fbpx
Wikipedia

Theta function

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.[1]

Jacobi's theta function θ1 with nome q = eiπτ = 0.1e0.1iπ:

The most common form of theta function is that occurring in the theory of elliptic functions. With respect to one of the complex variables (conventionally called z), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a quasiperiodic function. In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus, a condition of descent.

One interpretation of theta functions when dealing with the heat equation is that "a theta function is a special function that describes the evolution of temperature on a segment domain subject to certain boundary conditions".[2]

Throughout this article, should be interpreted as (in order to resolve issues of choice of branch).[note 1]

Jacobi theta function edit

There are several closely related functions called Jacobi theta functions, and many different and incompatible systems of notation for them. One Jacobi theta function (named after Carl Gustav Jacob Jacobi) is a function defined for two complex variables z and τ, where z can be any complex number and τ is the half-period ratio, confined to the upper half-plane, which means it has positive imaginary part. It is given by the formula

 

where q = exp(πiτ) is the nome and η = exp(2πiz). It is a Jacobi form. The restriction ensures that it is an absolutely convergent series. At fixed τ, this is a Fourier series for a 1-periodic entire function of z. Accordingly, the theta function is 1-periodic in z:

 

By completing the square, it is also τ-quasiperiodic in z, with

 

Thus, in general,

 

for any integers a and b.

For any fixed  , the function is an entire function on the complex plane, so by Liouville's theorem, it cannot be doubly periodic in   unless it is constant, and so the best we could do is to make it periodic in   and quasi-periodic in  . Indeed, since

 
and  , the function   is unbounded, as required by Liouville's theorem.

It is in fact the most general entire function with 2 quasi-periods, in the following sense:[3]

Theorem — If   is entire and nonconstant, and satisfies the functional equations   for some constant  .

If  , then   and  . If  , then   for some nonzero  .

 
Theta function θ1 with different nome q = eiπτ. The black dot in the right-hand picture indicates how q changes with τ.
 
Theta function θ1 with different nome q = eiπτ. The black dot in the right-hand picture indicates how q changes with τ.

Auxiliary functions edit

The Jacobi theta function defined above is sometimes considered along with three auxiliary theta functions, in which case it is written with a double 0 subscript:

 

The auxiliary (or half-period) functions are defined by

 

This notation follows Riemann and Mumford; Jacobi's original formulation was in terms of the nome q = eiπτ rather than τ. In Jacobi's notation the θ-functions are written:

 
 
Jacobi theta 1
 
Jacobi theta 2
 
Jacobi theta 3
 
Jacobi theta 4

The above definitions of the Jacobi theta functions are by no means unique. See Jacobi theta functions (notational variations) for further discussion.

If we set z = 0 in the above theta functions, we obtain four functions of τ only, defined on the upper half-plane. These functions are called Theta Nullwert functions, based on the German term for zero value because of the annullation of the left entry in the theta function expression. Alternatively, we obtain four functions of q only, defined on the unit disk  . They are sometimes called theta constants:[note 2]

 

with the nome q = eiπτ. Observe that  . These can be used to define a variety of modular forms, and to parametrize certain curves; in particular, the Jacobi identity is

 

or equivalently,

 

which is the Fermat curve of degree four.

Elliptic nome edit

Definition and identities to the theta functions edit

Since the Jacobi functions are defined in terms of the elliptic modulus  , we need to invert this and find   in terms of  . We start from  , the complementary modulus. As a function of   it is

 

Let us define the elliptic nome and the complete elliptic integral of the first kind:

 

These identites[4][5] exist between the elliptic integral K, the modulus k, the nome q function and the theta functions:

 
 
 

These are two identical definitions of the complete elliptic integral of the first kind:

 
 

An identical definition of the nome function can be produced by using a series. Following function has this identity:

 

By solving this function after q we get this[6][7][8] result:

 
 

Karl Heinrich Schellbach wrote his derivation of this number sequence in his work Die Lehre von den elliptischen Integralen und den Thetafunktionen on page 60 down. He figured these coefficients of the fourth root of the elliptic nome out by doing substitution calculations.

The Schellbach Schwarz numbers are in the numerators and the doubles of the powers of sixteen are in the denominators.

In relation to this following limits are valid:

 
 

This table[9][10] shows numbers of the Schellbach Schwarz integer sequence A002103 accurately:

Sc(1) Sc(2) Sc(3) Sc(4) Sc(5) Sc(6) Sc(7) Sc(8)
1 2 15 150 1707 20910 268616 3567400

Elliptic integer sequences edit

The Silesian German mathematician Hermann Amandus Schwarz wrote in his work Formeln und Lehrsätze zum Gebrauche der elliptischen Funktionen in the chapter Berechnung der Grösse k on pages 54 to 56 the described integer number sequence that was researched by Karl Heinrich Schellbach too. Furthermore, his Schellbach Schwarz number sequence Sc(n) was analyzed by the mathematicians Karl Theodor Wilhelm Weierstrass and Louis Melville Milne-Thomson in the 20th century. The mathematician Adolf Kneser determined a synthesis method for this sequence based on the following pattern:

 

The mathematician Karl Heinrich Schellbach also researched this integer sequence relation and in his work Die Lehre von den elliptischen Integralen und den Thetafunktionen[11] he dealt with it in detail. The Schellbach Schwarz sequence Sc(n) is entered in the online encyclopedia of number sequences under the number A002103 and the Kneser sequence Kn(n) is entered under the number A227503. The Kneser integer sequence Kn(n) can be constructed in this way:

 

 

Executed examples:

 

 

 

 

 

 

The Kneser sequence appears in the Taylor series of the period ratio (half period ratio):

 
 

The derivative of this equation after   leads to this equation that shows the generating function of the Kneser number sequence:

 
 

This result appears because of the Legendre's relation   in the numerator.

Following table contains the Schellbach Schwarz numbers and the Kneser numbers and the Apery numbers:

Constructed sequences Kneser and Schellbach Schwarz
Index n Kn(n) (A227503) Sc(n) (A002103)
1 1 1
2 13 2
3 184 15
4 2701 150
5 40456 1707
6 613720 20910
7 9391936 268616
8 144644749 3567400

This is the mentioned pattern formula for the Schellbach Schwarz number sequence:

 

In the following, it will be shown as an example how the Schellbach Schwarz numbers are built up successively. For this, the examples with the numbers Sc(4) = 150, Sc(5) = 1707 and Sc(6) = 20910 are used:

 
 
 
 
 
 

Jacobi identities edit

Jacobi's identities describe how theta functions transform under the modular group, which is generated by ττ + 1 and τ ↦ −1/τ. Equations for the first transform are easily found since adding one to τ in the exponent has the same effect as adding 1/2 to z (nn2 mod 2). For the second, let

 

Then

 

Theta functions in terms of the nome edit

Instead of expressing the Theta functions in terms of z and τ, we may express them in terms of arguments w and the nome q, where w = eπiz and q = eπiτ. In this form, the functions become

 

We see that the theta functions can also be defined in terms of w and q, without a direct reference to the exponential function. These formulas can, therefore, be used to define the Theta functions over other fields where the exponential function might not be everywhere defined, such as fields of p-adic numbers.

Product representations edit

The Jacobi triple product (a special case of the Macdonald identities) tells us that for complex numbers w and q with |q| < 1 and w ≠ 0 we have

 

It can be proven by elementary means, as for instance in Hardy and Wright's An Introduction to the Theory of Numbers.

If we express the theta function in terms of the nome q = eπiτ (noting some authors instead set q = e2πiτ) and take w = eπiz then

 

We therefore obtain a product formula for the theta function in the form

 

In terms of w and q:

 

where (  ;  ) is the q-Pochhammer symbol and θ(  ;  ) is the q-theta function. Expanding terms out, the Jacobi triple product can also be written

 

which we may also write as

 

This form is valid in general but clearly is of particular interest when z is real. Similar product formulas for the auxiliary theta functions are

 

In particular,

 
so we may interpret them as one-parameter deformations of the periodic functions  , again validating the interpretation of the theta function as the most general 2 quasi-period function.

Integral representations edit

The Jacobi theta functions have the following integral representations:

 

The Theta Nullwert function   as this integral identity:

 

This formula was discussed in the essay Square series generating function transformations by the mathematician Maxie Schmidt from Georgia in Atlanta.

Based on this formula following three eminent examples are given:

 
 
 

Furthermore, the theta examples   and   shall be displayed:

 
 
 
 

Explicit values edit

Lemniscatic values edit

Proper credit for most of these results goes to Ramanujan. See Ramanujan's lost notebook and a relevant reference at Euler function. The Ramanujan results quoted at Euler function plus a few elementary operations give the results below, so they are either in Ramanujan's lost notebook or follow immediately from it. See also Yi (2004).[12] Define,

 

with the nome     and Dedekind eta function   Then for  

 

If the reciprocal of the Gelfond constant is raised to the power of the reciprocal of an odd number, then the corresponding   values or   values can be represented in a simplified way by using the hyperbolic lemniscatic sine:

 
 
 
 

With the letter   the Lemniscate constant is represented.

Note that the following modular identities hold:

 

where   is the Rogers–Ramanujan continued fraction:

 

Equianharmonic values edit

The mathematician Bruce Berndt found out further values[13] of the theta function:

theta, function, other, functions, disambiguation, mathematics, theta, functions, special, functions, several, complex, variables, they, show, many, topics, including, abelian, varieties, moduli, spaces, quadratic, forms, solitons, grassmann, algebras, they, a. For other 8 functions see Theta function disambiguation In mathematics theta functions are special functions of several complex variables They show up in many topics including Abelian varieties moduli spaces quadratic forms and solitons As Grassmann algebras they appear in quantum field theory 1 Jacobi s theta function 81 with nome q eipt 0 1e0 1ip 8 1 z q 2 q 1 4 n 0 1 n q n n 1 sin 2 n 1 z n 1 n 1 2 q n 1 2 2 e 2 n 1 i z displaystyle begin aligned theta 1 z q amp 2q frac 1 4 sum n 0 infty 1 n q n n 1 sin 2n 1 z amp sum n infty infty 1 n frac 1 2 q left n frac 1 2 right 2 e 2n 1 iz end aligned The most common form of theta function is that occurring in the theory of elliptic functions With respect to one of the complex variables conventionally called z a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions making it a quasiperiodic function In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus a condition of descent One interpretation of theta functions when dealing with the heat equation is that a theta function is a special function that describes the evolution of temperature on a segment domain subject to certain boundary conditions 2 Throughout this article e p i t a displaystyle e pi i tau alpha should be interpreted as e a p i t displaystyle e alpha pi i tau in order to resolve issues of choice of branch note 1 Contents 1 Jacobi theta function 2 Auxiliary functions 3 Elliptic nome 3 1 Definition and identities to the theta functions 3 2 Elliptic integer sequences 4 Jacobi identities 5 Theta functions in terms of the nome 6 Product representations 7 Integral representations 8 Explicit values 8 1 Lemniscatic values 8 2 Equianharmonic values 8 3 Further values 9 Nome power theorems 9 1 Direct power theorems 9 2 Transformation at the cube root of the nome 9 3 Transformation at the fifth root of the nome 9 4 Modulus dependent theorems 10 Some series identities 10 1 Sums with theta function in the result 10 2 Sums with theta function in the summand 11 Zeros of the Jacobi theta functions 12 Relation to the Riemann zeta function 13 Relation to the Weierstrass elliptic function 14 Relation to the q gamma function 15 Relations to Dedekind eta function 16 Elliptic modulus 17 Derivatives of theta functions 18 Integrals of theta functions 19 A solution to the heat equation 20 Relation to the Heisenberg group 21 Generalizations 21 1 Theta series of a Dirichlet character 21 2 Ramanujan theta function 21 3 Riemann theta function 21 4 Poincare series 21 5 Theta function coefficients 22 Derivation of the theta values 22 1 Identity of the Euler beta function 22 2 Exemplary elliptic integrals 22 3 Combination of the integral identities with the nome 23 Partition sequences and Pochhammer products 23 1 Regular partition number sequence 23 2 Strict partition number sequence 23 3 Overpartition number sequence 23 4 Relations of the partition number sequences to each other 24 Notes 25 References 26 Further reading 27 External linksJacobi theta function editThere are several closely related functions called Jacobi theta functions and many different and incompatible systems of notation for them One Jacobi theta function named after Carl Gustav Jacob Jacobi is a function defined for two complex variables z and t where z can be any complex number and t is the half period ratio confined to the upper half plane which means it has positive imaginary part It is given by the formula ϑ z t n exp p i n 2 t 2 p i n z 1 2 n 1 q n 2 cos 2 p n z n q n 2 h n displaystyle begin aligned vartheta z tau amp sum n infty infty exp left pi in 2 tau 2 pi inz right amp 1 2 sum n 1 infty q n 2 cos 2 pi nz amp sum n infty infty q n 2 eta n end aligned nbsp where q exp pit is the nome and h exp 2piz It is a Jacobi form The restriction ensures that it is an absolutely convergent series At fixed t this is a Fourier series for a 1 periodic entire function of z Accordingly the theta function is 1 periodic in z ϑ z 1 t ϑ z t displaystyle vartheta z 1 tau vartheta z tau nbsp By completing the square it is also t quasiperiodic in z with ϑ z t t exp p i t 2 z ϑ z t displaystyle vartheta z tau tau exp bigl pi i tau 2z bigr vartheta z tau nbsp Thus in general ϑ z a b t t exp p i b 2 t 2 p i b z ϑ z t displaystyle vartheta z a b tau tau exp left pi ib 2 tau 2 pi ibz right vartheta z tau nbsp for any integers a and b For any fixed t displaystyle tau nbsp the function is an entire function on the complex plane so by Liouville s theorem it cannot be doubly periodic in 1 t displaystyle 1 tau nbsp unless it is constant and so the best we could do is to make it periodic in 1 displaystyle 1 nbsp and quasi periodic in t displaystyle tau nbsp Indeed since ϑ z a b t t ϑ z t exp p b 2 ℑ t 2 b ℑ z displaystyle left frac vartheta z a b tau tau vartheta z tau right exp left pi b 2 Im tau 2b Im z right nbsp and ℑ t gt 0 displaystyle Im tau gt 0 nbsp the function ϑ z t displaystyle vartheta z tau nbsp is unbounded as required by Liouville s theorem It is in fact the most general entire function with 2 quasi periods in the following sense 3 Theorem If f C C displaystyle f mathbb C to mathbb C nbsp is entire and nonconstant and satisfies the functional equations f z 1 f z f z t e a z 2 p i b f z displaystyle begin cases f z 1 f z f z tau e az 2 pi ib f z end cases nbsp for some constant a b C displaystyle a b in mathbb C nbsp If a 0 displaystyle a 0 nbsp then b t displaystyle b tau nbsp and f z e 2 p i z displaystyle f z e 2 pi iz nbsp If a 2 p i displaystyle a 2 pi i nbsp then f z C ϑ z 1 2 t b t displaystyle f z C vartheta z frac 1 2 tau b tau nbsp for some nonzero C C displaystyle C in mathbb C nbsp nbsp Theta function 81 with different nome q eipt The black dot in the right hand picture indicates how q changes with t nbsp Theta function 81 with different nome q eipt The black dot in the right hand picture indicates how q changes with t Auxiliary functions editThe Jacobi theta function defined above is sometimes considered along with three auxiliary theta functions in which case it is written with a double 0 subscript ϑ 00 z t ϑ z t displaystyle vartheta 00 z tau vartheta z tau nbsp The auxiliary or half period functions are defined by ϑ 01 z t ϑ z 1 2 t ϑ 10 z t exp 1 4 p i t p i z ϑ z 1 2 t t ϑ 11 z t exp 1 4 p i t p i z 1 2 ϑ z 1 2 t 1 2 t displaystyle begin aligned vartheta 01 z tau amp vartheta left z tfrac 1 2 tau right 3pt vartheta 10 z tau amp exp left tfrac 1 4 pi i tau pi iz right vartheta left z tfrac 1 2 tau tau right 3pt vartheta 11 z tau amp exp left tfrac 1 4 pi i tau pi i left z tfrac 1 2 right right vartheta left z tfrac 1 2 tau tfrac 1 2 tau right end aligned nbsp This notation follows Riemann and Mumford Jacobi s original formulation was in terms of the nome q eipt rather than t In Jacobi s notation the 8 functions are written 8 1 z q 8 1 p z q ϑ 11 z t 8 2 z q 8 2 p z q ϑ 10 z t 8 3 z q 8 3 p z q ϑ 00 z t 8 4 z q 8 4 p z q ϑ 01 z t displaystyle begin aligned theta 1 z q amp theta 1 pi z q vartheta 11 z tau theta 2 z q amp theta 2 pi z q vartheta 10 z tau theta 3 z q amp theta 3 pi z q vartheta 00 z tau theta 4 z q amp theta 4 pi z q vartheta 01 z tau end aligned nbsp nbsp Jacobi theta 1 nbsp Jacobi theta 2 nbsp Jacobi theta 3 nbsp Jacobi theta 4The above definitions of the Jacobi theta functions are by no means unique See Jacobi theta functions notational variations for further discussion If we set z 0 in the above theta functions we obtain four functions of t only defined on the upper half plane These functions are called Theta Nullwert functions based on the German term for zero value because of the annullation of the left entry in the theta function expression Alternatively we obtain four functions of q only defined on the unit disk q lt 1 displaystyle q lt 1 nbsp They are sometimes called theta constants note 2 ϑ 11 0 t 8 1 q n 1 n 1 2 q n 1 2 2 ϑ 10 0 t 8 2 q n q n 1 2 2 ϑ 00 0 t 8 3 q n q n 2 ϑ 01 0 t 8 4 q n 1 n q n 2 displaystyle begin aligned vartheta 11 0 tau amp theta 1 q sum n infty infty 1 n 1 2 q n 1 2 2 vartheta 10 0 tau amp theta 2 q sum n infty infty q n 1 2 2 vartheta 00 0 tau amp theta 3 q sum n infty infty q n 2 vartheta 01 0 tau amp theta 4 q sum n infty infty 1 n q n 2 end aligned nbsp with the nome q eipt Observe that 8 1 q 0 displaystyle theta 1 q 0 nbsp These can be used to define a variety of modular forms and to parametrize certain curves in particular the Jacobi identity is 8 2 q 4 8 4 q 4 8 3 q 4 displaystyle theta 2 q 4 theta 4 q 4 theta 3 q 4 nbsp or equivalently ϑ 01 0 t 4 ϑ 10 0 t 4 ϑ 00 0 t 4 displaystyle vartheta 01 0 tau 4 vartheta 10 0 tau 4 vartheta 00 0 tau 4 nbsp which is the Fermat curve of degree four Elliptic nome editDefinition and identities to the theta functions edit Since the Jacobi functions are defined in terms of the elliptic modulus k t displaystyle k tau nbsp we need to invert this and find t displaystyle tau nbsp in terms of k displaystyle k nbsp We start from k 1 k 2 displaystyle k sqrt 1 k 2 nbsp the complementary modulus As a function of t displaystyle tau nbsp it is k t 1 k 2 8 4 q k 8 3 q k 2 displaystyle k tau sqrt 1 k 2 biggl theta 4 q k over theta 3 q k biggr 2 nbsp Let us define the elliptic nome and the complete elliptic integral of the first kind q k exp p K 1 k 2 K k exp p K k K k displaystyle q k exp biggl pi frac K sqrt 1 k 2 K k biggr exp biggl pi frac K k K k biggr nbsp These identites 4 5 exist between the elliptic integral K the modulus k the nome q function and the theta functions 8 3 q k 2 p 1 K k displaystyle theta 3 q k sqrt 2 pi 1 K k nbsp 8 4 q k 1 k 2 4 2 p 1 K k displaystyle theta 4 q k sqrt 4 1 k 2 sqrt 2 pi 1 K k nbsp 8 2 q k k 1 2 2 p 1 K k displaystyle theta 2 q k k 1 2 sqrt 2 pi 1 K k nbsp These are two identical definitions of the complete elliptic integral of the first kind K k 0 p 2 1 1 k 2 sin f 2 f displaystyle K k int 0 pi 2 frac 1 sqrt 1 k 2 sin varphi 2 partial varphi nbsp K k p 2 a 0 2 a 2 16 a a 4 k 2 a displaystyle K k frac pi 2 sum a 0 infty frac 2a 2 16 a a 4 k 2a nbsp An identical definition of the nome function can be produced by using a series Following function has this identity 1 1 k 2 4 1 1 k 2 4 8 3 q k 8 4 q k 8 3 q k 8 4 q k n 1 2 q k 2 n 1 2 1 n 1 2 q k 4 n 2 1 displaystyle frac 1 sqrt 4 1 k 2 1 sqrt 4 1 k 2 frac theta 3 q k theta 4 q k theta 3 q k theta 4 q k biggl sum n 1 infty 2 q k 2n 1 2 biggr biggl 1 sum n 1 infty 2 q k 4n 2 biggr 1 nbsp By solving this function after q we get this 6 7 8 result q k n 1 Sc n 2 4 n 3 1 1 k 2 4 1 1 k 2 4 4 n 3 n 1 Sc n 2 4 n 3 k 1 1 k 2 4 n 3 2 k 2 1 2 n 1 Sc n 1 2 4 n 1 k 2 n 4 displaystyle q k sum n 1 infty frac text Sc n 2 4n 3 biggl frac 1 sqrt 4 1 k 2 1 sqrt 4 1 k 2 biggr 4n 3 biggl sum n 1 infty frac text Sc n 2 4n 3 biggl frac k 1 sqrt 1 k 2 biggr 4n 3 biggr 2 k 2 biggl frac 1 2 biggl sum n 1 infty frac text Sc n 1 2 4n 1 k 2n biggr biggr 4 nbsp q k k 2 1 2 2 32 k 2 15 512 k 4 150 8192 k 6 1707 131072 k 8 4 displaystyle q k k 2 bigl color limegreen frac color navy 1 2 frac color navy 2 32 k 2 frac color navy 15 512 k 4 frac color navy 150 8192 k 6 frac color navy 1707 131072 k 8 ldots bigr 4 nbsp Karl Heinrich Schellbach wrote his derivation of this number sequence in his work Die Lehre von den elliptischen Integralen und den Thetafunktionen on page 60 down He figured these coefficients of the fourth root of the elliptic nome out by doing substitution calculations The Schellbach Schwarz numbers are in the numerators and the doubles of the powers of sixteen are in the denominators In relation to this following limits are valid lim n Sc n n 16 displaystyle lim n to infty sqrt n text Sc n 16 nbsp lim n Sc n 1 Sc n 16 displaystyle lim n to infty frac text Sc n 1 text Sc n 16 nbsp This table 9 10 shows numbers of the Schellbach Schwarz integer sequence A002103 accurately Sc 1 Sc 2 Sc 3 Sc 4 Sc 5 Sc 6 Sc 7 Sc 8 1 2 15 150 1707 20910 268616 3567400Elliptic integer sequences edit The Silesian German mathematician Hermann Amandus Schwarz wrote in his work Formeln und Lehrsatze zum Gebrauche der elliptischen Funktionen in the chapter Berechnung der Grosse k on pages 54 to 56 the described integer number sequence that was researched by Karl Heinrich Schellbach too Furthermore his Schellbach Schwarz number sequence Sc n was analyzed by the mathematicians Karl Theodor Wilhelm Weierstrass and Louis Melville Milne Thomson in the 20th century The mathematician Adolf Kneser determined a synthesis method for this sequence based on the following pattern Sc n 1 2 n m 1 n Sc m Kn n 1 m displaystyle text Sc n 1 frac 2 n sum m 1 n text Sc m text Kn n 1 m nbsp The mathematician Karl Heinrich Schellbach also researched this integer sequence relation and in his work Die Lehre von den elliptischen Integralen und den Thetafunktionen 11 he dealt with it in detail The Schellbach Schwarz sequence Sc n is entered in the online encyclopedia of number sequences under the number A002103 and the Kneser sequence Kn n is entered under the number A227503 The Kneser integer sequence Kn n can be constructed in this way Kn 2 n 2 4 n 3 4 n 2 n m 1 n 4 2 n 2 m 4 n 2 n 2 m Kn m displaystyle text Kn 2n 2 4n 3 binom 4n 2n sum m 1 n 4 2n 2m binom 4n 2n 2m text Kn m nbsp Kn 2 n 1 2 4 n 1 4 n 2 2 n 1 m 1 n 4 2 n 2 m 1 4 n 2 2 n 2 m 1 Kn m displaystyle text Kn 2n 1 2 4n 1 binom 4n 2 2n 1 sum m 1 n 4 2n 2m 1 binom 4n 2 2n 2m 1 text Kn m nbsp Executed examples Kn 2 2 6 1 1 13 displaystyle text Kn 2 2 times 6 1 times color cornflowerblue 1 color cornflowerblue 13 nbsp Kn 3 8 20 24 1 184 displaystyle text Kn 3 8 times 20 24 times color cornflowerblue 1 color cornflowerblue 184 nbsp Kn 4 32 70 448 1 1 13 2701 displaystyle text Kn 4 32 times 70 448 times color cornflowerblue 1 1 times color cornflowerblue 13 color cornflowerblue 2701 nbsp Kn 5 128 252 7680 1 40 13 40456 displaystyle text Kn 5 128 times 252 7680 times color cornflowerblue 1 40 times color cornflowerblue 13 color cornflowerblue 40456 nbsp Kn 6 512 924 126720 1 1056 13 1 184 613720 displaystyle text Kn 6 512 times 924 126720 times color cornflowerblue 1 1056 times color cornflowerblue 13 1 times color cornflowerblue 184 color cornflowerblue 613720 nbsp Kn 7 2048 3432 2050048 1 23296 13 56 184 9391936 displaystyle text Kn 7 2048 times 3432 2050048 times color cornflowerblue 1 23296 times color cornflowerblue 13 56 times color cornflowerblue 184 color cornflowerblue 9391936 nbsp The Kneser sequence appears in the Taylor series of the period ratio half period ratio 1 4 ln 16 x 2 p K x 4 K x n 1 Kn n 2 4 n 1 n x 2 n displaystyle frac 1 4 ln bigl frac 16 x 2 bigr frac pi K x 4 K x sum n 1 infty frac text Kn n 2 4n 1 n x 2n nbsp 1 4 ln 16 x 2 p K x 4 K x 1 8 x 2 13 256 x 4 184 6144 x 6 2701 131072 x 8 40456 2621440 x 10 displaystyle color limegreen frac 1 4 ln bigl frac 16 x 2 bigr frac pi K x 4 K x frac color cornflowerblue 1 8 x 2 frac color cornflowerblue 13 256 x 4 frac color cornflowerblue 184 6144 x 6 frac color cornflowerblue 2701 131072 x 8 frac color cornflowerblue 40456 2621440 x 10 ldots nbsp The derivative of this equation after x displaystyle x nbsp leads to this equation that shows the generating function of the Kneser number sequence p 2 8 x 1 x 2 K x 2 1 2 x n 1 Kn n 2 4 n 2 x 2 n 1 displaystyle frac pi 2 8x 1 x 2 K x 2 frac 1 2x sum n 1 infty frac text Kn n 2 4n 2 x 2n 1 nbsp p 2 8 x 1 x 2 K x 2 1 2 x 1 4 x 13 64 x 3 184 1024 x 5 2701 16384 x 7 40456 262144 x 9 displaystyle color limegreen frac pi 2 8x 1 x 2 K x 2 frac 1 2x frac color cornflowerblue 1 4 x frac color cornflowerblue 13 64 x 3 frac color cornflowerblue 184 1024 x 5 frac color cornflowerblue 2701 16384 x 7 frac color cornflowerblue 40456 262144 x 9 ldots nbsp This result appears because of the Legendre s relation K E E K K K 1 2 p displaystyle K E E K K K tfrac 1 2 pi nbsp in the numerator Following table contains the Schellbach Schwarz numbers and the Kneser numbers and the Apery numbers Constructed sequences Kneser and Schellbach Schwarz Index n Kn n A227503 Sc n A002103 1 1 12 13 23 184 154 2701 1505 40456 17076 613720 209107 9391936 2686168 144644749 3567400This is the mentioned pattern formula for the Schellbach Schwarz number sequence Sc n 1 2 n m 1 n Sc m Kn n 1 m displaystyle text Sc n 1 frac 2 n sum m 1 n text Sc m text Kn n 1 m nbsp In the following it will be shown as an example how the Schellbach Schwarz numbers are built up successively For this the examples with the numbers Sc 4 150 Sc 5 1707 and Sc 6 20910 are used S c 4 2 3 m 1 3 S c m K n 4 m 2 3 S c 1 K n 3 S c 2 K n 2 S c 3 K n 1 displaystyle mathrm Sc 4 frac 2 3 sum m 1 3 mathrm Sc m mathrm Kn 4 m frac 2 3 bigl color navy mathrm Sc 1 color cornflowerblue mathrm Kn 3 color navy mathrm Sc 2 color cornflowerblue mathrm Kn 2 color navy mathrm Sc 3 color cornflowerblue mathrm Kn 1 bigr nbsp S c 4 2 3 1 184 2 13 15 1 150 displaystyle color navy mathrm Sc 4 frac 2 3 bigl color navy 1 times color cornflowerblue 184 color navy 2 times color cornflowerblue 13 color navy 15 times color cornflowerblue 1 bigr color navy 150 nbsp S c 5 2 4 m 1 4 S c m K n 5 m 2 4 S c 1 K n 4 S c 2 K n 3 S c 3 K n 2 S c 4 K n 1 displaystyle mathrm Sc 5 frac 2 4 sum m 1 4 mathrm Sc m mathrm Kn 5 m frac 2 4 bigl color navy mathrm Sc 1 color cornflowerblue mathrm Kn 4 color navy mathrm Sc 2 color cornflowerblue mathrm Kn 3 color navy mathrm Sc 3 color cornflowerblue mathrm Kn 2 color navy mathrm Sc 4 color cornflowerblue mathrm Kn 1 bigr nbsp S c 5 2 4 1 2701 2 184 15 13 150 1 1707 displaystyle color navy mathrm Sc 5 frac 2 4 bigl color navy 1 times color cornflowerblue 2701 color navy 2 times color cornflowerblue 184 color navy 15 times color cornflowerblue 13 color navy 150 times color cornflowerblue 1 bigr color navy 1707 nbsp S c 6 2 5 m 1 5 S c m K n 6 m 2 5 S c 1 K n 5 S c 2 K n 4 S c 3 K n 3 S c 4 K n 2 S c 5 K n 1 displaystyle mathrm Sc 6 frac 2 5 sum m 1 5 mathrm Sc m mathrm Kn 6 m frac 2 5 bigl color navy mathrm Sc 1 color cornflowerblue mathrm Kn 5 color navy mathrm Sc 2 color cornflowerblue mathrm Kn 4 color navy mathrm Sc 3 color cornflowerblue mathrm Kn 3 color navy mathrm Sc 4 color cornflowerblue mathrm Kn 2 color navy mathrm Sc 5 color cornflowerblue mathrm Kn 1 bigr nbsp S c 6 2 5 1 40456 2 2701 15 184 150 13 1707 1 20910 displaystyle color navy mathrm Sc 6 frac 2 5 bigl color navy 1 times color cornflowerblue 40456 color navy 2 times color cornflowerblue 2701 color navy 15 times color cornflowerblue 184 color navy 150 times color cornflowerblue 13 color navy 1707 times color cornflowerblue 1 bigr color navy 20910 nbsp Jacobi identities editJacobi s identities describe how theta functions transform under the modular group which is generated by t t 1 and t 1 t Equations for the first transform are easily found since adding one to t in the exponent has the same effect as adding 1 2 to z n n2 mod 2 For the second let a i t 1 2 exp p t i z 2 displaystyle alpha i tau frac 1 2 exp left frac pi tau iz 2 right nbsp Then ϑ 00 z t 1 t a ϑ 00 z t ϑ 01 z t 1 t a ϑ 10 z t ϑ 10 z t 1 t a ϑ 01 z t ϑ 11 z t 1 t i a ϑ 11 z t displaystyle begin aligned vartheta 00 left frac z tau frac 1 tau right amp alpha vartheta 00 z tau quad amp vartheta 01 left frac z tau frac 1 tau right amp alpha vartheta 10 z tau 3pt vartheta 10 left frac z tau frac 1 tau right amp alpha vartheta 01 z tau quad amp vartheta 11 left frac z tau frac 1 tau right amp i alpha vartheta 11 z tau end aligned nbsp Theta functions in terms of the nome editInstead of expressing the Theta functions in terms of z and t we may express them in terms of arguments w and the nome q where w epiz and q epit In this form the functions become ϑ 00 w q n w 2 n q n 2 ϑ 01 w q n 1 n w 2 n q n 2 ϑ 10 w q n w 2 n 1 2 q n 1 2 2 ϑ 11 w q i n 1 n w 2 n 1 2 q n 1 2 2 displaystyle begin aligned vartheta 00 w q amp sum n infty infty left w 2 right n q n 2 quad amp vartheta 01 w q amp sum n infty infty 1 n left w 2 right n q n 2 3pt vartheta 10 w q amp sum n infty infty left w 2 right n frac 1 2 q left n frac 1 2 right 2 quad amp vartheta 11 w q amp i sum n infty infty 1 n left w 2 right n frac 1 2 q left n frac 1 2 right 2 end aligned nbsp We see that the theta functions can also be defined in terms of w and q without a direct reference to the exponential function These formulas can therefore be used to define the Theta functions over other fields where the exponential function might not be everywhere defined such as fields of p adic numbers Product representations editThe Jacobi triple product a special case of the Macdonald identities tells us that for complex numbers w and q with q lt 1 and w 0 we have m 1 1 q 2 m 1 w 2 q 2 m 1 1 w 2 q 2 m 1 n w 2 n q n 2 displaystyle prod m 1 infty left 1 q 2m right left 1 w 2 q 2m 1 right left 1 w 2 q 2m 1 right sum n infty infty w 2n q n 2 nbsp It can be proven by elementary means as for instance in Hardy and Wright s An Introduction to the Theory of Numbers If we express the theta function in terms of the nome q epit noting some authors instead set q e2pit and take w epiz then ϑ z t n exp p i t n 2 exp 2 p i z n n w 2 n q n 2 displaystyle vartheta z tau sum n infty infty exp pi i tau n 2 exp 2 pi izn sum n infty infty w 2n q n 2 nbsp We therefore obtain a product formula for the theta function in the form ϑ z t m 1 1 exp 2 m p i t 1 exp 2 m 1 p i t 2 p i z 1 exp 2 m 1 p i t 2 p i z displaystyle vartheta z tau prod m 1 infty big 1 exp 2m pi i tau big Big 1 exp big 2m 1 pi i tau 2 pi iz big Big Big 1 exp big 2m 1 pi i tau 2 pi iz big Big nbsp In terms of w and q ϑ z t m 1 1 q 2 m 1 q 2 m 1 w 2 1 q 2 m 1 w 2 q 2 q 2 w 2 q q 2 q w 2 q 2 q 2 q 2 8 w 2 q q 2 displaystyle begin aligned vartheta z tau amp prod m 1 infty left 1 q 2m right left 1 q 2m 1 w 2 right left 1 frac q 2m 1 w 2 right amp left q 2 q 2 right infty left w 2 q q 2 right infty left frac q w 2 q 2 right infty amp left q 2 q 2 right infty theta left w 2 q q 2 right end aligned nbsp where is the q Pochhammer symbol and 8 is the q theta function Expanding terms out the Jacobi triple product can also be written m 1 1 q 2 m 1 w 2 w 2 q 2 m 1 q 4 m 2 displaystyle prod m 1 infty left 1 q 2m right Big 1 left w 2 w 2 right q 2m 1 q 4m 2 Big nbsp which we may also write as ϑ z q m 1 1 q 2 m 1 2 cos 2 p z q 2 m 1 q 4 m 2 displaystyle vartheta z mid q prod m 1 infty left 1 q 2m right left 1 2 cos 2 pi z q 2m 1 q 4m 2 right nbsp This form is valid in general but clearly is of particular interest when z is real Similar product formulas for the auxiliary theta functions are ϑ 01 z q m 1 1 q 2 m 1 2 cos 2 p z q 2 m 1 q 4 m 2 ϑ 10 z q 2 q 1 4 cos p z m 1 1 q 2 m 1 2 cos 2 p z q 2 m q 4 m ϑ 11 z q 2 q 1 4 sin p z m 1 1 q 2 m 1 2 cos 2 p z q 2 m q 4 m displaystyle begin aligned vartheta 01 z mid q amp prod m 1 infty left 1 q 2m right left 1 2 cos 2 pi z q 2m 1 q 4m 2 right 3pt vartheta 10 z mid q amp 2q frac 1 4 cos pi z prod m 1 infty left 1 q 2m right left 1 2 cos 2 pi z q 2m q 4m right 3pt vartheta 11 z mid q amp 2q frac 1 4 sin pi z prod m 1 infty left 1 q 2m right left 1 2 cos 2 pi z q 2m q 4m right end aligned nbsp In particular lim q 0 ϑ 10 z q 2 q 1 4 cos p z lim q 0 ϑ 11 z q 2 q 1 4 sin p z displaystyle lim q to 0 frac vartheta 10 z mid q 2q frac 1 4 cos pi z quad lim q to 0 frac vartheta 11 z mid q 2q frac 1 4 sin pi z nbsp so we may interpret them as one parameter deformations of the periodic functions sin cos displaystyle sin cos nbsp again validating the interpretation of the theta function as the most general 2 quasi period function Integral representations editThe Jacobi theta functions have the following integral representations ϑ 00 z t i i i e i p t u 2 cos 2 p u z p u sin p u d u ϑ 01 z t i i i e i p t u 2 cos 2 p u z sin p u d u ϑ 10 z t i e i p z 1 4 i p t i i e i p t u 2 cos 2 p u z p u p t u sin p u d u ϑ 11 z t e i p z 1 4 i p t i i e i p t u 2 cos 2 p u z p t u sin p u d u displaystyle begin aligned vartheta 00 z tau amp i int i infty i infty e i pi tau u 2 frac cos 2 pi uz pi u sin pi u mathrm d u 6pt vartheta 01 z tau amp i int i infty i infty e i pi tau u 2 frac cos 2 pi uz sin pi u mathrm d u 6pt vartheta 10 z tau amp ie i pi z frac 1 4 i pi tau int i infty i infty e i pi tau u 2 frac cos 2 pi uz pi u pi tau u sin pi u mathrm d u 6pt vartheta 11 z tau amp e i pi z frac 1 4 i pi tau int i infty i infty e i pi tau u 2 frac cos 2 pi uz pi tau u sin pi u mathrm d u end aligned nbsp The Theta Nullwert function 8 3 q displaystyle theta 3 q nbsp as this integral identity 8 3 q 1 4 q ln 1 q p 0 exp ln 1 q x 2 1 q 2 cos 2 ln 1 q x 1 2 q 2 cos 2 ln 1 q x q 4 d x displaystyle theta 3 q 1 frac 4q sqrt ln 1 q sqrt pi int 0 infty frac exp ln 1 q x 2 1 q 2 cos 2 ln 1 q x 1 2q 2 cos 2 ln 1 q x q 4 mathrm d x nbsp This formula was discussed in the essay Square series generating function transformations by the mathematician Maxie Schmidt from Georgia in Atlanta Based on this formula following three eminent examples are given 2 p K 1 2 2 1 2 8 3 exp p 1 4 exp p 0 exp p x 2 1 exp 2 p cos 2 p x 1 2 exp 2 p cos 2 p x exp 4 p d x displaystyle biggl frac 2 pi K bigl frac 1 2 sqrt 2 bigr biggr 1 2 theta 3 bigl exp pi bigr 1 4 exp pi int 0 infty frac exp pi x 2 1 exp 2 pi cos 2 pi x 1 2 exp 2 pi cos 2 pi x exp 4 pi mathrm d x nbsp 2 p K 2 1 1 2 8 3 exp 2 p 1 4 2 4 exp 2 p 0 exp 2 p x 2 1 exp 2 2 p cos 2 2 p x 1 2 exp 2 2 p cos 2 2 p x exp 4 2 p d x displaystyle biggl frac 2 pi K sqrt 2 1 biggr 1 2 theta 3 bigl exp sqrt 2 pi bigr 1 4 sqrt 4 2 exp sqrt 2 pi int 0 infty frac exp sqrt 2 pi x 2 1 exp 2 sqrt 2 pi cos 2 sqrt 2 pi x 1 2 exp 2 sqrt 2 pi cos 2 sqrt 2 pi x exp 4 sqrt 2 pi mathrm d x nbsp 2 p K sin p 12 1 2 8 3 exp 3 p 1 4 3 4 exp 3 p 0 exp 3 p x 2 1 exp 2 3 p cos 2 3 p x 1 2 exp 2 3 p cos 2 3 p x exp 4 3 p d x displaystyle biggl frac 2 pi K bigl sin bigl frac pi 12 bigr bigr biggr 1 2 theta 3 bigl exp sqrt 3 pi bigr 1 4 sqrt 4 3 exp sqrt 3 pi int 0 infty frac exp sqrt 3 pi x 2 1 exp 2 sqrt 3 pi cos 2 sqrt 3 pi x 1 2 exp 2 sqrt 3 pi cos 2 sqrt 3 pi x exp 4 sqrt 3 pi mathrm d x nbsp Furthermore the theta examples 8 3 1 2 displaystyle theta 3 tfrac 1 2 nbsp and 8 3 1 3 displaystyle theta 3 tfrac 1 3 nbsp shall be displayed 8 3 1 2 1 2 n 1 1 2 n 2 1 2 p 1 2 ln 2 0 exp ln 2 x 2 16 4 cos 2 ln 2 x 17 8 cos 2 ln 2 x d x displaystyle theta 3 bigl frac 1 2 bigr 1 2 sum n 1 infty frac 1 2 n 2 1 2 pi 1 2 sqrt ln 2 int 0 infty frac exp ln 2 x 2 16 4 cos 2 ln 2 x 17 8 cos 2 ln 2 x mathrm d x nbsp 8 3 1 2 2 128936827211877158669 displaystyle theta 3 bigl frac 1 2 bigr 2 128936827211877158669 ldots nbsp 8 3 1 3 1 2 n 1 1 3 n 2 1 4 3 p 1 2 ln 3 0 exp ln 3 x 2 81 9 cos 2 ln 3 x 82 18 cos 2 ln 3 x d x displaystyle theta 3 bigl frac 1 3 bigr 1 2 sum n 1 infty frac 1 3 n 2 1 frac 4 3 pi 1 2 sqrt ln 3 int 0 infty frac exp ln 3 x 2 81 9 cos 2 ln 3 x 82 18 cos 2 ln 3 x mathrm d x nbsp 8 3 1 3 1 691459681681715341348 displaystyle theta 3 bigl frac 1 3 bigr 1 691459681681715341348 ldots nbsp Explicit values editLemniscatic values edit Proper credit for most of these results goes to Ramanujan See Ramanujan s lost notebook and a relevant reference at Euler function The Ramanujan results quoted at Euler function plus a few elementary operations give the results below so they are either in Ramanujan s lost notebook or follow immediately from it See also Yi 2004 12 Define f q ϑ 00 0 t 8 3 0 q n q n 2 displaystyle quad varphi q vartheta 00 0 tau theta 3 0 q sum n infty infty q n 2 nbsp with the nome q e p i t displaystyle q e pi i tau nbsp t n 1 displaystyle tau n sqrt 1 nbsp and Dedekind eta function h t displaystyle eta tau nbsp Then for n 1 2 3 displaystyle n 1 2 3 dots nbsp f e p p 4 G 3 4 2 h 1 f e 2 p p 4 G 3 4 2 2 2 f e 3 p p 4 G 3 4 1 3 108 8 f e 4 p p 4 G 3 4 2 8 4 4 f e 5 p p 4 G 3 4 2 5 5 f e 6 p p 4 G 3 4 1 4 3 4 4 4 9 4 12 3 8 f e 7 p p 4 G 3 4 13 7 7 3 7 14 3 8 7 16 f e 8 p p 4 G 3 4 2 2 128 8 4 f e 9 p p 4 G 3 4 1 2 2 3 3 3 f e 10 p p 4 G 3 4 64 4 80 4 81 4 100 4 200 4 f e 11 p p 4 G 3 4 11 11 5 3 3 11 33 44 33 3 3 5 3 3 11 33 44 33 3 3 52180524 8 f e 12 p p 4 G 3 4 1 4 2 4 3 4 4 4 9 4 18 4 24 4 2 108 8 f e 13 p p 4 G 3 4 13 8 13 11 6 3 13 143 78 3 3 11 6 3 13 143 78 3 3 19773 4 f e 14 p p 4 G 3 4 13 7 7 3 7 10 2 7 28 8 4 7 28 7 16 f e 15 p p 4 G 3 4 7 3 3 5 15 60 4 1500 4 12 3 8 5 2 f e 16 p f e 4 p p 4 G 3 4 1 2 4 128 16 f e 17 p p 4 G 3 4 2 1 17 4 17 8 5 17 17 17 17 2 f e 20 p f e 5 p p 4 G 3 4 3 2 5 4 5 2 6 f e 36 p 3 f e 9 p 2 f e 4 p f e p p 4 G 3 4 2 4 18 4 216 4 3 displaystyle begin aligned varphi left e pi right amp frac sqrt 4 pi Gamma left frac 3 4 right sqrt 2 eta left sqrt 1 right varphi left e 2 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt 2 sqrt 2 2 varphi left e 3 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt 1 sqrt 3 sqrt 8 108 varphi left e 4 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac 2 sqrt 4 8 4 varphi left e 5 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right sqrt frac 2 sqrt 5 5 varphi left e 6 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt sqrt 4 1 sqrt 4 3 sqrt 4 4 sqrt 4 9 sqrt 8 12 3 varphi left e 7 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt sqrt 13 sqrt 7 sqrt 7 3 sqrt 7 sqrt 8 14 3 cdot sqrt 16 7 varphi left e 8 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt 2 sqrt 2 sqrt 8 128 4 varphi left e 9 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac 1 sqrt 3 2 2 sqrt 3 3 varphi left e 10 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt sqrt 4 64 sqrt 4 80 sqrt 4 81 sqrt 4 100 sqrt 4 200 varphi left e 11 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt 11 sqrt 11 5 3 sqrt 3 sqrt 11 sqrt 33 sqrt 3 44 33 sqrt 3 5 3 sqrt 3 sqrt 11 sqrt 33 sqrt 3 44 33 sqrt 3 sqrt 8 52180524 varphi left e 12 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt sqrt 4 1 sqrt 4 2 sqrt 4 3 sqrt 4 4 sqrt 4 9 sqrt 4 18 sqrt 4 24 2 sqrt 8 108 varphi left e 13 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt 13 8 sqrt 13 11 6 sqrt 3 sqrt 13 sqrt 3 143 78 sqrt 3 11 6 sqrt 3 sqrt 13 sqrt 3 143 78 sqrt 3 sqrt 4 19773 varphi left e 14 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt sqrt 13 sqrt 7 sqrt 7 3 sqrt 7 sqrt 10 2 sqrt 7 sqrt 8 28 sqrt 4 sqrt 7 sqrt 16 28 7 varphi left e 15 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt 7 3 sqrt 3 sqrt 5 sqrt 15 sqrt 4 60 sqrt 4 1500 sqrt 8 12 3 cdot sqrt 5 2 varphi left e 16 pi right amp varphi left e 4 pi right frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt 4 1 sqrt 2 sqrt 16 128 varphi left e 17 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt 2 1 sqrt 4 17 sqrt 8 17 sqrt 5 sqrt 17 sqrt 17 17 sqrt 17 2 varphi left e 20 pi right amp varphi left e 5 pi right frac sqrt 4 pi Gamma left frac 3 4 right sqrt frac 3 2 sqrt 4 5 5 sqrt 2 6 varphi left e 36 pi right amp 3 varphi left e 9 pi right 2 varphi left e 4 pi right varphi left e pi right frac sqrt 4 pi Gamma left frac 3 4 right sqrt 3 sqrt 4 2 sqrt 4 18 sqrt 4 216 end aligned nbsp If the reciprocal of the Gelfond constant is raised to the power of the reciprocal of an odd number then the corresponding ϑ 00 displaystyle vartheta 00 nbsp values or ϕ displaystyle phi nbsp values can be represented in a simplified way by using the hyperbolic lemniscatic sine f exp 1 5 p p 4 G 3 4 1 slh 1 5 2 ϖ slh 2 5 2 ϖ displaystyle varphi bigl exp tfrac 1 5 pi bigr sqrt 4 pi Gamma left tfrac 3 4 right 1 operatorname slh bigl tfrac 1 5 sqrt 2 varpi bigr operatorname slh bigl tfrac 2 5 sqrt 2 varpi bigr nbsp f exp 1 7 p p 4 G 3 4 1 slh 1 7 2 ϖ slh 2 7 2 ϖ slh 3 7 2 ϖ displaystyle varphi bigl exp tfrac 1 7 pi bigr sqrt 4 pi Gamma left tfrac 3 4 right 1 operatorname slh bigl tfrac 1 7 sqrt 2 varpi bigr operatorname slh bigl tfrac 2 7 sqrt 2 varpi bigr operatorname slh bigl tfrac 3 7 sqrt 2 varpi bigr nbsp f exp 1 9 p p 4 G 3 4 1 slh 1 9 2 ϖ slh 2 9 2 ϖ slh 3 9 2 ϖ slh 4 9 2 ϖ displaystyle varphi bigl exp tfrac 1 9 pi bigr sqrt 4 pi Gamma left tfrac 3 4 right 1 operatorname slh bigl tfrac 1 9 sqrt 2 varpi bigr operatorname slh bigl tfrac 2 9 sqrt 2 varpi bigr operatorname slh bigl tfrac 3 9 sqrt 2 varpi bigr operatorname slh bigl tfrac 4 9 sqrt 2 varpi bigr nbsp f exp 1 11 p p 4 G 3 4 1 slh 1 11 2 ϖ slh 2 11 2 ϖ slh 3 11 2 ϖ slh 4 11 2 ϖ slh 5 11 2 ϖ displaystyle varphi bigl exp tfrac 1 11 pi bigr sqrt 4 pi Gamma left tfrac 3 4 right 1 operatorname slh bigl tfrac 1 11 sqrt 2 varpi bigr operatorname slh bigl tfrac 2 11 sqrt 2 varpi bigr operatorname slh bigl tfrac 3 11 sqrt 2 varpi bigr operatorname slh bigl tfrac 4 11 sqrt 2 varpi bigr operatorname slh bigl tfrac 5 11 sqrt 2 varpi bigr nbsp With the letter ϖ displaystyle varpi nbsp the Lemniscate constant is represented Note that the following modular identities hold 2 f q 4 f q 2 f 2 q 2 f 2 q 3 f q 9 f q 9 f 4 q 3 f q f 3 q 3 5 f q 25 f q 5 cot 1 2 arctan 2 5 f q f q 5 f 2 q f 2 q 5 1 s q s 2 q s q displaystyle begin aligned 2 varphi left q 4 right amp varphi q sqrt 2 varphi 2 left q 2 right varphi 2 q 3 varphi left q 9 right amp varphi q sqrt 3 9 frac varphi 4 left q 3 right varphi q varphi 3 q sqrt 5 varphi left q 25 right amp varphi left q 5 right cot left frac 1 2 arctan left frac 2 sqrt 5 frac varphi q varphi left q 5 right varphi 2 q varphi 2 left q 5 right frac 1 s q s 2 q s q right right end aligned nbsp where s q s e p i t R e p i 5 t displaystyle s q s left e pi i tau right R left e pi i 5 tau right nbsp is the Rogers Ramanujan continued fraction s q tan 1 2 arctan 5 2 f 2 q 5 f 2 q 1 2 cot 2 1 2 arccot 5 2 f 2 q 5 f 2 q 1 2 5 e p i 25 t 1 e p i 5 t 1 e 2 p i 5 t 1 displaystyle begin aligned s q amp sqrt 5 tan left frac 1 2 arctan left frac 5 2 frac varphi 2 left q 5 right varphi 2 q frac 1 2 right right cot 2 left frac 1 2 operatorname arccot left frac 5 2 frac varphi 2 left q 5 right varphi 2 q frac 1 2 right right amp cfrac e pi i 25 tau 1 cfrac e pi i 5 tau 1 cfrac e 2 pi i 5 tau 1 ddots end aligned nbsp Equianharmonic values edit The mathematician Bruce Berndt found out further values 13 of the theta function f exp 3 p p 1 G 4 3 3 2 2 2 3 3 13 8 f exp 2 3 p p 1 G 4 3 3 2 2 2 3 3 13 8 cos 1 24 p f exp 3 3 p p 1 G 4 3 3 2 2 2 3 3 7 8 2 3 1 f exp 4 3 p p 1 G 4 3, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.