fbpx
Wikipedia

James H. Williams Jr.

James Henry Williams Jr. is a mechanical engineer, consultant, civic commentator, and teacher of engineering. He is currently Professor of Applied Mechanics in the Mechanical Engineering Department at the Massachusetts Institute of Technology (MIT). He is regarded as one of the world's leading experts in the mechanics, design, fabrication, and nondestructive evaluation (NDE) of nonmetallic fiber reinforced composite materials and structures. He is also Professor of Writing and Humanistic Studies at MIT.

Professor James H. Williams Jr. in Du Pont Court, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, November 2000.

Williams began his career in 1960 as an apprentice machinist at the Newport News Shipbuilding and Dry Dock Company. Within eight years he graduated from The Apprentice School, earned SB and SM engineering degrees from MIT, and returned to the Shipyard as a senior design engineer. Within another two years, he earned a PhD from the University of Cambridge, where he conducted theoretical elasticity and shell theory. He then chose to join the faculty at MIT, where he has spent the bulk of his career.

Early life, education, and industrial career edit

Williams was born in Newport News, Virginia, where he attended the segregated public schools. He was a rambunctious, "hell-raising" student who never took a textbook home. Still, Williams's brilliance was recognized by some of his teachers who permitted him to read whatever he chose while in school and devised especially difficult tests for him, independent of his classmates. Along with one or more of his teachers, he would also occasionally make up and grade the quizzes of his classmates. He went on to win statewide prizes in mathematics and science. He was also featured as a flutist in his high school band, and as an underclassman earned first chair in the all-state concert band.[1][2]

In 1960, Williams was among the earliest African-Americans admitted to the selective Newport News Shipyard Apprentice School. It attracts an average of about 4500 applications per year for approximately 250 openings, with some of the applicants having earned bachelor's degrees.[3][4] Williams is often regarded as the top academic student in the century-long history of the Apprentice School. In 1961 he won the Charles F. Bailey Bronze Medal (for the highest academic record by a first-year apprentice); in 1962, the Charles F. Bailey Silver Medal (highest academic record by a second-year apprentice); and, in 1963, the Charles F. Bailey Gold Medal (highest academic record by a third-year apprentice). Furthermore, in 1963 the Shipyard chose to award him a four-year full Homer L. Ferguson Scholarship to MIT. Throughout his years as a student at MIT, he consistently returned to the Shipyard during vacations and summers.[1][2][5]

In 1965, the Apprentice School awarded Williams the five-year diploma of Mechanical Designer. In 1967, he graduated from MIT with an SB in mechanical engineering, and after completing his SM in mechanical engineering in the winter of 1968, Williams returned to the Shipyard. During that period, he performed a range of mechanics calculations on the catapults, arrester cables, and power and propulsion systems of the nuclear-powered aircraft carrier USS Nimitz (CVN-68). During this same period, he held the title of Senior Design Engineer and was the only black among the hundreds of engineers at the Shipyard. In the fall of 1968, Williams entered the University of Cambridge (Trinity College) in England, earned the PhD in engineering, and returned to America to the mechanical engineering faculty of MIT in 1970.[6][1][7][2]

Teaching edit

Throughout his MIT career, Williams has been repeatedly acclaimed and honored with numerous awards.[8][9][7][10][11][12][13][14][15][16] His teaching awards at MIT include:

  • 1973: Everett Moore Baker Memorial Award for Excellence in Undergraduate Teaching (Top MIT teaching prize awarded solely by students; he was the first Mechanical Engineering professor to receive this award.)
  • 1981: Jacob P. Den Hartog Distinguished Educator Award (Top teaching award in the Mechanical Engineering Department at MIT; he received the inaugural award.)
  • 1991: School of Engineering Professor of Teaching Excellence (He was the inaugural occupant of this MIT chair.)
  • 1993: MacVicar Faculty Fellow (Top MIT teaching prize awarded through MIT's executive administration for undergraduate education, requiring broad faculty and student endorsements; he was the first Mechanical Engineering professor to receive this award.)

Having served as the first Housemaster of MIT's undergraduate dormitory New West Campus Houses and having supervised more than 100 research theses, Williams is a highly regarded mentor of both undergraduate and graduate students.[9][12][17][18][19][20][21][22][23][24][25]

Research edit

In the early 1970s, Williams sought to better understand the emerging carbon fiber reinforced polymeric composite materials, which were being touted as new materials to elevate the mechanical performance of structures. (Today, these materials are used in fighter and commercial aircraft, automobiles, ships, golf clubs, tennis racquets, and myriad other structures.) One of the major manufacturers of these new materials had observed that newly fabricated structures built from them had unacceptably high variabilities, resulting in structures of low reliability. Williams was retained as a consultant to determine why.[1][26] In addition, Williams's efforts were recognized by both industry and the National Science Foundation and he was selected, through a university-industrial program, to spend the summer of 1974 at a major composites manufacturing facility.[27]

Williams soon realized that the unpredictability of the materials' properties was due to undetected flaws or damage within the materials as a consequence of either improper fabrication or handling, as well as the selection of the various constituents. When he examined the technical and research literature on the nondestructive testing (NDT) to find and characterize the flaws in those materials, he found very little. Moreover, the NDT results that he found generally related to metals, and most of them were qualitative. Then, in 1974, Williams founded the Composite Materials and Nondestructive Evaluation Laboratory in MIT's Mechanical Engineering Department. (He preferred the term "nondestructive evaluation" to the more common term of "nondestructive testing" to emphasize his interests in the broad structural behavior of materials even in the absence of macroscopic flaws.)[1][26]

With his advanced facilities in applied mathematics and experienced insights in mechanical design, Williams sought—and his subsequent career is distinguished by—quantitative analyses and characterizations of composite materials' properties and residual life based on a combination of nondestructive measurements and theoretical mechanics. Such quantitative analyses and materials characterizations have elevated the field of nondestructive testing and increased the reliable use of composite materials and structures.

Williams has subsequently compiled an extensive list of research and consulting results—in several instances, groundbreaking "firsts"—in the design, fabrication, strength analysis, residual strength, fatigue life, and NDE of fiber reinforced composite materials and structures. As an industrial and governmental consultant and through his MIT Lab with his research students, he advanced the understanding of modern composite materials and structures, as well as the systems for experimentally testing them.[28][29][30] Among many achievements, he (1) conducted the theoretical stress analyses of isotropic and anisotropic shells subjected to symmetric and asymmetric loads;[31][32][33][34][35] (2) produced the first quantitative correlations for the solid-particle erosion of carbon fiber polymeric composites;[36] (3) conducted the stress analyses of adhesively bonded joints in composites;[37][38] (4) analyzed the enhancement of composite properties by the introduction of thermoplastic microstructures;[39][40][41][42] (5) conducted the elastic and plastic acoustic emission monitoring of materials and structures, including structural bridge steels;[43][44][45][46][47][48][49] (6) established the forefront of the quantitative thermographic analyses of composite materials and structures;[50][51][52][53][54][55] (7) theoretically predicted and experimentally demonstrated the input-output signatures of ultrasonic transducers;[56][57] (8) hypothesized and then produced the first ultrasonic wave–fatigue life correlations of as-fabricated composites;[58][59] (9) hypothesized and then produced the first ultrasonic wave–residual strength correlations of impact-damaged composites;[60] (10) performed theoretical and applied ultrasonics of metals with and without macroscopic cracks, including a focus on structural bridge steels;[57][61][62][63][64][65] (11) performed theoretical and applied ultrasonics of composites;[56][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80] (12) conducted theoretical and experimental dynamic fracture of composite materials and structures;[81][82][83][84][85][86][87] (13) performed theoretical analyses of wave propagation in anisotropic media as related to composite materials and structures;[88][89][90][91][92][93][94][95] (14) developed statistical pattern recognition concepts for NDE;[96][97] (15) devised strategies for the residual life prediction of composite aircraft structures;[98][99][100] and (16) developed acoustic emission and ultrasonic versus load correlations for synthetic braided mooring lines and composite tension legs for offshore deepwater platforms.[101][102][103][104]

For the decade up to 2012, he and his research students have focused on the structural integrity damage assessment and repair of modern composites, with an emphasis on naval structures; and he continues to write sole-author documents on a range of technical topics, including several of the areas mentioned above, mechanical vibration and shock mitigation, and biomimetics.[6]

From the mid-1970s to the early 2000s, Williams also (1) conducted theoretical analyses on the earthquake isolation of buildings and structures by devising the highly unconventional concept of supporting them on sliding foundations;[105][106] (2) developed wave-like analyses of the dynamics and control of large space structures for earth-orbiting structural systems;[107][108][109][110][111][112][113] and (3) performed numerous major governmental and industrial consultations, as briefly described below.

By the early 1980s, he had devised ultrasonic laboratory systems for monitoring the structural integrity of composite structures in high performance aircraft.[56][114] He is known for having produced "the first theoretical models that predicted the acousto–ultrasonic waveforms as actually observed" in experiments and practice, as conducted at NASA Lewis and elsewhere.[57] Today, Williams is broadly recognized as one of the world's leading researchers in the mechanics and nondestructive testing of composite materials and structures: He was chosen by the editorial board of the American Society for Nondestructive Testing to be the first guest technical editor of its Special Focus issue on the NDT of Composites.[26]

Williams has also shown a sense of humor; 1) he led a group of students in building the world's largest yo-yo and tested it from the tallest building in Cambridge, Massachusetts;[27][115][116] (2) he has been called one of Boston's men of elegance and style;[13][117][118][119][120] and (3) he derived a mathematical proof of the counterintuitive number of rotations made by a non-slipping smaller cylinder rolling around a larger stationary cylinder, as presented in the popular "Ask Marilyn" column of the 72-year-old Parade Magazine, which is inserted into about 700 U.S. Sunday newspapers.[121][122]

Consulting edit

During his career, Williams has conducted dozens of industrial and governmental consultations including (1) papermaking calender rolls, for which "he is considered, by virtue of his extensive work in the field, to be the nation's leading expert on stresses in rotary paper dryers";[33][123] (2) the first automated system for installing recessed highway lane delineation reflectors;[124] (3) an earthquake analysis of the 500 KV bus system of the British Columbia (Canada) hydroelectric power generating station and the design of an isolation system to protect its electrical lines during seismic activity;[125] (4) the design of composite rocket motor casings;[126] (5) the residual-life prediction of composite aircraft structures;[127] (6) the stress analysis of a high-speed optical pulsing system;[128] (7) the stress analysis of pelvic implants and bone stints for the Orthopædic Unit of the Massachusetts General Hospital;[129] (8) the effect of ultrasonic irradiation on the enhancement of composite fabrication;[130] (9) the ultrasonic NDE delineation of strength and rupture modes in adhesively bonded joints;[11][12] (10) the design of deepwater mooring composite systems for offshore oil platforms;[131][132][133] (11) an NDE regimen for the structural acceptance of composite automotive leaf springs;[134] among others.

Controversies edit

MIT fasting protest edit

 
Professor James H. Williams Jr. sitting in protest in front of the Office of the MIT President and Provost, 3 April 1991.

In April 1991, Williams—at that time, the only native-born black American faculty member in the combined School of Engineering and School of Science at MIT—conducted a fasting sit-in each Wednesday throughout April. He was protesting the lack of black faculty and a lack of inspirational education for minority students.[135][136] During his protest, he set up a temporary office in the corridor at the entrance of the offices of the MIT president and provost. He observed that some aspects of the black community have disproportionately suffered attendant with integration because, in the broadest sense, many talented blacks have left the black community (no matter where it exists)—they no longer live in or relate to it; "they have been encouraged to escape from their roots." The residual black community is less educated and financially poorer. He characterized this phenomenon as "neocolonialist."[137][18][25][136][138][139][140][141][142][143][144][145][146][147]

Crash of American Airlines Flight 587 edit

On November 12, 2001, shortly after takeoff from John F. Kennedy International Airport, American Airlines Flight 587, an Airbus Industrie A300-600, crashed in Queens, New York, killing 251 passengers, a crew of 9, and 5 people on the ground.

At the request of several American Airlines pilots, Williams analyzed and then challenged the inspection requirements and the accident investigation conclusions of Airbus Industrie, the Federal Aviation Administration (FAA), and the National Transportation Safety Board (NTSB)—all of whom to varying degrees blamed the co-pilot of Flight 587 for the crash. The investigation and controversy concerning the crash focused on (1) the co-pilot's actions during takeoff, and (2) the aircraft's vertical stabilizer of the tail section, a complex structure of advanced composites. The vertical stabilizer on Flight 587 snapped off and landed in Jamaica Bay, away from the fuselage crash site.

According to Williams, Airbus adopted an inadequate inspection policy for its composite tail, the FAA approved Airbus's deficient inspection policy, and the NTSB mis-analyzed the cause of the airline disaster.

In so far as the vertical stabilizer was concerned, Airbus's nondestructive inspection policy was that damage that could not be seen with the unaided eye would not compromise its structural integrity. Such an inspection protocol greatly concerned Williams who characterized it as "a lamentably naive policy."[148][149] Williams further stated and was frequently quoted in the print and broadcast media as describing Airbus's inspection policy as "analogous to assessing whether a woman has breast cancer by simply looking at her family portrait."[150][151][152][148][153][154]

Through internet postings,[148] op-ed pieces,[153] industrial journal articles,[149] letters,[155] interviews in magazines and newspapers[150][151][156][157] and TV appearances,[152][158][154] Williams challenged the preliminary remarks and the final report of the NTSB's accident investigation. Although there were several critics of the investigation, including varied pilots and pundits, Williams is widely regarded as the major engineering voice providing pushback against the conclusion that the air disaster was essentially the fault of the co-pilot.

Based largely on the steadfast criticism of Airbus and the NTSB by Williams, in a tour de force of engineering and civic commentary, he clearly influenced both the NTSB[159] and Airbus[160] to reverse their positions on the cause of the American Airlines 587 crash as well as the required inspection procedures, thus likely saving hundreds of lives of current and future commercial airline passengers.[150][151][157][159]

Publications edit

Williams has written hundreds of technical publications in refereed journals, conference proceedings, and major reports to industrial and governmental agencies, dozens of non-technical op-ed and political commentaries, and two books. He is the author of the introductory textbook Wave Propagation and of the unconventional textbook Fundamentals of Applied Dynamics, which is a blend of history, dynamics and vibration.

References edit

  1. ^ a b c d e Williams, James H. Jr. (2009). I Will Love You, Forever!—The Quantum Mechanics of Love. Ingram Book Group. ISBN 978-0615268132.
  2. ^ a b c Forest, Angela (2 May 2004). "A Wild Experiment". Daily Press.
  3. ^ Grimes, Cathy (30 November 2013). "New Apprentice School set to open in Downtown Newport News". The Daily Press.
  4. ^ "Shipyard Apprentice School—Ground-breaking Ceremony at Newport News". MarineLink.com. 6 May 2012.
  5. ^ "Burke Tells Grads to Take Initiative". The Broad A. X (1): 1. February 1964.
  6. ^ a b "MIT home page: James H. Williams Jr". MIT.
  7. ^ a b "MIT Professor Williams to help develop writing courses for engineering students". MIT Tech Talk. 17 November 2000.
  8. ^ "Williams Is Appointed to Engineering Chair". MIT Tech Talk. 9 October 1991. p. 3.
  9. ^ a b Di Iorio, Robert C. (10 February 1993). "Six New MacVicar Fellows Honored at Luncheon". MIT Tech Talk.
  10. ^ "Williams wins Edison Award". MIT Tech Talk. 24 February 1993.
  11. ^ a b . MIT Mechanical Engineering Department. Archived from the original on 2013-11-05.
  12. ^ a b c Waugh, A.C. (3 March 1999). "Williams and Crayton are named 1998 YMCA Black Achievers". MIT Tech Talk. p. 3.
  13. ^ a b Montgomery, M.R. (26 May 1993). "Engineering Success MIT's James T. Williams helps students by building on their knowledge of themselves". Boston Globe. p. 75. Archived from the original on 7 December 2013.
  14. ^ "News Notes". Bay State Banner. 4 March 1993. p. 6.
  15. ^ "Birthday Tribute". MIT Tech Talk. 12 August 1981. p. 3.
  16. ^ Reeves, Curtis (15 May 1973). "MIT awards given; 33 prizes presented" (PDF). The Tech.
  17. ^ Karagianis, Elizabeth (Fall 1994). "James H. Williams Jr. – Department of Mechanical Engineering". MIT Spectrum: 4.
  18. ^ a b Lamberti, Andrea (3 May 1991). "Students protest minority policies". The Tech. p. 1.
  19. ^ Peterson, Simone (29 October 1985). "Be mindful of tone in speeches". The Tech.
  20. ^ Huang, T.T. (4 February 1986). "What will The Tech do now?" (PDF). The Tech.
  21. ^ Jungwirth, Craig (22 October 1985). "Williams gives own view". The Tech. p. 1.
  22. ^ Hsu, Susan; et al. (7 May 1991). "Baker Award is not career killer". The Tech. p. 5.
  23. ^ Mayer, Thomas (16 September 1975). "New dorm master hopeful" (PDF). The Tech. p. 1.
  24. ^ "Sisters in Life". MIT Tech Talk. 6 May 1981. p. 3.
  25. ^ a b Vedantham, Anu (7 April 1987). "McBay, Manning skip forum" (PDF). The Tech.
  26. ^ a b c Williams, James H. Jr., ed. (July 2007). "NDT of Composites". Materials Evaluation.
  27. ^ a b "Williams Returns from New University-Industry Program". MIT Tech Talk. 11 September 1974.
  28. ^ Williams, James H. Jr.; S.S. Lee (April 1985). "Promising Quantitative Nondestructive Evaluation Techniques for Composite Materials". Materials Evaluation. 43 (5): 561–565.
  29. ^ Williams, James H. Jr. (Fall 1979). "Thermal Tests Detect Fiberglass Flaws". MIT Sea Grant, Quarterly Report.
  30. ^ "Reports on Research: Whispering Fatigue". MIT Industrial Liaison Program. 7 (7). April 1980.
  31. ^ Williams, James H. Jr. (August 1973). "Inextensional Approximations in Cylindrical Shells". AIAA Journal. 11 (8): 1213–1214. Bibcode:1973AIAAJ..11.1213W. doi:10.2514/3.6903.
  32. ^ Williams, James H. Jr. (October 1973). "Deformation in Multiple Tier Cylindrical Shells". Journal of the Engineering Mechanics Division. 99 (EM5): 1114–1118. doi:10.1061/JMCEA3.0001822.
  33. ^ a b Williams, James H. Jr. (May 1974). "Line Load on Cylindrical Shell with End Plates". Journal of Pressure Vessel Technology. 96 (2): 131–136. doi:10.1115/1.3454151.
  34. ^ Williams, James H. Jr.; S.S. Lee (September 1974). "Centers of Twist and Shear in Cylindrical Shell Beams of Arbitrary Section". Journal of Applied Mechanics. 41 (3): 829–931. Bibcode:1974JAM....41..829W. doi:10.1115/1.3423409.
  35. ^ Williams, James H. Jr. (August 1975). "Line Load Displacements in Orthotropic Cylindrical Shells". Journal of Pressure Vessel Technology. 97 (3): 232–233. doi:10.1115/1.3454300.
  36. ^ Williams, James H. Jr.; E.K. Lau (1974). "Solid Particle Erosion of Graphite-Epoxy Composites". WEAR. 29 (2): 219–230. doi:10.1016/0043-1648(74)90072-6.
  37. ^ Williams, James H. Jr. (1975). "Stresses in Adhesive Between Dissimilar Adherends". Journal of Adhesion. 7 (2): 97–107. doi:10.1080/00218467508075042.
  38. ^ Williams, James H. Jr.; Z. Bin Ahmad (Summer 1980). "Interlaminar Stresses in Composites Having Arbitrary Stacking Sequences". NTA Journal. 54 (3): 76–86.
  39. ^ Williams, James H. Jr.; S.S. Lee; C.S. Wasserman (July 1977). "Fibre Intersections in a Planar Randomly Oriented Fibre Composite". Fibre Science and Technology. 10 (3): 161–177. doi:10.1016/0015-0568(77)90018-5.
  40. ^ Kousiounelos, P.N.; Williams Jr., James H. (October 1977). "Heterogeneous Anisotropic Model for Notched Fibre Composites". Fibre Science and Technology. 10 (4): 299–311. doi:10.1016/0015-0568(77)90006-9.
  41. ^ Williams, James H. Jr.; B.J. Bosy (October 1977). "Fibre Orientation Efficiency Factor for Planar Randomly Oriented Discontinuous Fibre Composites". Fibre Science and Technology. 10 (4): 319–322. doi:10.1016/0015-0568(77)90008-2.
  42. ^ Williams, James H. Jr.; P.N. Kousiounelos (March 1978). "Thermoplastic Fibre Coatings Enhance Composite Strength and Toughness". Fibre Science and Technology. 11 (2): 83–88. doi:10.1016/0015-0568(78)90001-5.
  43. ^ Williams, James H. Jr.; S.S. Lee (1977). McGonnagle, W.J. (ed.). "Monitoring of Elastic Stresses by Acoustic Emission". International Advances in Nondestructive Testing. 5: 265–273.
  44. ^ Williams, James H. Jr.; S.S. Lee (October 1978). "Acoustic Emission Monitoring of Fiber Composite Materials and Structures". Journal of Composite Materials. 12 (4): 348–370. Bibcode:1978JCoMa..12..348W. doi:10.1177/002199837801200402. S2CID 135600871.
  45. ^ Williams, James H. Jr.; D.M. Egan (January 1979). "Acoustic Emission Spectral Analysis of Fiber Composite Failure Mechanisms". Materials Evaluation. 37 (1): 43–47.
  46. ^ Williams, James H. Jr.; S.S. Lee (February 1979). "Acoustic Emission from Graphite/Epoxy Composite Containing Interlaminar Paper Inclusions". NDT International. 12: 5–7. doi:10.1016/0308-9126(79)90033-6.
  47. ^ Williams, James H. Jr.; G.P. Emerson (October 1979). "Acoustic Emission/Elastic Stress Behavior in a Magnesium Alloy". Materials Evaluation. 37 (11): 73–80.
  48. ^ Williams, James H. Jr.; S.S. Lee (January 1982). "Acoustic Emission During Unloading of Elastically Stressed Magnesium Alloy". Journal of Testing and Evaluation. 10 (1): 12–16. doi:10.1520/jte11563j. hdl:2060/19780018515. S2CID 56039176.
  49. ^ Williams, James H. Jr.; S.S. Lee (July 1983). "Acoustic Emission Characterization Using AE [Parameter] Delay". Materials Evaluation. 41 (8): 961–966.
  50. ^ Williams, James H. Jr.; H.S. Mansouri; S.S. Lee (May 1980). "One-Dimensional analysis of Thermal nondestructive Detection of Delamination and Inclusion Flaws". British Journal of Non-Destructive Testing. 22 (3): 113–118.
  51. ^ Williams, James H. Jr.; H.S. Mansouri; S.S. Lee (July 1980). "Thermal Nondestructive Testing of Fiberglass Laminates Using Liquid Crystals". British Journal of Non-Destructive Testing. 22 (4): 184–190.
  52. ^ Williams, James H. Jr.; H.S. Mansouri; S.S. Lee (March 1982). "Thermal Nondestructive Testing of Fiberglass Laminate Containing Simulated Flaws Orthogonal to Surface Using Liquid Crystals". British Journal of Non-Destructive Testing. 24 (2): 76–81.
  53. ^ Williams, James H. Jr.; R.J. Nagem (February 1983). "A Liquid Crystals Kit for Structural Integrity Assessment of Fiberglass Watercraft". Materials Evaluation. 41 (2): 202–210.
  54. ^ Cai, L.-W.; A.F. Thomas; James H. Williams Jr. (September 2001). "Thermographic Nondestructive Evaluation of Polymeric Composite Sandwich Panels". Materials Evaluation. 59 (9): 1061–1071.
  55. ^ Thomas, A.F.; L.-W. Cai; James H. Williams Jr. (November 2002). "Nondestructive Testing of Polymeric Composite Sandwich Panels Via the Thermographic Halo". Materials Evaluation. 60 (11): 1339–1349.
  56. ^ a b c Williams Jr., James H.; S.S. Lee (April 1985). "Promising Quantitative Nondestructive Evaluation Techniques for Composite Materials". Materials Evaluation. 43 (5): 561–565.
  57. ^ a b c Drouillard, Thomas F.; Alex Vary (January–June 1994). "AE Literature—Acousto-Ultrasonic Reflections". Journal of Acoustic Emission. 12 (1–2): 71.
  58. ^ Williams, James H. Jr.; B. Doll (May 1980). "Ultrasonic Attenuation as an Indicator of Fatigue Life of Graphite Fiber Epoxy Composite". Materials Evaluation. 38 (5): 33–37.
  59. ^ Williams, James H. Jr.; H. Yuce; S.S. Lee (April 1982). "Ultrasonic and Mechanical Characterizations of Fatigue States of Graphite Epoxy Composite Laminates". The Journal of the Acoustical Society of America. 40 (5): 560–565. Bibcode:1983ASAJ...73Q2230W. doi:10.1121/1.389517. hdl:2060/19820009640. S2CID 33451143.
  60. ^ Williams, James H. Jr.; N.R. Lampert (December 1980). "Ultrasonic NDE of Impact-Damaged Graphite Fiber Composite". Materials Evaluation. 38 (12): 68–72.
  61. ^ Williams, James H. Jr.; D.M. deLonga; S.S. Lee (October 1982). "Correlations of Acoustic Emission with Fracture Mechanics Parameters in Structural Bridge Steels During Fatigue". Materials Evaluation. 40 (11): 1184–1189.
  62. ^ Williams, James H. Jr.; E.B. Kahn; S.S. Lee (December 1983). "Effects of Specimen Resonances on Acoustic-Ultrasonic NDE". Materials Evaluation. 41 (13): 1502–1510.
  63. ^ Williams, James H. Jr.; H. Karagulle; S.S. Lee (January 1986). "Ultrasonic Testing of Plates Containing Edge Cracks". Materials Evaluation. 44 (1): 100–107.
  64. ^ Williams, James H. Jr.; H. Karagulle; S.S. Lee (March 1986). "Stress Waves in an Isotropic Elastic Plate Excited by a Circular Transducer". Materials Evaluation. 44 (4): 455–462.
  65. ^ Williams Jr., James; S.S. Lee; H. Karagulle (1986). "Input-Output Characterizations on an Ultrasonic Testing System by Digital Signal Analysis". In W.J. McGonnagle (ed.). International Advances in Nondestructive Testing. Vol. 12. Gordon and Breach Science Publishing. pp. 147–192.
  66. ^ Williams, James H. Jr.; S.S. Lee (1980). "Stress Wave Attenuation in Thin Structures by Ultrasonic Through-Transmission". Journal of Nondestructive Evaluation. 1 (4): 277–285. Bibcode:1980mit..reptQ....L. doi:10.1007/bf00571808. hdl:2027/uiug.30112106862946. S2CID 111076502.
  67. ^ Williams, James H. Jr.; H. Nayeb-Hashemi; S.S. Lee (1980). "Ultrasonic Attenuation and Velocity in AS/3501-6 Graphite Fiber Composite". Journal of Nondestructive Evaluation. 1 (2): 137–148. doi:10.1007/bf00566121. S2CID 135772192.
  68. ^ Williams, James H. Jr.; H. Nayeb-Hashemi; S.S. Lee (1980). "Ultrasonic Wave Propagation Loss Factor in Composite in Terms of Constituent Properties". Journal of Nondestructive Evaluation. 1 (3): 191–199. doi:10.1007/bf00567091. S2CID 137604291.
  69. ^ Williams, James H. Jr.; B. Doll (December 1982). "A Simple Wave Propagation Analysis of Piezoceramic NDE Transducer Response". Materials Evaluation. 40 (13): 1374–1381.
  70. ^ Williams, James H. Jr.; H. Karagulle; S.S. Lee (May 1982). "Ultrasonic Input-Output for Transmitting and Receiving Longitudinal Transducers Coupled to Same Face of Isotropic Elastic Plate". Materials Evaluation. 40 (6): 655–662.
  71. ^ Williams, James H. Jr.; S.S. Lee; H. Yuce (February 1984). "Ultrasonic Attenuation of a Void-Containing Medium for Very Long Wavelengths". Materials Evaluation. 42 (2): 219–224.
  72. ^ Karagulle, H.; James H. Williams Jr.; S.S. Lee (October 1985). "Application of Homomorphic Signal Processing to Stress Wave Factor Analysis". Materials Evaluation. 43 (11): 1446–1454.
  73. ^ Williams, James H. Jr.; S.S. Lee (1991). "Ultrasonic Wave Characterization of Polymers". Materials Evaluation. 49 (3): 351–355. Bibcode:1991MatEv..49..351L.
  74. ^ Yim, H.; James H. Williams Jr. (September 1995). "Formulation and Its Energy Balance Verification for Ultrasonic and Nondestructive Characterization of a Single Fiber Composite Interphase". Ultrasonics. 33 (5): 377–387. doi:10.1016/0041-624x(95)00043-3.
  75. ^ Yim, H.; James H. Williams Jr. (September 1995). "Database Generation and Parametric Study for Ultrasonic Nondestructive Characterization of a Single Fiber Composite Interphase". Ultrasonics. 33 (5): 389–401. doi:10.1016/0041-624x(95)00044-4.
  76. ^ Cai, L.-W.; James H. Williams Jr. (November 1999). "Large-Scale Multiple-Scattering Problems". Ultrasonics. 37 (7): 435–462. doi:10.1016/s0041-624x(99)00029-3.
  77. ^ Cai, L.-W.; James H. Williams Jr. (November 1999). "Full-Scale Simulations of Elastic Wave Scattering in Fiber-Reinforced Composites". Ultrasonics. 37 (7): 463–482. doi:10.1016/s0041-624x(99)00030-x.
  78. ^ Cai, L.-W.; James H. Williams Jr. (November 1999). "NDE via Stop Band Formation in Fiber Reinforced Composites Having Square Fiber Arrangements". Ultrasonics. 37 (7): 483–492. doi:10.1016/s0041-624x(99)00031-1.
  79. ^ Cai, L.-W.; James H. Williams Jr. (April 2005). "Transient Wave Ultrasonic Detection of Delaminations in Composite Sandwich Panels". Materials Evaluation. 63 (4): 434–442.
  80. ^ Cai, L.-W.; James H. Williams Jr. (June 2005). "Ultrasonic Detection of Delaminations in Composite Sandwich Panels Having Attenuation". Materials Evaluation. 63 (6): 657–666.
  81. ^ Williams, James H. Jr.; S.S. Lee (1982). "Double Cantilever Shear Beam Model of Dynamic Fracture in Duplex Fiber Composites". International Journal of Fracture. 19 (3): 3–16. doi:10.1007/bf00012488. S2CID 136982441.
  82. ^ Williams, James H. Jr.; S.S. Lee (September 1982). "Double Cantilever Shear Beam model of Dynamic Fracture in Unidirectional Fiber Composites". Fibre Science and Technology. 17 (2): 99–122. doi:10.1016/0015-0568(82)90039-2.
  83. ^ Kousiounelos, P.N.; James H. Williams Jr. (1982). "Dynamic Fracture of Unidirectional Graphite Fiber Composite Strips". International Journal of Fracture. 20: 47–63. doi:10.1007/bf00942164. S2CID 137142627.
  84. ^ Williams, James H. Jr.; P.N. Kousiounelos (1981). "Numerical Stability and Convergence Criteria for Equations for Dynamic Fracture in DCB Composite Specimens". Engineering Fracture Mechanics. 14 (1): 165–170. doi:10.1016/0013-7944(81)90025-4.
  85. ^ Williams, James H. Jr.; S.S. Lee; P.N. Kousiounelos (1981). "Dynamic Crack Propagation and Arrest in Orthotropic DCB Fiber Composite Specimens". Engineering Fracture Mechanics. 14 (2): 427–438. doi:10.1016/0013-7944(81)90011-4.
  86. ^ Kousiounelos, P.N.; James H. Williams Jr. (February 1981). "Approximate Mode I Velocity Correction Factors for 90° Unidirectional Fiber Composites". Fibre Science and Technology. 14 (2): 91–97. doi:10.1016/0015-0568(81)90034-8.
  87. ^ Kousiounelos, P.N.; James H. Williams Jr. (1982). "Approximate Mode II Velocity Correction Factors for 90° Unidirectional Fiber Composites". Engineering Fracture Mechanics. 16 (4): 483–496. doi:10.1016/0013-7944(82)90128-x.
  88. ^ Williams, James H. Jr.; E.R.C. Marques; S.S. Lee (May 1986). "Stress Waves in Transversely Isotropic Media: The Homogeneous Problem". NASA Cr-3977.
  89. ^ Williams, James H. Jr.; E.R.C. Marques; S.S. Lee (July 1986). "Wave Propagation in Anisotropic Infinite Medium Due to an Oscillatory Point Source with Application to a Unidirectional Composite Material". NASA Cr-4001.
  90. ^ Williams, James H. Jr.; T.P. Liao (1987). "Acousto-Ultrasonic Input-Output Characterization of Unidirectional Fiber Composite Plate by SH Waves". NASA Cr-4087.
  91. ^ Williams, James H. Jr.; T.P. Liao (1988). "Acousto-Ultrasonic Input-Output Characterization of Unidirectional Fiber Composite Plate by P Waves". NASA Cr-4162.
  92. ^ Williams, James H. Jr.; T.P. Liao (1988). "Acousto-Ultrasonic Input-Output Characterization of Unidirectional Fiber Composite Plate by SV Waves". NASA Cr-4152.
  93. ^ Williams, James H. Jr.; J.D. Renneisen (1989). "Input-Output Characterization of Fiber Composites by P Waves". NASA Contractor Report.
  94. ^ Williams, James H. Jr.; J.D. Renneisen (1989). "Input-Output Characterization of Fiber Composites by SH Waves". NASA Contractor Report.
  95. ^ Williams, James H. Jr.; J.D. Renneisen (1989). "Input-Output Characterization of Fiber Composites by SV Waves". NASA Contractor Report.
  96. ^ Williams, James H. Jr.; S.S. Lee (1977). Warren J. McGonnagle (ed.). "Pattern Recognition Characterizations of Micromechanical and Morphological Materials States via Analytical Quantitative Ultrasonics". International Advances in Nondestructive Testing. 5: 265–273.
  97. ^ Cimaszewski, S.A.; H. Yim; James H. Williams Jr. (1995). "Multiparameter Statistical Determination of Single Fibre Interphase Properties". Ultrasonics. 33 (5): 403–410. doi:10.1016/0041-624x(95)00045-5.
  98. ^ Williams, James H. Jr. (July 1999). "Prediction of Remaining Useful Life of Aircraft Components Using Nondestructive Inspection Data". Afrl/MLLP. Final Report. Ohio: Wright Patterson AFB.
  99. ^ Nagem, R.J.; J.M. Seng; James H. Williams Jr. (September 2000). "Residual Life Predictions of Composite Aircraft Structures via Nondestructive Testing, Part 1: Prediction Methodology and Nondestructive Testing". Materials Evaluation. 58 (9): 1065–1074.
  100. ^ Nagem, R.J.; J.M. Seng; James H. Williams Jr. (November 2000). "Residual Life Predictions of Composite Aircraft Structures via Nondestructive Testing, Part 2: Degradation Modeling and Residual Life Prediction". Materials Evaluation. 58 (11): 1310–1319.
  101. ^ Williams, James H. Jr.; S.S. Lee (July 1982). "Acoustic Emission/Rupture Load Characterizations of Double-Braided Nylon Rope". Marine Technology.
  102. ^ Williams, James H. Jr.; J. Hainsworth; S.S. Lee (1984). "Acoustic-Ultrasonic Nondestructive Evaluation of Double-Braided Nylon Ropes Using the Stress Wave Factor". Fibre Science and Technology. 21 (3): 169–180. doi:10.1016/0015-0568(84)90012-5.
  103. ^ Williams, James H. Jr.; J.M. Connolly; K.M. Malek; S.S. Lee (1984). "Ultrasonic Wave Velocity in Double-Braided Nylon Rope". Fibre Science and Technology. 21 (1): 41–57. doi:10.1016/0015-0568(84)90064-2.
  104. ^ Williams, James H. Jr.; A.U. Kuehnle; S.S. Lee (1985). "Identification of Damage Levels in Synthetic Rope by Ultrasonic Spectral Pattern Recognition". Report to US Navy.
  105. ^ Williams, James H. Jr. (January 1977). "Designing Earthquake-Resistant Structures". NTA Journal. 1 (1): 38–44.
  106. ^ Crandall, S.H.; S.S. Lee; James H. Williams Jr. (December 1974). "Accumulated Slip of a Friction-Controlled Mass Excited by Earthquake Motions". Journal of Applied Mechanics. 41 (4): 1094–1098. Bibcode:1974JAM....41.1094C. doi:10.1115/1.3423440.
  107. ^ Williams, James H. Jr.; R.J. Nagem (August 1987). "Wave Propagation in Large Space Structures". Proceedings of the Fifth AFOSR Forum on Space Structures. Monterey, California.
  108. ^ Nagem, R.J.; James H. Williams Jr. (1989). "Dynamic Failure and Arrest in Large Space Structures". Mechanics of Structures and Machines. 17 (1): 53–72. doi:10.1080/089054508915629.
  109. ^ Nagem, R.J.; James H. Williams Jr. (1989). "Dynamic Analysis of Large Space Structures Using Transfer Matrices and Joint Coupling Matrices". Mechanics of Structures and Machines. 17 (3): 349–371. doi:10.1080/089054508915646.
  110. ^ Nagem, R.J.; James H. Williams Jr. (1990). "Control of One-Dimensional Distributed Structure Based on Wave Propagation Analysis". Mechanics of Structures and Machines. 18 (1): 33–57. doi:10.1080/08905459008915658.
  111. ^ Kuehnle, A.E.; James H. Williams Jr. (1990). "Control of Longitudinal Waves in Rod with Voigt Damping, Mechanics of Structures and Machines". Mechanics of Structures and Machines. 18 (3): 335–351.
  112. ^ Nagem, R.J.; James H. Williams Jr. (1994). "Scattering of Nondispersive Waves at Nonlinear Joints in One-Dimensional Structures". Mechanics of Structures and Machines. 22 (3): 305–326. doi:10.1080/08905459408905215.
  113. ^ Nagem, R.J.; James H. Williams Jr. (1994). "Reflection and Transmission of Random Disturbances at Joints in One-Dimensional Structures". Mechanics of Structures and Machines. 22 (3): 327–342. doi:10.1080/08905459408905216.
  114. ^ Jones, Yolanda (2 September 1980). "Newport News Native Studies Stress Sounds". Daily Press. p. 10.
  115. ^ "Silly Season at M.I.T.". Science Digest: 72–76. July 1974.
  116. ^ "Prof. Williams Spins His Wheels and Comes Up with a Colossal, Working Yo-yo". People. 5 (3): 39. 26 January 1976.
  117. ^ Abrahms, Sally; Sheila Eby (Fall–Winter 1982). "The Men of Boston". Playboy Fashion. 3 (2): 85.
  118. ^ Shurkin, Joel (June 1983). "Science and Casual". L'Uomo Vogue: 72–137.
  119. ^ Hatfield, Julie (29 April 1982). "Fashionable 'Men of Boston' hop to Playboy's photo call". Boston Globe. p. 45.
  120. ^ "Natty Prof. Williams may be one of Playboy's 'Men of Boston". MIT Tech Talk. Vol. 26, no. 35. p. 3.
  121. ^ Williams, James H. Jr. (10 May 1992). "Ask Marilyn [letter quotation]". Parade: 6.
  122. ^ Sternberg, J. (14 November 2013). "Parade Slowly Marches Into the Digital Era". Digiday.
  123. ^ "Johnson, Schroeder, Williams are Appointed as First Edgerton Assistant Professors". MIT Tech Talk. 9 January 1974.
  124. ^ Williams, James H. Jr. (June 1978). "Development and Evaluation of Mechanized Equipment for Installation of the Recessed Reflective Marker Delineation System". U.S. Department of Transportation, Office of Research and Development (Technical Report).
  125. ^ Williams, James H. Jr. (December 1975). "Seismic Analysis of Bus and Support Systems". British Columbia Hydro-Mica Dam Project.
  126. ^ Williams, James H. Jr. (April 1990). "Design, Materials and Mechanical Characterization of Overbraided Composite Rocket Motors". Naval Ordnance Station (Indian Head, Maryland).
  127. ^ Williams, James H. Jr. (July 1999). "Prediction of Remaining Useful Life of Aircraft Components Using Nondestructive Inspection Data". AFRL/MLLP Final Report (Wright Patterson AFB). OH 45433-7817.
  128. ^ Williams, James H. Jr. (July 1972). "Stress and Dynamic Calculations for Rotary Disk Shutters". Report to AVCO-Everett.
  129. ^ Williams, James H. Jr. (March 1975). "Stresses of Implants". Report to Hip and Implant Surgery Unit, Massachusetts General Hospital.
  130. ^ Williams, James H. Jr.; S.S. Lee; E.R. Lang (September 1984). "Effects of Ultrasonic Irradiation on the Enhancement of Composite Processing". Report to GM Manufacturing and Development.
  131. ^ Williams, James H. Jr. (December 1984). "Material and Nondestructive Evaluation Characterizations of Fiber Reinforced Polymeric Composites for Deepwater Mooring Systems". Report to Conoco, Inc.
  132. ^ Williams, James H. Jr.; S.S. Lee (February 1985). "Proceedings of the Offshore Mechanics and Arctic Engineering Conference (Dallas, Texas)". {{cite journal}}: Cite journal requires |journal= (help)
  133. ^ Williams, James H. Jr.; M.M. Salama; R.M. Vennett; S.S. Lee (February 1985). "Materials for Lightweight Mooring System for Deepwater Compliant Structures". Proceedings of the Offshore Mechanics and Arctic Engineering Conference (Dallas, Texas).
  134. ^ Williams, James H. Jr.; S.S. Lee (1981). "Nondestructive Evaluation of Automotive Composite Leaf Spring". WEA (Cambridge, Massachusetts).
  135. ^ Williams, James H. Jr. (March 1991). "Dilemmas, Colonialism, and Protest" (PDF). MIT Faculty Newsletter. III (5): 9.
  136. ^ a b Flint, Anthony (3 April 1991). "Black professor to protest at MIT by fasting". Boston Globe. p. 19. Archived from the original on 7 December 2013.
  137. ^ Negri, Gloria (4 April 1991). . Boston Globe. Archived from the original on 1 March 2016.
  138. ^ "Tenured MIT professor fasting in protest". The Enterprise. 4 April 1991. p. 48.
  139. ^ Di Iorio, Robert C. (10 April 1991). "Williams' Protest Draws Wide Press Attention". MIT Tech Talk. p. 1.
  140. ^ Mulvihill, Maggie (4 April 1991). "Black MIT Professor fasts to protest racism". Portland (Maine) Press Herald. AP.
  141. ^ Blum, Debra E. (10 April 1991). "Black Professor Starts Weekly Fast to Criticize MIT's Minority Efforts". Chronicle of Higher Education. p. A16.
  142. ^ "MIT Prof. Fasts to Protest Minorities' Status There". Jet: 23. 29 April 1991.
  143. ^ Clark, Josh (11 April 1991). "News Notes: No Food for Thought". Harvard Independent. p. 7.
  144. ^ Uche, Nena (25 April 1991). "Professor declares victory in protest of MIT climate". Bay State Banner. p. 2.
  145. ^ Lamberti, Andrea (26 April 1991). "Students gather in show of support for Williams' protest". The Tech. p. 1.
  146. ^ Ball, Charles H. (25 September 1991). "Program Is Adopted To Add Minority Faculty". MIT Tech Talk. p. 1.
  147. ^ Shim, Katherine (27 September 1991). "Minority Faculty Sought". The Tech. p. 1.
  148. ^ a b c "Flight 587".
  149. ^ a b Williams, James H. Jr. (29 July 2002). . Air Safety Week. Archived from the original on 9 April 2016.
  150. ^ a b c Rose, David (September 2002). "Pilot Terror". Vanity Fair. No. 505. p. 212.
  151. ^ a b c Rose, David (12 March 2005). "What made an Airbus rudder snap in mid-air?". The Observer.
  152. ^ a b Williams, James H. Jr. (5 August 2002). "Airbus's Fatal Flaws?". ABC News Tonight (TV appearance).
  153. ^ a b Williams, James H. Jr. (6 May 2002). "Closer inspection of a flight risk". Baltimore Sun.
  154. ^ a b Williams, James H. Jr. (6 August 2002). "ABC World News Now (TV appearance)".
  155. ^ Williams, James H. Jr. (3 July 2003). . Boston Globe. Archived from the original on 9 April 2016.
  156. ^ Thomson, Elizabeth A. "Airbus Flaws?". MIT News: Here & There.
  157. ^ a b Sales, R.J. (8 May 2002). "Flight risk of Airbus's A300-600 jet needs closer inspection, says prof". MIT Tech Talk.
  158. ^ Williams, James H. Jr. (7 February 2002). "Materials Used May Have Caused Crash—Airbus: Visual Inspection Flaw?". WNBC-TV Evening News (appearance).
  159. ^ a b "NTSB Urges Inspections of Certain Airbus A300 Rudders". NTSB Safety Recommendation A-06-27 and A-06-28. 24 March 2006.
  160. ^ "Sky Talk: Rigorous Airbus Rudder Checks Now Required". Star-Telegram. 19 December 2007.

james, williams, james, henry, williams, mechanical, engineer, consultant, civic, commentator, teacher, engineering, currently, professor, applied, mechanics, mechanical, engineering, department, massachusetts, institute, technology, regarded, world, leading, . James Henry Williams Jr is a mechanical engineer consultant civic commentator and teacher of engineering He is currently Professor of Applied Mechanics in the Mechanical Engineering Department at the Massachusetts Institute of Technology MIT He is regarded as one of the world s leading experts in the mechanics design fabrication and nondestructive evaluation NDE of nonmetallic fiber reinforced composite materials and structures He is also Professor of Writing and Humanistic Studies at MIT Professor James H Williams Jr in Du Pont Court Massachusetts Institute of Technology Cambridge Massachusetts USA November 2000 Williams began his career in 1960 as an apprentice machinist at the Newport News Shipbuilding and Dry Dock Company Within eight years he graduated from The Apprentice School earned SB and SM engineering degrees from MIT and returned to the Shipyard as a senior design engineer Within another two years he earned a PhD from the University of Cambridge where he conducted theoretical elasticity and shell theory He then chose to join the faculty at MIT where he has spent the bulk of his career Contents 1 Early life education and industrial career 2 Teaching 3 Research 4 Consulting 5 Controversies 5 1 MIT fasting protest 5 2 Crash of American Airlines Flight 587 6 Publications 7 ReferencesEarly life education and industrial career editWilliams was born in Newport News Virginia where he attended the segregated public schools He was a rambunctious hell raising student who never took a textbook home Still Williams s brilliance was recognized by some of his teachers who permitted him to read whatever he chose while in school and devised especially difficult tests for him independent of his classmates Along with one or more of his teachers he would also occasionally make up and grade the quizzes of his classmates He went on to win statewide prizes in mathematics and science He was also featured as a flutist in his high school band and as an underclassman earned first chair in the all state concert band 1 2 In 1960 Williams was among the earliest African Americans admitted to the selective Newport News Shipyard Apprentice School It attracts an average of about 4500 applications per year for approximately 250 openings with some of the applicants having earned bachelor s degrees 3 4 Williams is often regarded as the top academic student in the century long history of the Apprentice School In 1961 he won the Charles F Bailey Bronze Medal for the highest academic record by a first year apprentice in 1962 the Charles F Bailey Silver Medal highest academic record by a second year apprentice and in 1963 the Charles F Bailey Gold Medal highest academic record by a third year apprentice Furthermore in 1963 the Shipyard chose to award him a four year full Homer L Ferguson Scholarship to MIT Throughout his years as a student at MIT he consistently returned to the Shipyard during vacations and summers 1 2 5 In 1965 the Apprentice School awarded Williams the five year diploma of Mechanical Designer In 1967 he graduated from MIT with an SB in mechanical engineering and after completing his SM in mechanical engineering in the winter of 1968 Williams returned to the Shipyard During that period he performed a range of mechanics calculations on the catapults arrester cables and power and propulsion systems of the nuclear powered aircraft carrier USS Nimitz CVN 68 During this same period he held the title of Senior Design Engineer and was the only black among the hundreds of engineers at the Shipyard In the fall of 1968 Williams entered the University of Cambridge Trinity College in England earned the PhD in engineering and returned to America to the mechanical engineering faculty of MIT in 1970 6 1 7 2 Teaching editThroughout his MIT career Williams has been repeatedly acclaimed and honored with numerous awards 8 9 7 10 11 12 13 14 15 16 His teaching awards at MIT include 1973 Everett Moore Baker Memorial Award for Excellence in Undergraduate Teaching Top MIT teaching prize awarded solely by students he was the first Mechanical Engineering professor to receive this award 1981 Jacob P Den Hartog Distinguished Educator Award Top teaching award in the Mechanical Engineering Department at MIT he received the inaugural award 1991 School of Engineering Professor of Teaching Excellence He was the inaugural occupant of this MIT chair 1993 MacVicar Faculty Fellow Top MIT teaching prize awarded through MIT s executive administration for undergraduate education requiring broad faculty and student endorsements he was the first Mechanical Engineering professor to receive this award Having served as the first Housemaster of MIT s undergraduate dormitory New West Campus Houses and having supervised more than 100 research theses Williams is a highly regarded mentor of both undergraduate and graduate students 9 12 17 18 19 20 21 22 23 24 25 Research editIn the early 1970s Williams sought to better understand the emerging carbon fiber reinforced polymeric composite materials which were being touted as new materials to elevate the mechanical performance of structures Today these materials are used in fighter and commercial aircraft automobiles ships golf clubs tennis racquets and myriad other structures One of the major manufacturers of these new materials had observed that newly fabricated structures built from them had unacceptably high variabilities resulting in structures of low reliability Williams was retained as a consultant to determine why 1 26 In addition Williams s efforts were recognized by both industry and the National Science Foundation and he was selected through a university industrial program to spend the summer of 1974 at a major composites manufacturing facility 27 Williams soon realized that the unpredictability of the materials properties was due to undetected flaws or damage within the materials as a consequence of either improper fabrication or handling as well as the selection of the various constituents When he examined the technical and research literature on the nondestructive testing NDT to find and characterize the flaws in those materials he found very little Moreover the NDT results that he found generally related to metals and most of them were qualitative Then in 1974 Williams founded the Composite Materials and Nondestructive Evaluation Laboratory in MIT s Mechanical Engineering Department He preferred the term nondestructive evaluation to the more common term of nondestructive testing to emphasize his interests in the broad structural behavior of materials even in the absence of macroscopic flaws 1 26 With his advanced facilities in applied mathematics and experienced insights in mechanical design Williams sought and his subsequent career is distinguished by quantitative analyses and characterizations of composite materials properties and residual life based on a combination of nondestructive measurements and theoretical mechanics Such quantitative analyses and materials characterizations have elevated the field of nondestructive testing and increased the reliable use of composite materials and structures Williams has subsequently compiled an extensive list of research and consulting results in several instances groundbreaking firsts in the design fabrication strength analysis residual strength fatigue life and NDE of fiber reinforced composite materials and structures As an industrial and governmental consultant and through his MIT Lab with his research students he advanced the understanding of modern composite materials and structures as well as the systems for experimentally testing them 28 29 30 Among many achievements he 1 conducted the theoretical stress analyses of isotropic and anisotropic shells subjected to symmetric and asymmetric loads 31 32 33 34 35 2 produced the first quantitative correlations for the solid particle erosion of carbon fiber polymeric composites 36 3 conducted the stress analyses of adhesively bonded joints in composites 37 38 4 analyzed the enhancement of composite properties by the introduction of thermoplastic microstructures 39 40 41 42 5 conducted the elastic and plastic acoustic emission monitoring of materials and structures including structural bridge steels 43 44 45 46 47 48 49 6 established the forefront of the quantitative thermographic analyses of composite materials and structures 50 51 52 53 54 55 7 theoretically predicted and experimentally demonstrated the input output signatures of ultrasonic transducers 56 57 8 hypothesized and then produced the first ultrasonic wave fatigue life correlations of as fabricated composites 58 59 9 hypothesized and then produced the first ultrasonic wave residual strength correlations of impact damaged composites 60 10 performed theoretical and applied ultrasonics of metals with and without macroscopic cracks including a focus on structural bridge steels 57 61 62 63 64 65 11 performed theoretical and applied ultrasonics of composites 56 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 12 conducted theoretical and experimental dynamic fracture of composite materials and structures 81 82 83 84 85 86 87 13 performed theoretical analyses of wave propagation in anisotropic media as related to composite materials and structures 88 89 90 91 92 93 94 95 14 developed statistical pattern recognition concepts for NDE 96 97 15 devised strategies for the residual life prediction of composite aircraft structures 98 99 100 and 16 developed acoustic emission and ultrasonic versus load correlations for synthetic braided mooring lines and composite tension legs for offshore deepwater platforms 101 102 103 104 For the decade up to 2012 he and his research students have focused on the structural integrity damage assessment and repair of modern composites with an emphasis on naval structures and he continues to write sole author documents on a range of technical topics including several of the areas mentioned above mechanical vibration and shock mitigation and biomimetics 6 From the mid 1970s to the early 2000s Williams also 1 conducted theoretical analyses on the earthquake isolation of buildings and structures by devising the highly unconventional concept of supporting them on sliding foundations 105 106 2 developed wave like analyses of the dynamics and control of large space structures for earth orbiting structural systems 107 108 109 110 111 112 113 and 3 performed numerous major governmental and industrial consultations as briefly described below By the early 1980s he had devised ultrasonic laboratory systems for monitoring the structural integrity of composite structures in high performance aircraft 56 114 He is known for having produced the first theoretical models that predicted the acousto ultrasonic waveforms as actually observed in experiments and practice as conducted at NASA Lewis and elsewhere 57 Today Williams is broadly recognized as one of the world s leading researchers in the mechanics and nondestructive testing of composite materials and structures He was chosen by the editorial board of the American Society for Nondestructive Testing to be the first guest technical editor of its Special Focus issue on the NDT of Composites 26 Williams has also shown a sense of humor 1 he led a group of students in building the world s largest yo yo and tested it from the tallest building in Cambridge Massachusetts 27 115 116 2 he has been called one of Boston s men of elegance and style 13 117 118 119 120 and 3 he derived a mathematical proof of the counterintuitive number of rotations made by a non slipping smaller cylinder rolling around a larger stationary cylinder as presented in the popular Ask Marilyn column of the 72 year old Parade Magazine which is inserted into about 700 U S Sunday newspapers 121 122 Consulting editDuring his career Williams has conducted dozens of industrial and governmental consultations including 1 papermaking calender rolls for which he is considered by virtue of his extensive work in the field to be the nation s leading expert on stresses in rotary paper dryers 33 123 2 the first automated system for installing recessed highway lane delineation reflectors 124 3 an earthquake analysis of the 500 KV bus system of the British Columbia Canada hydroelectric power generating station and the design of an isolation system to protect its electrical lines during seismic activity 125 4 the design of composite rocket motor casings 126 5 the residual life prediction of composite aircraft structures 127 6 the stress analysis of a high speed optical pulsing system 128 7 the stress analysis of pelvic implants and bone stints for the Orthopaedic Unit of the Massachusetts General Hospital 129 8 the effect of ultrasonic irradiation on the enhancement of composite fabrication 130 9 the ultrasonic NDE delineation of strength and rupture modes in adhesively bonded joints 11 12 10 the design of deepwater mooring composite systems for offshore oil platforms 131 132 133 11 an NDE regimen for the structural acceptance of composite automotive leaf springs 134 among others Controversies editMIT fasting protest edit nbsp Professor James H Williams Jr sitting in protest in front of the Office of the MIT President and Provost 3 April 1991 In April 1991 Williams at that time the only native born black American faculty member in the combined School of Engineering and School of Science at MIT conducted a fasting sit in each Wednesday throughout April He was protesting the lack of black faculty and a lack of inspirational education for minority students 135 136 During his protest he set up a temporary office in the corridor at the entrance of the offices of the MIT president and provost He observed that some aspects of the black community have disproportionately suffered attendant with integration because in the broadest sense many talented blacks have left the black community no matter where it exists they no longer live in or relate to it they have been encouraged to escape from their roots The residual black community is less educated and financially poorer He characterized this phenomenon as neocolonialist 137 18 25 136 138 139 140 141 142 143 144 145 146 147 Crash of American Airlines Flight 587 edit On November 12 2001 shortly after takeoff from John F Kennedy International Airport American Airlines Flight 587 an Airbus Industrie A300 600 crashed in Queens New York killing 251 passengers a crew of 9 and 5 people on the ground At the request of several American Airlines pilots Williams analyzed and then challenged the inspection requirements and the accident investigation conclusions of Airbus Industrie the Federal Aviation Administration FAA and the National Transportation Safety Board NTSB all of whom to varying degrees blamed the co pilot of Flight 587 for the crash The investigation and controversy concerning the crash focused on 1 the co pilot s actions during takeoff and 2 the aircraft s vertical stabilizer of the tail section a complex structure of advanced composites The vertical stabilizer on Flight 587 snapped off and landed in Jamaica Bay away from the fuselage crash site According to Williams Airbus adopted an inadequate inspection policy for its composite tail the FAA approved Airbus s deficient inspection policy and the NTSB mis analyzed the cause of the airline disaster In so far as the vertical stabilizer was concerned Airbus s nondestructive inspection policy was that damage that could not be seen with the unaided eye would not compromise its structural integrity Such an inspection protocol greatly concerned Williams who characterized it as a lamentably naive policy 148 149 Williams further stated and was frequently quoted in the print and broadcast media as describing Airbus s inspection policy as analogous to assessing whether a woman has breast cancer by simply looking at her family portrait 150 151 152 148 153 154 Through internet postings 148 op ed pieces 153 industrial journal articles 149 letters 155 interviews in magazines and newspapers 150 151 156 157 and TV appearances 152 158 154 Williams challenged the preliminary remarks and the final report of the NTSB s accident investigation Although there were several critics of the investigation including varied pilots and pundits Williams is widely regarded as the major engineering voice providing pushback against the conclusion that the air disaster was essentially the fault of the co pilot Based largely on the steadfast criticism of Airbus and the NTSB by Williams in a tour de force of engineering and civic commentary he clearly influenced both the NTSB 159 and Airbus 160 to reverse their positions on the cause of the American Airlines 587 crash as well as the required inspection procedures thus likely saving hundreds of lives of current and future commercial airline passengers 150 151 157 159 Publications editWilliams has written hundreds of technical publications in refereed journals conference proceedings and major reports to industrial and governmental agencies dozens of non technical op ed and political commentaries and two books He is the author of the introductory textbook Wave Propagation and of the unconventional textbook Fundamentals of Applied Dynamics which is a blend of history dynamics and vibration References edit a b c d e Williams James H Jr 2009 I Will Love You Forever The Quantum Mechanics of Love Ingram Book Group ISBN 978 0615268132 a b c Forest Angela 2 May 2004 A Wild Experiment Daily Press Grimes Cathy 30 November 2013 New Apprentice School set to open in Downtown Newport News The Daily Press Shipyard Apprentice School Ground breaking Ceremony at Newport News MarineLink com 6 May 2012 Burke Tells Grads to Take Initiative The Broad A X 1 1 February 1964 a b MIT home page James H Williams Jr MIT a b MIT Professor Williams to help develop writing courses for engineering students MIT Tech Talk 17 November 2000 Williams Is Appointed to Engineering Chair MIT Tech Talk 9 October 1991 p 3 a b Di Iorio Robert C 10 February 1993 Six New MacVicar Fellows Honored at Luncheon MIT Tech Talk Williams wins Edison Award MIT Tech Talk 24 February 1993 a b J P Den Hartog Distinguished Educator Award MIT Mechanical Engineering Department Archived from the original on 2013 11 05 a b c Waugh A C 3 March 1999 Williams and Crayton are named 1998 YMCA Black Achievers MIT Tech Talk p 3 a b Montgomery M R 26 May 1993 Engineering Success MIT s James T Williams helps students by building on their knowledge of themselves Boston Globe p 75 Archived from the original on 7 December 2013 News Notes Bay State Banner 4 March 1993 p 6 Birthday Tribute MIT Tech Talk 12 August 1981 p 3 Reeves Curtis 15 May 1973 MIT awards given 33 prizes presented PDF The Tech Karagianis Elizabeth Fall 1994 James H Williams Jr Department of Mechanical Engineering MIT Spectrum 4 a b Lamberti Andrea 3 May 1991 Students protest minority policies The Tech p 1 Peterson Simone 29 October 1985 Be mindful of tone in speeches The Tech Huang T T 4 February 1986 What will The Tech do now PDF The Tech Jungwirth Craig 22 October 1985 Williams gives own view The Tech p 1 Hsu Susan et al 7 May 1991 Baker Award is not career killer The Tech p 5 Mayer Thomas 16 September 1975 New dorm master hopeful PDF The Tech p 1 Sisters in Life MIT Tech Talk 6 May 1981 p 3 a b Vedantham Anu 7 April 1987 McBay Manning skip forum PDF The Tech a b c Williams James H Jr ed July 2007 NDT of Composites Materials Evaluation a b Williams Returns from New University Industry Program MIT Tech Talk 11 September 1974 Williams James H Jr S S Lee April 1985 Promising Quantitative Nondestructive Evaluation Techniques for Composite Materials Materials Evaluation 43 5 561 565 Williams James H Jr Fall 1979 Thermal Tests Detect Fiberglass Flaws MIT Sea Grant Quarterly Report Reports on Research Whispering Fatigue MIT Industrial Liaison Program 7 7 April 1980 Williams James H Jr August 1973 Inextensional Approximations in Cylindrical Shells AIAA Journal 11 8 1213 1214 Bibcode 1973AIAAJ 11 1213W doi 10 2514 3 6903 Williams James H Jr October 1973 Deformation in Multiple Tier Cylindrical Shells Journal of the Engineering Mechanics Division 99 EM5 1114 1118 doi 10 1061 JMCEA3 0001822 a b Williams James H Jr May 1974 Line Load on Cylindrical Shell with End Plates Journal of Pressure Vessel Technology 96 2 131 136 doi 10 1115 1 3454151 Williams James H Jr S S Lee September 1974 Centers of Twist and Shear in Cylindrical Shell Beams of Arbitrary Section Journal of Applied Mechanics 41 3 829 931 Bibcode 1974JAM 41 829W doi 10 1115 1 3423409 Williams James H Jr August 1975 Line Load Displacements in Orthotropic Cylindrical Shells Journal of Pressure Vessel Technology 97 3 232 233 doi 10 1115 1 3454300 Williams James H Jr E K Lau 1974 Solid Particle Erosion of Graphite Epoxy Composites WEAR 29 2 219 230 doi 10 1016 0043 1648 74 90072 6 Williams James H Jr 1975 Stresses in Adhesive Between Dissimilar Adherends Journal of Adhesion 7 2 97 107 doi 10 1080 00218467508075042 Williams James H Jr Z Bin Ahmad Summer 1980 Interlaminar Stresses in Composites Having Arbitrary Stacking Sequences NTA Journal 54 3 76 86 Williams James H Jr S S Lee C S Wasserman July 1977 Fibre Intersections in a Planar Randomly Oriented Fibre Composite Fibre Science and Technology 10 3 161 177 doi 10 1016 0015 0568 77 90018 5 Kousiounelos P N Williams Jr James H October 1977 Heterogeneous Anisotropic Model for Notched Fibre Composites Fibre Science and Technology 10 4 299 311 doi 10 1016 0015 0568 77 90006 9 Williams James H Jr B J Bosy October 1977 Fibre Orientation Efficiency Factor for Planar Randomly Oriented Discontinuous Fibre Composites Fibre Science and Technology 10 4 319 322 doi 10 1016 0015 0568 77 90008 2 Williams James H Jr P N Kousiounelos March 1978 Thermoplastic Fibre Coatings Enhance Composite Strength and Toughness Fibre Science and Technology 11 2 83 88 doi 10 1016 0015 0568 78 90001 5 Williams James H Jr S S Lee 1977 McGonnagle W J ed Monitoring of Elastic Stresses by Acoustic Emission International Advances in Nondestructive Testing 5 265 273 Williams James H Jr S S Lee October 1978 Acoustic Emission Monitoring of Fiber Composite Materials and Structures Journal of Composite Materials 12 4 348 370 Bibcode 1978JCoMa 12 348W doi 10 1177 002199837801200402 S2CID 135600871 Williams James H Jr D M Egan January 1979 Acoustic Emission Spectral Analysis of Fiber Composite Failure Mechanisms Materials Evaluation 37 1 43 47 Williams James H Jr S S Lee February 1979 Acoustic Emission from Graphite Epoxy Composite Containing Interlaminar Paper Inclusions NDT International 12 5 7 doi 10 1016 0308 9126 79 90033 6 Williams James H Jr G P Emerson October 1979 Acoustic Emission Elastic Stress Behavior in a Magnesium Alloy Materials Evaluation 37 11 73 80 Williams James H Jr S S Lee January 1982 Acoustic Emission During Unloading of Elastically Stressed Magnesium Alloy Journal of Testing and Evaluation 10 1 12 16 doi 10 1520 jte11563j hdl 2060 19780018515 S2CID 56039176 Williams James H Jr S S Lee July 1983 Acoustic Emission Characterization Using AE Parameter Delay Materials Evaluation 41 8 961 966 Williams James H Jr H S Mansouri S S Lee May 1980 One Dimensional analysis of Thermal nondestructive Detection of Delamination and Inclusion Flaws British Journal of Non Destructive Testing 22 3 113 118 Williams James H Jr H S Mansouri S S Lee July 1980 Thermal Nondestructive Testing of Fiberglass Laminates Using Liquid Crystals British Journal of Non Destructive Testing 22 4 184 190 Williams James H Jr H S Mansouri S S Lee March 1982 Thermal Nondestructive Testing of Fiberglass Laminate Containing Simulated Flaws Orthogonal to Surface Using Liquid Crystals British Journal of Non Destructive Testing 24 2 76 81 Williams James H Jr R J Nagem February 1983 A Liquid Crystals Kit for Structural Integrity Assessment of Fiberglass Watercraft Materials Evaluation 41 2 202 210 Cai L W A F Thomas James H Williams Jr September 2001 Thermographic Nondestructive Evaluation of Polymeric Composite Sandwich Panels Materials Evaluation 59 9 1061 1071 Thomas A F L W Cai James H Williams Jr November 2002 Nondestructive Testing of Polymeric Composite Sandwich Panels Via the Thermographic Halo Materials Evaluation 60 11 1339 1349 a b c Williams Jr James H S S Lee April 1985 Promising Quantitative Nondestructive Evaluation Techniques for Composite Materials Materials Evaluation 43 5 561 565 a b c Drouillard Thomas F Alex Vary January June 1994 AE Literature Acousto Ultrasonic Reflections Journal of Acoustic Emission 12 1 2 71 Williams James H Jr B Doll May 1980 Ultrasonic Attenuation as an Indicator of Fatigue Life of Graphite Fiber Epoxy Composite Materials Evaluation 38 5 33 37 Williams James H Jr H Yuce S S Lee April 1982 Ultrasonic and Mechanical Characterizations of Fatigue States of Graphite Epoxy Composite Laminates The Journal of the Acoustical Society of America 40 5 560 565 Bibcode 1983ASAJ 73Q2230W doi 10 1121 1 389517 hdl 2060 19820009640 S2CID 33451143 Williams James H Jr N R Lampert December 1980 Ultrasonic NDE of Impact Damaged Graphite Fiber Composite Materials Evaluation 38 12 68 72 Williams James H Jr D M deLonga S S Lee October 1982 Correlations of Acoustic Emission with Fracture Mechanics Parameters in Structural Bridge Steels During Fatigue Materials Evaluation 40 11 1184 1189 Williams James H Jr E B Kahn S S Lee December 1983 Effects of Specimen Resonances on Acoustic Ultrasonic NDE Materials Evaluation 41 13 1502 1510 Williams James H Jr H Karagulle S S Lee January 1986 Ultrasonic Testing of Plates Containing Edge Cracks Materials Evaluation 44 1 100 107 Williams James H Jr H Karagulle S S Lee March 1986 Stress Waves in an Isotropic Elastic Plate Excited by a Circular Transducer Materials Evaluation 44 4 455 462 Williams Jr James S S Lee H Karagulle 1986 Input Output Characterizations on an Ultrasonic Testing System by Digital Signal Analysis In W J McGonnagle ed International Advances in Nondestructive Testing Vol 12 Gordon and Breach Science Publishing pp 147 192 Williams James H Jr S S Lee 1980 Stress Wave Attenuation in Thin Structures by Ultrasonic Through Transmission Journal of Nondestructive Evaluation 1 4 277 285 Bibcode 1980mit reptQ L doi 10 1007 bf00571808 hdl 2027 uiug 30112106862946 S2CID 111076502 Williams James H Jr H Nayeb Hashemi S S Lee 1980 Ultrasonic Attenuation and Velocity in AS 3501 6 Graphite Fiber Composite Journal of Nondestructive Evaluation 1 2 137 148 doi 10 1007 bf00566121 S2CID 135772192 Williams James H Jr H Nayeb Hashemi S S Lee 1980 Ultrasonic Wave Propagation Loss Factor in Composite in Terms of Constituent Properties Journal of Nondestructive Evaluation 1 3 191 199 doi 10 1007 bf00567091 S2CID 137604291 Williams James H Jr B Doll December 1982 A Simple Wave Propagation Analysis of Piezoceramic NDE Transducer Response Materials Evaluation 40 13 1374 1381 Williams James H Jr H Karagulle S S Lee May 1982 Ultrasonic Input Output for Transmitting and Receiving Longitudinal Transducers Coupled to Same Face of Isotropic Elastic Plate Materials Evaluation 40 6 655 662 Williams James H Jr S S Lee H Yuce February 1984 Ultrasonic Attenuation of a Void Containing Medium for Very Long Wavelengths Materials Evaluation 42 2 219 224 Karagulle H James H Williams Jr S S Lee October 1985 Application of Homomorphic Signal Processing to Stress Wave Factor Analysis Materials Evaluation 43 11 1446 1454 Williams James H Jr S S Lee 1991 Ultrasonic Wave Characterization of Polymers Materials Evaluation 49 3 351 355 Bibcode 1991MatEv 49 351L Yim H James H Williams Jr September 1995 Formulation and Its Energy Balance Verification for Ultrasonic and Nondestructive Characterization of a Single Fiber Composite Interphase Ultrasonics 33 5 377 387 doi 10 1016 0041 624x 95 00043 3 Yim H James H Williams Jr September 1995 Database Generation and Parametric Study for Ultrasonic Nondestructive Characterization of a Single Fiber Composite Interphase Ultrasonics 33 5 389 401 doi 10 1016 0041 624x 95 00044 4 Cai L W James H Williams Jr November 1999 Large Scale Multiple Scattering Problems Ultrasonics 37 7 435 462 doi 10 1016 s0041 624x 99 00029 3 Cai L W James H Williams Jr November 1999 Full Scale Simulations of Elastic Wave Scattering in Fiber Reinforced Composites Ultrasonics 37 7 463 482 doi 10 1016 s0041 624x 99 00030 x Cai L W James H Williams Jr November 1999 NDE via Stop Band Formation in Fiber Reinforced Composites Having Square Fiber Arrangements Ultrasonics 37 7 483 492 doi 10 1016 s0041 624x 99 00031 1 Cai L W James H Williams Jr April 2005 Transient Wave Ultrasonic Detection of Delaminations in Composite Sandwich Panels Materials Evaluation 63 4 434 442 Cai L W James H Williams Jr June 2005 Ultrasonic Detection of Delaminations in Composite Sandwich Panels Having Attenuation Materials Evaluation 63 6 657 666 Williams James H Jr S S Lee 1982 Double Cantilever Shear Beam Model of Dynamic Fracture in Duplex Fiber Composites International Journal of Fracture 19 3 3 16 doi 10 1007 bf00012488 S2CID 136982441 Williams James H Jr S S Lee September 1982 Double Cantilever Shear Beam model of Dynamic Fracture in Unidirectional Fiber Composites Fibre Science and Technology 17 2 99 122 doi 10 1016 0015 0568 82 90039 2 Kousiounelos P N James H Williams Jr 1982 Dynamic Fracture of Unidirectional Graphite Fiber Composite Strips International Journal of Fracture 20 47 63 doi 10 1007 bf00942164 S2CID 137142627 Williams James H Jr P N Kousiounelos 1981 Numerical Stability and Convergence Criteria for Equations for Dynamic Fracture in DCB Composite Specimens Engineering Fracture Mechanics 14 1 165 170 doi 10 1016 0013 7944 81 90025 4 Williams James H Jr S S Lee P N Kousiounelos 1981 Dynamic Crack Propagation and Arrest in Orthotropic DCB Fiber Composite Specimens Engineering Fracture Mechanics 14 2 427 438 doi 10 1016 0013 7944 81 90011 4 Kousiounelos P N James H Williams Jr February 1981 Approximate Mode I Velocity Correction Factors for 90 Unidirectional Fiber Composites Fibre Science and Technology 14 2 91 97 doi 10 1016 0015 0568 81 90034 8 Kousiounelos P N James H Williams Jr 1982 Approximate Mode II Velocity Correction Factors for 90 Unidirectional Fiber Composites Engineering Fracture Mechanics 16 4 483 496 doi 10 1016 0013 7944 82 90128 x Williams James H Jr E R C Marques S S Lee May 1986 Stress Waves in Transversely Isotropic Media The Homogeneous Problem NASA Cr 3977 Williams James H Jr E R C Marques S S Lee July 1986 Wave Propagation in Anisotropic Infinite Medium Due to an Oscillatory Point Source with Application to a Unidirectional Composite Material NASA Cr 4001 Williams James H Jr T P Liao 1987 Acousto Ultrasonic Input Output Characterization of Unidirectional Fiber Composite Plate by SH Waves NASA Cr 4087 Williams James H Jr T P Liao 1988 Acousto Ultrasonic Input Output Characterization of Unidirectional Fiber Composite Plate by P Waves NASA Cr 4162 Williams James H Jr T P Liao 1988 Acousto Ultrasonic Input Output Characterization of Unidirectional Fiber Composite Plate by SV Waves NASA Cr 4152 Williams James H Jr J D Renneisen 1989 Input Output Characterization of Fiber Composites by P Waves NASA Contractor Report Williams James H Jr J D Renneisen 1989 Input Output Characterization of Fiber Composites by SH Waves NASA Contractor Report Williams James H Jr J D Renneisen 1989 Input Output Characterization of Fiber Composites by SV Waves NASA Contractor Report Williams James H Jr S S Lee 1977 Warren J McGonnagle ed Pattern Recognition Characterizations of Micromechanical and Morphological Materials States via Analytical Quantitative Ultrasonics International Advances in Nondestructive Testing 5 265 273 Cimaszewski S A H Yim James H Williams Jr 1995 Multiparameter Statistical Determination of Single Fibre Interphase Properties Ultrasonics 33 5 403 410 doi 10 1016 0041 624x 95 00045 5 Williams James H Jr July 1999 Prediction of Remaining Useful Life of Aircraft Components Using Nondestructive Inspection Data Afrl MLLP Final Report Ohio Wright Patterson AFB Nagem R J J M Seng James H Williams Jr September 2000 Residual Life Predictions of Composite Aircraft Structures via Nondestructive Testing Part 1 Prediction Methodology and Nondestructive Testing Materials Evaluation 58 9 1065 1074 Nagem R J J M Seng James H Williams Jr November 2000 Residual Life Predictions of Composite Aircraft Structures via Nondestructive Testing Part 2 Degradation Modeling and Residual Life Prediction Materials Evaluation 58 11 1310 1319 Williams James H Jr S S Lee July 1982 Acoustic Emission Rupture Load Characterizations of Double Braided Nylon Rope Marine Technology Williams James H Jr J Hainsworth S S Lee 1984 Acoustic Ultrasonic Nondestructive Evaluation of Double Braided Nylon Ropes Using the Stress Wave Factor Fibre Science and Technology 21 3 169 180 doi 10 1016 0015 0568 84 90012 5 Williams James H Jr J M Connolly K M Malek S S Lee 1984 Ultrasonic Wave Velocity in Double Braided Nylon Rope Fibre Science and Technology 21 1 41 57 doi 10 1016 0015 0568 84 90064 2 Williams James H Jr A U Kuehnle S S Lee 1985 Identification of Damage Levels in Synthetic Rope by Ultrasonic Spectral Pattern Recognition Report to US Navy Williams James H Jr January 1977 Designing Earthquake Resistant Structures NTA Journal 1 1 38 44 Crandall S H S S Lee James H Williams Jr December 1974 Accumulated Slip of a Friction Controlled Mass Excited by Earthquake Motions Journal of Applied Mechanics 41 4 1094 1098 Bibcode 1974JAM 41 1094C doi 10 1115 1 3423440 Williams James H Jr R J Nagem August 1987 Wave Propagation in Large Space Structures Proceedings of the Fifth AFOSR Forum on Space Structures Monterey California Nagem R J James H Williams Jr 1989 Dynamic Failure and Arrest in Large Space Structures Mechanics of Structures and Machines 17 1 53 72 doi 10 1080 089054508915629 Nagem R J James H Williams Jr 1989 Dynamic Analysis of Large Space Structures Using Transfer Matrices and Joint Coupling Matrices Mechanics of Structures and Machines 17 3 349 371 doi 10 1080 089054508915646 Nagem R J James H Williams Jr 1990 Control of One Dimensional Distributed Structure Based on Wave Propagation Analysis Mechanics of Structures and Machines 18 1 33 57 doi 10 1080 08905459008915658 Kuehnle A E James H Williams Jr 1990 Control of Longitudinal Waves in Rod with Voigt Damping Mechanics of Structures and Machines Mechanics of Structures and Machines 18 3 335 351 Nagem R J James H Williams Jr 1994 Scattering of Nondispersive Waves at Nonlinear Joints in One Dimensional Structures Mechanics of Structures and Machines 22 3 305 326 doi 10 1080 08905459408905215 Nagem R J James H Williams Jr 1994 Reflection and Transmission of Random Disturbances at Joints in One Dimensional Structures Mechanics of Structures and Machines 22 3 327 342 doi 10 1080 08905459408905216 Jones Yolanda 2 September 1980 Newport News Native Studies Stress Sounds Daily Press p 10 Silly Season at M I T Science Digest 72 76 July 1974 Prof Williams Spins His Wheels and Comes Up with a Colossal Working Yo yo People 5 3 39 26 January 1976 Abrahms Sally Sheila Eby Fall Winter 1982 The Men of Boston Playboy Fashion 3 2 85 Shurkin Joel June 1983 Science and Casual L Uomo Vogue 72 137 Hatfield Julie 29 April 1982 Fashionable Men of Boston hop to Playboy s photo call Boston Globe p 45 Natty Prof Williams may be one of Playboy s Men of Boston MIT Tech Talk Vol 26 no 35 p 3 Williams James H Jr 10 May 1992 Ask Marilyn letter quotation Parade 6 Sternberg J 14 November 2013 Parade Slowly Marches Into the Digital Era Digiday Johnson Schroeder Williams are Appointed as First Edgerton Assistant Professors MIT Tech Talk 9 January 1974 Williams James H Jr June 1978 Development and Evaluation of Mechanized Equipment for Installation of the Recessed Reflective Marker Delineation System U S Department of Transportation Office of Research and Development Technical Report Williams James H Jr December 1975 Seismic Analysis of Bus and Support Systems British Columbia Hydro Mica Dam Project Williams James H Jr April 1990 Design Materials and Mechanical Characterization of Overbraided Composite Rocket Motors Naval Ordnance Station Indian Head Maryland Williams James H Jr July 1999 Prediction of Remaining Useful Life of Aircraft Components Using Nondestructive Inspection Data AFRL MLLP Final Report Wright Patterson AFB OH 45433 7817 Williams James H Jr July 1972 Stress and Dynamic Calculations for Rotary Disk Shutters Report to AVCO Everett Williams James H Jr March 1975 Stresses of Implants Report to Hip and Implant Surgery Unit Massachusetts General Hospital Williams James H Jr S S Lee E R Lang September 1984 Effects of Ultrasonic Irradiation on the Enhancement of Composite Processing Report to GM Manufacturing and Development Williams James H Jr December 1984 Material and Nondestructive Evaluation Characterizations of Fiber Reinforced Polymeric Composites for Deepwater Mooring Systems Report to Conoco Inc Williams James H Jr S S Lee February 1985 Proceedings of the Offshore Mechanics and Arctic Engineering Conference Dallas Texas a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Williams James H Jr M M Salama R M Vennett S S Lee February 1985 Materials for Lightweight Mooring System for Deepwater Compliant Structures Proceedings of the Offshore Mechanics and Arctic Engineering Conference Dallas Texas Williams James H Jr S S Lee 1981 Nondestructive Evaluation of Automotive Composite Leaf Spring WEA Cambridge Massachusetts Williams James H Jr March 1991 Dilemmas Colonialism and Protest PDF MIT Faculty Newsletter III 5 9 a b Flint Anthony 3 April 1991 Black professor to protest at MIT by fasting Boston Globe p 19 Archived from the original on 7 December 2013 Negri Gloria 4 April 1991 MIT professor protests shortage of black faculty Boston Globe Archived from the original on 1 March 2016 Tenured MIT professor fasting in protest The Enterprise 4 April 1991 p 48 Di Iorio Robert C 10 April 1991 Williams Protest Draws Wide Press Attention MIT Tech Talk p 1 Mulvihill Maggie 4 April 1991 Black MIT Professor fasts to protest racism Portland Maine Press Herald AP Blum Debra E 10 April 1991 Black Professor Starts Weekly Fast to Criticize MIT s Minority Efforts Chronicle of Higher Education p A16 MIT Prof Fasts to Protest Minorities Status There Jet 23 29 April 1991 Clark Josh 11 April 1991 News Notes No Food for Thought Harvard Independent p 7 Uche Nena 25 April 1991 Professor declares victory in protest of MIT climate Bay State Banner p 2 Lamberti Andrea 26 April 1991 Students gather in show of support for Williams protest The Tech p 1 Ball Charles H 25 September 1991 Program Is Adopted To Add Minority Faculty MIT Tech Talk p 1 Shim Katherine 27 September 1991 Minority Faculty Sought The Tech p 1 a b c Flight 587 a b Williams James H Jr 29 July 2002 Guest Column Crash Should Prompt a Change in Composite Inspection Philosophy Air Safety Week Archived from the original on 9 April 2016 a b c Rose David September 2002 Pilot Terror Vanity Fair No 505 p 212 a b c Rose David 12 March 2005 What made an Airbus rudder snap in mid air The Observer a b Williams James H Jr 5 August 2002 Airbus s Fatal Flaws ABC News Tonight TV appearance a b Williams James H Jr 6 May 2002 Closer inspection of a flight risk Baltimore Sun a b Williams James H Jr 6 August 2002 ABC World News Now TV appearance Williams James H Jr 3 July 2003 Letter Inspection of Aircraft Parts Boston Globe Archived from the original on 9 April 2016 Thomson Elizabeth A Airbus Flaws MIT News Here amp There a b Sales R J 8 May 2002 Flight risk of Airbus s A300 600 jet needs closer inspection says prof MIT Tech Talk Williams James H Jr 7 February 2002 Materials Used May Have Caused Crash Airbus Visual Inspection Flaw WNBC TV Evening News appearance a b NTSB Urges Inspections of Certain Airbus A300 Rudders NTSB Safety Recommendation A 06 27 and A 06 28 24 March 2006 Sky Talk Rigorous Airbus Rudder Checks Now Required Star Telegram 19 December 2007 Retrieved from https en wikipedia org w index php title James H Williams Jr amp oldid 1181780636, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.