviews: B. N. Apanasov, Zbl 0764.20017; Gilbert Baumslag, Bull. AMS, doi:10.1090/S0273-0979-1994-00481-1; D. E. Cohen, Bull LMS, doi:10.1112/blms/25.6.614; Richard M. Thomas, MR1161694
  18. ^ James W. Cannon. Almost convex groups. Geometriae Dedicata, vol. 22 (1987), no. 2, pp. 197–210.
  19. ^ S. Hermiller and J. Meier, Measuring the tameness of almost convex groups. Transactions of the American Mathematical Society vol. 353 (2001), no. 3, pp. 943–962.
  20. ^ S. Cleary and J. Taback, Thompson's group F is not almost convex. Journal of Algebra, vol. 270 (2003), no. 1, pp. 133–149.
  21. ^ M. Elder and S. Hermiller, Minimal almost convexity. Journal of Group Theory, vol. 8 (2005), no. 2, pp. 239–266.
  22. ^ J. W. Cannon and W. P. Thurston. Group invariant Peano curves. 2008-04-05 at the Wayback Machine Geometry & Topology, vol. 11 (2007), pp. 1315–1355.
  23. ^ Darryl McCullough, MR2326947 (a review of: Cannon, James W.; Thurston, William P. 'Group invariant Peano curves'. Geom. Topol. 11 (2007), 1315–1355), MathSciNet; Quote::This influential paper dates from the mid-1980s. Indeed, preprint versions are referenced in more than 30 published articles, going back as early as 1990"
  24. ^ Mahan Mitra. Cannon–Thurston maps for hyperbolic group extensions. Topology, vol. 37 (1998), no. 3, pp. 527–538.
  25. ^ Mahan Mitra. Cannon–Thurston maps for trees of hyperbolic metric spaces. Journal of Differential Geometry, vol. 48 (1998), no. 1, pp. 135–164.
  26. ^ Erica Klarreich, Semiconjugacies between Kleinian group actions on the Riemann sphere. American Journal of Mathematics, vol. 121 (1999), no. 5, 1031–1078.
  27. ^ Brian Bowditch. The Cannon–Thurston map for punctured-surface groups. Mathematische Zeitschrift, vol. 255 (2007), no. 1, pp. 35–76.
  28. ^ a b c James W. Cannon. The combinatorial Riemann mapping theorem. Acta Mathematica 173 (1994), no. 2, pp. 155–234.
  29. ^ a b c d J. W. Cannon and E. L. Swenson, Recognizing constant curvature discrete groups in dimension 3. Transactions of the American Mathematical Society 350 (1998), no. 2, pp. 809–849.
  30. ^ J. W. Cannon, W. J. Floyd, W. R. Parry. Sufficiently rich families of planar rings. Annales Academiæ Scientiarium Fennicæ. Mathematica. vol. 24 (1999), no. 2, pp. 265–304.
  31. ^ J. W. Cannon, W. J. Floyd, W. R. Parry. Finite subdivision rules. Conformal Geometry and Dynamics, vol. 5 (2001), pp. 153–196.
  32. ^ J. W. Cannon, W. J. Floyd, W. R. Parry. Expansion complexes for finite subdivision rules. I. Conformal Geometry and Dynamics, vol. 10 (2006), pp. 63–99.
  33. ^ M. Bourdon and H. Pajot, Quasi-conformal geometry and hyperbolic geometry. In: Rigidity in dynamics and geometry (Cambridge, 2000), pp. 1–17, Springer, Berlin, 2002; ISBN 3-540-43243-4.
  34. ^ Mario Bonk and Bruce Kleiner, Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary. Geometry & Topology, vol. 9 (2005), pp. 219–246.
  35. ^ Mario Bonk, Quasiconformal geometry of fractals. International Congress of Mathematicians. Vol. II, pp. 1349–1373, Eur. Math. Soc., Zürich, 2006; ISBN 978-3-03719-022-7.
  36. ^ S. Keith, T. Laakso, Conformal Assouad dimension and modulus. Geometric and Functional Analysis, vol 14 (2004), no. 6, pp. 1278–1321.
  37. ^ I. Mineyev, Metric conformal structures and hyperbolic dimension. Conformal Geometry and Dynamics, vol. 11 (2007), pp. 137–163.
  38. ^ Bruce Kleiner, The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity. International Congress of Mathematicians. Vol. II, pp. 743–768, Eur. Math. Soc., Zürich, 2006. ISBN 978-3-03719-022-7.
  39. ^ a b c d e J. W. Cannon, W. Floyd and W. Parry. Crystal growth, biological cell growth and geometry. Pattern Formation in Biology, Vision and Dynamics, pp. 65–82. World Scientific, 2000. ISBN 981-02-3792-8, ISBN 978-981-02-3792-9.

External links edit

james, cannon, other, people, with, same, name, james, cannon, born, january, 1943, american, mathematician, working, areas, dimensional, topology, geometric, group, theory, orson, pratt, professor, mathematics, brigham, young, university, born, 1943, january,. For other people with the same name see James Cannon James W Cannon born January 30 1943 is an American mathematician working in the areas of low dimensional topology and geometric group theory He was an Orson Pratt Professor of Mathematics at Brigham Young University James W CannonBorn 1943 01 30 January 30 1943 age 80 Bellefonte PennsylvaniaNationalityAmericanCitizenshipUnited StatesAlma materPh D 1969 University of UtahKnown forwork in low dimensional topology geometric group theoryAwardsFellow of the American Mathematical Society Sloan FellowshipScientific careerFieldsMathematicsInstitutionsUniversity of Wisconsin Madison Brigham Young UniversityDoctoral advisorCecil BurgessDoctoral studentsColin Adams Contents 1 Biographical data 2 Mathematical contributions 2 1 Early work 2 2 1980s Hyperbolic geometry 3 manifolds and geometric group theory 2 3 1990s and 2000s Automatic groups discrete conformal geometry and Cannon s conjecture 2 4 Applications to biology 3 Selected publications 4 See also 5 References 6 External linksBiographical data editJames W Cannon was born on January 30 1943 in Bellefonte Pennsylvania 1 Cannon received a Ph D in Mathematics from the University of Utah in 1969 under the direction of C Edmund Burgess He was a professor at the University of Wisconsin Madison from 1977 to 1985 1 In 1986 Cannon was appointed an Orson Pratt Professor of Mathematics at Brigham Young University 2 He held this position until his retirement in September 2012 3 Cannon gave an AMS Invited address at the meeting of the American Mathematical Society in Seattle in August 1977 an invited address at the International Congress of Mathematicians in Helsinki 1978 and delivered the 1982 Mathematical Association of America Hedrick Lectures in Toronto Canada 1 4 Cannon was elected to the American Mathematical Society Council in 2003 with the term of service February 1 2004 to January 31 2007 2 5 In 2012 he became a fellow of the American Mathematical Society 6 In 1993 Cannon delivered the 30 th annual Karl G Maeser Distinguished Faculty Lecture at Brigham Young University 7 James Cannon is a devout member of the Church of Jesus Christ of Latter day Saints 8 Mathematical contributions editEarly work edit Cannon s early work concerned topological aspects of embedded surfaces in R3 and understanding the difference between tame and wild surfaces His first famous result came in late 1970s when Cannon gave a complete solution to a long standing double suspension problem posed by John Milnor Cannon proved that the double suspension of a homology sphere is a topological sphere 9 10 R D Edwards had previously proven this in many cases The results of Cannon s paper 10 were used by Cannon Bryant and Lacher to prove 1979 11 an important case of the so called characterization conjecture for topological manifolds The conjecture says that a generalized n manifold M displaystyle M nbsp where n 5 displaystyle n geq 5 nbsp which satisfies the disjoint disk property is a topological manifold Cannon Bryant and Lacher established 11 that the conjecture holds under the assumption that M displaystyle M nbsp be a manifold except possibly at a set of dimension n 2 2 displaystyle n 2 2 nbsp Later Frank Quinn 12 completed the proof that the characterization conjecture holds if there is even a single manifold point In general the conjecture is false as was proved by John Bryant Steven Ferry Washington Mio and Shmuel Weinberger 13 1980s Hyperbolic geometry 3 manifolds and geometric group theory edit In 1980s the focus of Cannon s work shifted to the study of 3 manifolds hyperbolic geometry and Kleinian groups and he is considered one of the key figures in the birth of geometric group theory as a distinct subject in late 1980s and early 1990s Cannon s 1984 paper The combinatorial structure of cocompact discrete hyperbolic groups 14 was one of the forerunners in the development of the theory of word hyperbolic groups a notion that was introduced and developed three years later in a seminal 1987 monograph of Mikhail Gromov 15 Cannon s paper explored combinatorial and algorithmic aspects of the Cayley graphs of Kleinian groups and related them to the geometric features of the actions of these groups on the hyperbolic space In particular Cannon proved that convex cocompact Kleinian groups admit finite presentations where the Dehn algorithm solves the word problem The latter condition later turned out to give one of equivalent characterization of being word hyperbolic and moreover Cannon s original proof essentially went through without change to show that the word problem in word hyperbolic groups is solvable by Dehn s algorithm 16 Cannon s 1984 paper 14 also introduced an important notion a cone type of an element of a finitely generated group roughly the set of all geodesic extensions of an element Cannon proved that a convex cocompact Kleinian group has only finitely many cone types with respect to a fixed finite generating set of that group and showed how to use this fact to conclude that the growth series of the group is a rational function These arguments also turned out to generalize to the word hyperbolic group context 15 Now standard proofs 17 of the fact that the set of geodesic words in a word hyperbolic group is a regular language also use finiteness of the number of cone types Cannon s work also introduced an important notion of almost convexity for Cayley graphs of finitely generated groups 18 a notion that led to substantial further study and generalizations 19 20 21 An influential paper of Cannon and William Thurston Group invariant Peano curves 22 that first circulated in a preprint form in the mid 1980s 23 introduced the notion of what is now called the Cannon Thurston map They considered the case of a closed hyperbolic 3 manifold M that fibers over the circle with the fiber being a closed hyperbolic surface S In this case the universal cover of S which is identified with the hyperbolic plane admits an embedding into the universal cover of M which is the hyperbolic 3 space Cannon and Thurston proved that this embedding extends to a continuous p1 S equivariant surjective map now called the Cannon Thurston map from the ideal boundary of the hyperbolic plane the circle to the ideal boundary of the hyperbolic 3 space the 2 sphere Although the paper of Cannon and Thurston was finally published only in 2007 in the meantime it has generated considerable further research and a number of significant generalizations both in the contexts of Kleinian groups and of word hyperbolic groups including the work of Mahan Mitra 24 25 Erica Klarreich 26 Brian Bowditch 27 and others 1990s and 2000s Automatic groups discrete conformal geometry and Cannon s conjecture edit Cannon was one of the co authors of the 1992 book Word Processing in Groups 17 which introduced formalized and developed the theory of automatic groups The theory of automatic groups brought new computational ideas from computer science to geometric group theory and played an important role in the development of the subject in 1990s A 1994 paper of Cannon gave a proof of the combinatorial Riemann mapping theorem 28 that was motivated by the classic Riemann mapping theorem in complex analysis The goal was to understand when an action of a group by homeomorphisms on a 2 sphere is up to a topological conjugation an action on the standard Riemann sphere by Mobius transformations The combinatorial Riemann mapping theorem of Cannon gave a set of sufficient conditions when a sequence of finer and finer combinatorial subdivisions of a topological surface determine in the appropriate sense and after passing to the limit an actual conformal structure on that surface This paper of Cannon led to an important conjecture first explicitly formulated by Cannon and Swenson in 1998 29 but also suggested in implicit form in Section 8 of Cannon s 1994 paper and now known as Cannon s conjecture regarding characterizing word hyperbolic groups with the 2 sphere as the boundary The conjecture Conjecture 5 1 in 29 states that if the ideal boundary of a word hyperbolic group G is homeomorphic to the 2 sphere then G admits a properly discontinuous cocompact isometric action on the hyperbolic 3 space so that G is essentially a 3 dimensional Kleinian group In analytic terms Cannon s conjecture is equivalent to saying that if the ideal boundary of a word hyperbolic group G is homeomorphic to the 2 sphere then this boundary with the visual metric coming from the Cayley graph of G is quasisymmetric to the standard 2 sphere The 1998 paper of Cannon and Swenson 29 gave an initial approach to this conjecture by proving that the conjecture holds under an extra assumption that the family of standard disks in the boundary of the group satisfies a combinatorial conformal property The main result of Cannon s 1994 paper 28 played a key role in the proof This approach to Cannon s conjecture and related problems was pushed further later in the joint work of Cannon Floyd and Parry 30 31 32 Cannon s conjecture motivated much of subsequent work by other mathematicians and to a substantial degree informed subsequent interaction between geometric group theory and the theory of analysis on metric spaces 33 34 35 36 37 38 Cannon s conjecture was motivated see 29 by Thurston s Geometrization Conjecture and by trying to understand why in dimension three variable negative curvature can be promoted to constant negative curvature Although the Geometrization conjecture was recently settled by Perelman Cannon s conjecture remains wide open and is considered one of the key outstanding open problems in geometric group theory and geometric topology Applications to biology edit The ideas of combinatorial conformal geometry that underlie Cannon s proof of the combinatorial Riemann mapping theorem 28 were applied by Cannon Floyd and Parry 2000 to the study of large scale growth patterns of biological organisms 39 Cannon Floyd and Parry produced a mathematical growth model which demonstrated that some systems determined by simple finite subdivision rules can results in objects in their example a tree trunk whose large scale form oscillates wildly over time even though the local subdivision laws remain the same 39 Cannon Floyd and Parry also applied their model to the analysis of the growth patterns of rat tissue 39 They suggested that the negatively curved or non euclidean nature of microscopic growth patterns of biological organisms is one of the key reasons why large scale organisms do not look like crystals or polyhedral shapes but in fact in many cases resemble self similar fractals 39 In particular they suggested see section 3 4 of 39 that such negatively curved local structure is manifested in highly folded and highly connected nature of the brain and the lung tissue Selected publications editCannon James W 1979 Shrinking cell like decompositions of manifolds Codimension three Annals of Mathematics Second Series 110 1 83 112 doi 10 2307 1971245 JSTOR 1971245 MR 0541330 Cannon James W 1984 The combinatorial structure of cocompact discrete hyperbolic groups Geometriae Dedicata 16 2 123 148 doi 10 1007 BF00146825 MR 0758901 S2CID 120759717 Cannon James W 1987 Almost convex groups Geometriae Dedicata 22 2 197 210 doi 10 1007 BF00181266 MR 0877210 S2CID 121345025 Epstein David B A Cannon James W Holt Derek F Levy Silvio V Paterson Michael S Thurston William P 1992 Word processing in groups Boston MA Jones and Bartlett Publishers ISBN 978 0 86720 244 1 Cannon James W 1994 The combinatorial Riemann mapping theorem Acta Mathematica 173 2 155 234 doi 10 1007 BF02398434 MR 1301392 Cannon James W Thurston William P 2007 Group invariant Peano curves Geometry amp Topology 11 3 1315 1355 doi 10 2140 gt 2007 11 1315 MR 2326947See also editGeometric group theory Low dimensional topology Word hyperbolic group Geometrization conjecture Hyperbolic manifold Kleinian groupReferences edit a b c Biographies of Candidates 2003 Notices of the American Mathematical Society vol 50 2003 no 8 pp 973 986 a b Newsletter of the College of Physical and Mathematical Sciences PDF Brigham Young University February 2004 Archived from the original PDF on February 15 2009 Retrieved September 20 2008 44 Years of Mathematics Brigham Young University Archived 2016 10 22 at the Wayback Machine Accessed July 25 2013 The Mathematical Association of America s Earle Raymond Hedrick Lecturers Mathematical Association of America Accessed September 20 2008 2003 Election Results Notices of the American Mathematical Society vol 51 2004 no 2 p 269 List of Fellows of the American Mathematical Society retrieved 2012 11 10 Math Professor to Give Lecture Wednesday at Y Deseret News February 18 1993 Susan Easton Black Expressions of Faith Testimonies of Latter Day Saint Scholars Foundation for Ancient Research and Mormon Studies 1996 ISBN 978 1 57345 091 1 J W Cannon The recognition problem what is a topological manifold Bulletin of the American Mathematical Society vol 84 1978 no 5 pp 832 866 a b J W Cannon Shrinking cell like decompositions of manifolds Codimension three Annals of Mathematics 2 110 1979 no 1 83 112 a b J W Cannon J L Bryant and R C Lacher The structure of generalized manifolds having nonmanifold set of trivial dimension Geometric topology Proc Georgia Topology Conf Athens Ga 1977 pp 261 300 Academic Press New York London 1979 ISBN 0 12 158860 2 Frank Quinn Resolutions of homology manifolds and the topological characterization of manifolds Inventiones Mathematicae vol 72 1983 no 2 pp 267 284 John Bryant Steven Ferry Washington Mio and Shmuel Weinberger Topology of homology manifolds Annals of Mathematics 143 1996 pp 435 467 MR1394965 a b J W Cannon The combinatorial structure of cocompact discrete hyperbolic groups Geometriae Dedicata vol 16 1984 no 2 pp 123 148 a b M Gromov Hyperbolic Groups in Essays in Group Theory G M Gersten ed MSRI Publ 8 1987 pp 75 263 R B Sher R J Daverman Handbook of Geometric Topology Elsevier 2001 ISBN 978 0 444 82432 5 p 299 a b David B A Epstein James W Cannon Derek F Holt Silvio V Levy Michael S Paterson William P Thurston Word processing in groups Jones and Bartlett Publishers Boston MA 1992 ISBN 0 86720 244 0 Reviews B N Apanasov Zbl 0764 20017 Gilbert Baumslag Bull AMS doi 10 1090 S0273 0979 1994 00481 1 D E Cohen Bull LMS doi 10 1112 blms 25 6 614 Richard M Thomas MR1161694 James W Cannon Almost convex groups Geometriae Dedicata vol 22 1987 no 2 pp 197 210 S Hermiller and J Meier Measuring the tameness of almost convex groups Transactions of the American Mathematical Society vol 353 2001 no 3 pp 943 962 S Cleary and J Taback Thompson s groupFis not almost convex Journal of Algebra vol 270 2003 no 1 pp 133 149 M Elder and S Hermiller Minimal almost convexity Journal of Group Theory vol 8 2005 no 2 pp 239 266 J W Cannon and W P Thurston Group invariant Peano curves Archived 2008 04 05 at the Wayback Machine Geometry amp Topology vol 11 2007 pp 1315 1355 Darryl McCullough MR2326947 a review of Cannon James W Thurston William P Group invariant Peano curves Geom Topol 11 2007 1315 1355 MathSciNet Quote This influential paper dates from the mid 1980s Indeed preprint versions are referenced in more than 30 published articles going back as early as 1990 Mahan Mitra Cannon Thurston maps for hyperbolic group extensions Topology vol 37 1998 no 3 pp 527 538 Mahan Mitra Cannon Thurston maps for trees of hyperbolic metric spaces Journal of Differential Geometry vol 48 1998 no 1 pp 135 164 Erica Klarreich Semiconjugacies between Kleinian group actions on the Riemann sphere American Journal of Mathematics vol 121 1999 no 5 1031 1078 Brian Bowditch The Cannon Thurston map for punctured surface groups Mathematische Zeitschrift vol 255 2007 no 1 pp 35 76 a b c James W Cannon The combinatorial Riemann mapping theorem Acta Mathematica 173 1994 no 2 pp 155 234 a b c d J W Cannon and E L Swenson Recognizing constant curvature discrete groups in dimension 3 Transactions of the American Mathematical Society 350 1998 no 2 pp 809 849 J W Cannon W J Floyd W R Parry Sufficiently rich families of planar rings Annales Academiae Scientiarium Fennicae Mathematica vol 24 1999 no 2 pp 265 304 J W Cannon W J Floyd W R Parry Finite subdivision rules Conformal Geometry and Dynamics vol 5 2001 pp 153 196 J W Cannon W J Floyd W R Parry Expansion complexes for finite subdivision rules I Conformal Geometry and Dynamics vol 10 2006 pp 63 99 M Bourdon and H Pajot Quasi conformal geometry and hyperbolic geometry In Rigidity in dynamics and geometry Cambridge 2000 pp 1 17 Springer Berlin 2002 ISBN 3 540 43243 4 Mario Bonk and Bruce Kleiner Conformal dimension and Gromov hyperbolic groups with 2 sphere boundary Geometry amp Topology vol 9 2005 pp 219 246 Mario Bonk Quasiconformal geometry of fractals International Congress of Mathematicians Vol II pp 1349 1373 Eur Math Soc Zurich 2006 ISBN 978 3 03719 022 7 S Keith T Laakso Conformal Assouad dimension and modulus Geometric and Functional Analysis vol 14 2004 no 6 pp 1278 1321 I Mineyev Metric conformal structures and hyperbolic dimension Conformal Geometry and Dynamics vol 11 2007 pp 137 163 Bruce Kleiner The asymptotic geometry of negatively curved spaces uniformization geometrization and rigidity International Congress of Mathematicians Vol II pp 743 768 Eur Math Soc Zurich 2006 ISBN 978 3 03719 022 7 a b c d e J W Cannon W Floyd and W Parry Crystal growth biological cell growth and geometry Pattern Formation in Biology Vision and Dynamics pp 65 82 World Scientific 2000 ISBN 981 02 3792 8 ISBN 978 981 02 3792 9 External links editJames W Cannon at the Mathematics Genealogy Project James Cannon s webpage at BYU Retrieved from https en wikipedia org w index php title James W Cannon amp oldid 1167124323, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.