fbpx
Wikipedia

Isotope dilution

Isotope dilution analysis is a method of determining the quantity of chemical substances. In its most simple conception, the method of isotope dilution comprises the addition of known amounts of isotopically enriched substance to the analyzed sample. Mixing of the isotopic standard with the sample effectively "dilutes" the isotopic enrichment of the standard and this forms the basis for the isotope dilution method. Isotope dilution is classified as a method of internal standardisation, because the standard (isotopically enriched form of analyte) is added directly to the sample. In addition, unlike traditional analytical methods which rely on signal intensity, isotope dilution employs signal ratios. Owing to both of these advantages, the method of isotope dilution is regarded among chemistry measurement methods of the highest metrological standing.[1]

Basic principle of isotope dilution
Adding of an isotopically altered standard to the sample changes the natural isotopic composition of the analyte. By measuring the resulting isotopic composition, it is possible to calculate the amount of the analyte present in the sample.

Isotopes are variants of a particular chemical element which differ in neutron number. All isotopes of a given element have the same number of protons in each atom. The term isotope is formed from the Greek roots isos (ἴσος "equal") and topos (τόπος "place"), meaning "the same place"; thus, the meaning behind the name is that different isotopes of a single element occupy the same position on the periodic table.

Early history edit

 
The Hungarian chemist George de Hevesy was awarded the Nobel Prize in Chemistry for development of radiotracer method, which is a forerunner of isotope dilution

Analytical application of the radiotracer method is a forerunner of isotope dilution. This method was developed in the early 20th century by George de Hevesy for which he was awarded the Nobel Prize in Chemistry for 1943.

An early application of isotope dilution in the form of radiotracer method was determination of the solubility of lead sulphide and lead chromate in 1913 by George de Hevesy and Friedrich Adolf Paneth.[2] In the 1930s, US biochemist David Rittenberg pioneered the use of isotope dilution in biochemistry enabling detailed studies of cell metabolism.[3]

Tutorial example edit

 
Tutorial illustration of isotope dilution analysis with fish counting in lakes

Isotope dilution is analogous to the mark and recapture method, commonly used in ecology to estimate population size.

For instance, consider the determination of the number of fish (nA) in a lake. For the purpose of this example, assume all fish native to the lake are blue. On their first visit to the lake, an ecologist adds five yellow fish (nB = 5). On their second visit, the ecologist captures a number of fish according to a sampling plan and observes that the ratio of blue-to-yellow (i.e. native-to-marked) fish is 10:1. The number of fish native to the lake can be calculated using the following equation:

 

This is a simplified view of isotope dilution but it illustrates the method's salient features. A more complex situation arises when the distinction between marked and unmarked fish becomes fuzzy. This can occur, for example, when the lake already contains a small number of marked fish from previous field experiments; and vice versa, where the amount of marked fish added contains a small number of unmarked fish. In a laboratory setting, an unknown (the "lake") may contain a quantity of a compound that is naturally present in major ("blue") and minor ("yellow") isotopic forms. A standard that is enriched in the minor isotopic form may then be added to the unknown, which can be subsequently analyzed. Keeping to the fish analogy, the following expression can be employed:

 

where, as indicated above, nA and nB represent the number of fish in the lake and the number of fish added to the lake, respectively; RA is the ratio of the native-to-marked fish in the lake prior to the addition of marked fish; RB is the ratio of the native-to-marked fish in the amount of marked fish added to the lake; finally, RAB is the ratio of the native-to-marked fish captured during the second visit.

Applications edit

Isotope dilution is almost exclusively employed with mass spectrometry in applications where high-accuracy is demanded. For example, all National Metrology Institutes rely significantly on isotope dilution when producing certified reference materials. In addition to high-precision analysis, isotope dilution is applied when low recovery of the analyte is encountered. In addition to the use of stable isotopes, radioactive isotopes can be employed in isotope dilution which is often encountered in biomedical applications, for example, in estimating the volume of blood.

Single dilution method edit

Isotope dilution notation
Name Symbol
Analyte A
Isotopic standard (Spike) B
Analyte + Spike AB

Consider a natural analyte rich in isotope iA (denoted as A), and the same analyte, enriched in isotope jA (denoted as B). Then, the obtained mixture is analyzed for the isotopic composition of the analyte, RAB = n(iA)AB/n(jA)AB. If the amount of the isotopically enriched substance (nB) is known, the amount of substance in the sample (nA) can be obtained:[4]

 

Here, RA is the isotope amount ratio of the natural analyte, RA = n(iA)A/n(jA)A, RB is the isotope amount ratio of the isotopically enriched analyte, RB = n(iA)B/n(jA)B, RAB is the isotope amount ratio of the resulting mixture, x(jA)A is the isotopic abundance of the minor isotope in the natural analyte, and x(jA)B is the isotopic abundance of the major isotope in the isotopically enriched analyte.

For elements with only two stable isotopes, such as boron, chlorine, or silver, the above single dilution equation simplifies to the following:

 

In a typical gas chromatography analysis, isotopic dilution can decrease the uncertainty of the measurement results from 5% to 1%. It can also be used in mass spectrometry (commonly referred to as isotopic dilution mass spectrometry or IDMS), in which the isotopic ratio can be determined with precision typically better than 0.25%.[5]

Optimum composition of the blend edit

In a simplified manner, the uncertainty of the measurement results is largely determined from the measurement of RAB:

 

From here, we obtain the relative uncertainty of nA, ur(nA) = u(nA)/nA:

 

The lowest relative uncertainty of nA corresponds to the condition when the first derivative with respect to RAB equals zero. In addition, it is common in mass spectrometry that u(RAB)/RAB is constant and therefore we can replace u(RAB) with RAB. These ideas combine to give

 

Solving this equation leads to the optimum composition of the blend AB, i.e., the geometric mean between the isotopic compositions of standard (A) and spike (B):

 

This simplified equation was first proposed by De Bievre and Debus numerically[4] and later by Komori et al.[6] and by Riepe and Kaiser analytically.[7] It has been noted that this simple expression is only a general approximation and it does not hold, for example, in the presence of Poisson statistics[8] or in the presence of strong isotope signal ratio correlation.[9]

Double dilution method edit

The single dilution method requires the knowledge of the isotopic composition of the isotopically enriched analyte (RB) and the amount of the enriched analyte added (nB). Both of these variables are hard to establish since isotopically enriched substances are generally available in small quantities of questionable purity. As a result, before isotope dilution is performed on the sample, the amount of the enriched analyte is ascertained beforehand using isotope dilution. This preparatory step is called the reverse isotope dilution and it involves a standard of natural isotopic-composition analyte (denoted as A*). First proposed in the 1940s[10] and further developed in the 1950s,[11] reverse isotope dilution remains an effective means of characterizing a labeled material.

Isotope dilution notation
Name Symbol
Analyte A
Natural standard A*
Isotopic standard (Spike) B
Analyte + Spike AB
Standard + Spike A*B

Reverse isotope dilution analysis of the enriched analyte:

 

Isotope dilution analysis of the analyte:

 

Since isotopic composition of A and A* are identical, combining these two expressions eliminates the need to measure the amount of the added enriched standard (nB):

 

Double dilution method can be designed such that the isotopic composition of the two blends, A+B and A*+B, is identical, i.e., RAB = RA*B. This condition of exact-matching double isotope dilution simplifies the above equation significantly:[12]

 

Triple dilution method edit

To avoid contamination of the mass spectrometer with the isotopically enriched spike, an additional blend of the primary standard (A*) and the spike (B) can be measured instead of measuring the enriched spike (B) directly. This approach was first put forward in the 1970s and developed in 2002.[13]

Calculations using calibration curve edit

Many analysts do not employ analytical equations for isotope dilution analysis. Instead, they rely on building a calibration curve from mixtures of the natural primary standard (A*) and the isotopically enriched standard (the spike, B). Calibration curves are obtained by plotting measured isotope ratios in the prepared blends against the known ratio of the sample mass to the mass of the spike solution in each blend. Isotope dilution calibration plots sometimes show nonlinear relationships and in practice polynomial fitting is often performed to empirically describe such curves.[14]

When calibration plots are markedly nonlinear, one can bypass the empirical polynomial fitting and employ the ratio of two linear functions (known as Padé approximant) which is shown to describe the curvature of isotope dilution curves exactly.[15]

See also edit

References edit

  1. ^ M.J.T. Milton; R. I. Wielgosz (2000). "Uncertainty in SI-traceable measurements of amount of substance by isotope dilution mass spectrometry". Metrologia. 37 (3): 199–206. Bibcode:2000Metro..37..199M. doi:10.1088/0026-1394/37/3/3. S2CID 250890206.
  2. ^ G. V. Hevesy; F. Paneth (1913). "Die Löslichkeit des Bleisulfids und Bleichromats". Z. Anorg. Allg. Chem. 82 (1): 323–328. doi:10.1002/zaac.19130820125.
  3. ^ Isotope dilution — Biographical Memoirs of the National Academy of Sciences
  4. ^ a b P. J. De Bievre; G. H. Debus (1965). "Precision mass spectrometric isotope dilution analysis". Nucl. Instrum. Methods. 32 (2): 224–228. Bibcode:1965NucIM..32..224D. doi:10.1016/0029-554X(65)90516-1.
  5. ^ EPA publication SW-846, "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", available at http://www.epa.gov/epaoswer/hazwaste/test/sw846.htm. See Method 6800, "Elemental and Speciated Isotope Dilution Mass Spectrometry", available at http://www.epa.gov/epaoswer/hazwaste/test/pdfs/6800.pdf.
  6. ^ T. Komori; et al. (1966). "Determination of cerium, gadolinium, dysprosium, erbium, and ytterbium". Bunseki Kagaku. 15 (6): 589–594. doi:10.2116/bunsekikagaku.15.589.
  7. ^ W. Riepe; W. Kaiser (1966). "Massenspektrometrische Spurenanalyse von Calcium, Strontium und Barium in Natriumazid durch Isotopenverdünnungstechnik". Anal. Bioanal. Chem. 223 (5): 321–335. doi:10.1007/BF00513462. S2CID 197597174.
  8. ^ R. Hoelzl; C. Hoelzl; L. Kotz; L. Fabry (1998). "The optimal amount of isotopic spike solution for ultratrace analysis by isotope dilution mass spectrometry". Accred. Qual. Assur. 3 (5): 185–188. doi:10.1007/s007690050219. S2CID 98759002.
  9. ^ Meija, Juris; Mester, Zoltan (2007). "Signal correlation in isotope ratio measurements with mass spectrometry: Effects on uncertainty propagation". Spectrochimica Acta B. 62 (11): 1278–1284. doi:10.1007/BF00513462. S2CID 197597174.
  10. ^ K. Bloch; H.S. Anker (1948). "An Extension of the Isotope Dilution Method". Science. 107 (2774): 228. Bibcode:1948Sci...107R.228B. doi:10.1126/science.107.2774.228. PMID 17749210.
  11. ^ C. Rosenblum (1957). "Principles of Isotope Dilution Assays". Anal. Chem. 29 (12): 1740–1744. doi:10.1021/ac60132a021.
  12. ^ A. Henrion (1994). "Reduction of systematic errors in quantitative analysis by isotope dilution mass spectrometry (IDMS): an iterative method". Fresenius' J. Anal. Chem. 350 (12): 657–658. doi:10.1007/BF00323658. S2CID 95434977.
  13. ^ M.J.T. Milton; J.A. Wang (2002). "High Accuracy Method for Isotope Dilution Mass Spectrometry with Application to the Measurement of Carbon Dioxide". Int. J. Mass Spectrom. 218 (1): 63–73. Bibcode:2002IJMSp.218...63M. doi:10.1016/S1387-3806(02)00663-2.
  14. ^ J.A. Jonckheere; A.P. De Leenheer; H.L. Steyaert (1983). "Statistical evaluation of calibration curve nonlinearity in isotope dilution gas chromatography/mass spectrometry". Anal. Chem. 55: 153–155. doi:10.1021/ac00252a042.
  15. ^ Pagliano, E.; Mester, Zoltan; Meija, Juris (2015). "Calibration graphs in isotope dilution mass spectrometry". Analytica Chimica Acta. 896: 63–67. doi:10.1016/j.aca.2015.09.020. PMID 26481988. S2CID 7543394.

Further reading edit

  • Sargent (ed.), Mike; Harte (ed.), Rita; Harrington (ed.), Chris (2002). Guidelines for Achieving High Accuracy in Isotope Dilution Mass Spectrometry (IDMS). Royal Society of Chemistry. p. 58. ISBN 978-0-85404-418-4. {{cite book}}: |last1= has generic name (help)
  • Garcia-Alonso, J. Ignacio; Rodriguez-Gonzalez, Pablo (2013). Isotope Dilution Mass Spectrometry. Royal Society of Chemistry. p. 453. ISBN 978-1-84973-333-5.

isotope, dilution, analysis, method, determining, quantity, chemical, substances, most, simple, conception, method, isotope, dilution, comprises, addition, known, amounts, isotopically, enriched, substance, analyzed, sample, mixing, isotopic, standard, with, s. Isotope dilution analysis is a method of determining the quantity of chemical substances In its most simple conception the method of isotope dilution comprises the addition of known amounts of isotopically enriched substance to the analyzed sample Mixing of the isotopic standard with the sample effectively dilutes the isotopic enrichment of the standard and this forms the basis for the isotope dilution method Isotope dilution is classified as a method of internal standardisation because the standard isotopically enriched form of analyte is added directly to the sample In addition unlike traditional analytical methods which rely on signal intensity isotope dilution employs signal ratios Owing to both of these advantages the method of isotope dilution is regarded among chemistry measurement methods of the highest metrological standing 1 Basic principle of isotope dilution Adding of an isotopically altered standard to the sample changes the natural isotopic composition of the analyte By measuring the resulting isotopic composition it is possible to calculate the amount of the analyte present in the sample Isotopes are variants of a particular chemical element which differ in neutron number All isotopes of a given element have the same number of protons in each atom The term isotope is formed from the Greek roots isos ἴsos equal and topos topos place meaning the same place thus the meaning behind the name is that different isotopes of a single element occupy the same position on the periodic table Contents 1 Early history 2 Tutorial example 3 Applications 4 Single dilution method 4 1 Optimum composition of the blend 5 Double dilution method 6 Triple dilution method 7 Calculations using calibration curve 8 See also 9 References 10 Further readingEarly history edit nbsp The Hungarian chemist George de Hevesy was awarded the Nobel Prize in Chemistry for development of radiotracer method which is a forerunner of isotope dilution Analytical application of the radiotracer method is a forerunner of isotope dilution This method was developed in the early 20th century by George de Hevesy for which he was awarded the Nobel Prize in Chemistry for 1943 An early application of isotope dilution in the form of radiotracer method was determination of the solubility of lead sulphide and lead chromate in 1913 by George de Hevesy and Friedrich Adolf Paneth 2 In the 1930s US biochemist David Rittenberg pioneered the use of isotope dilution in biochemistry enabling detailed studies of cell metabolism 3 Tutorial example edit nbsp Tutorial illustration of isotope dilution analysis with fish counting in lakes Isotope dilution is analogous to the mark and recapture method commonly used in ecology to estimate population size For instance consider the determination of the number of fish nA in a lake For the purpose of this example assume all fish native to the lake are blue On their first visit to the lake an ecologist adds five yellow fish nB 5 On their second visit the ecologist captures a number of fish according to a sampling plan and observes that the ratio of blue to yellow i e native to marked fish is 10 1 The number of fish native to the lake can be calculated using the following equation n A n B 10 1 50 displaystyle n mathrm A n mathrm B times frac 10 1 50 nbsp This is a simplified view of isotope dilution but it illustrates the method s salient features A more complex situation arises when the distinction between marked and unmarked fish becomes fuzzy This can occur for example when the lake already contains a small number of marked fish from previous field experiments and vice versa where the amount of marked fish added contains a small number of unmarked fish In a laboratory setting an unknown the lake may contain a quantity of a compound that is naturally present in major blue and minor yellow isotopic forms A standard that is enriched in the minor isotopic form may then be added to the unknown which can be subsequently analyzed Keeping to the fish analogy the following expression can be employed n A n B R B R A B R A B R A 1 R A 1 R B displaystyle n mathrm A n mathrm B times frac R mathrm B R mathrm AB R mathrm AB R mathrm A times frac 1 R mathrm A 1 R mathrm B nbsp where as indicated above nA and nB represent the number of fish in the lake and the number of fish added to the lake respectively RA is the ratio of the native to marked fish in the lake prior to the addition of marked fish RB is the ratio of the native to marked fish in the amount of marked fish added to the lake finally RAB is the ratio of the native to marked fish captured during the second visit Applications editIsotope dilution is almost exclusively employed with mass spectrometry in applications where high accuracy is demanded For example all National Metrology Institutes rely significantly on isotope dilution when producing certified reference materials In addition to high precision analysis isotope dilution is applied when low recovery of the analyte is encountered In addition to the use of stable isotopes radioactive isotopes can be employed in isotope dilution which is often encountered in biomedical applications for example in estimating the volume of blood Single dilution method editIsotope dilution notation Name Symbol Analyte A Isotopic standard Spike B Analyte Spike AB Consider a natural analyte rich in isotope iA denoted as A and the same analyte enriched in isotope jA denoted as B Then the obtained mixture is analyzed for the isotopic composition of the analyte RAB n iA AB n jA AB If the amount of the isotopically enriched substance nB is known the amount of substance in the sample nA can be obtained 4 n A n B R B R A B R A B R A x j A B x j A A displaystyle n mathrm A n mathrm B frac R mathrm B R mathrm AB R mathrm AB R mathrm A times frac x j mathrm A mathrm B x j mathrm A mathrm A nbsp Here RA is the isotope amount ratio of the natural analyte RA n iA A n jA A RB is the isotope amount ratio of the isotopically enriched analyte RB n iA B n jA B RAB is the isotope amount ratio of the resulting mixture x jA A is the isotopic abundance of the minor isotope in the natural analyte and x jA B is the isotopic abundance of the major isotope in the isotopically enriched analyte For elements with only two stable isotopes such as boron chlorine or silver the above single dilution equation simplifies to the following n A n B R B R A B R A B R A 1 R A 1 R B displaystyle n mathrm A n mathrm B frac R mathrm B R mathrm AB R mathrm AB R mathrm A times frac 1 R mathrm A 1 R mathrm B nbsp In a typical gas chromatography analysis isotopic dilution can decrease the uncertainty of the measurement results from 5 to 1 It can also be used in mass spectrometry commonly referred to as isotopic dilution mass spectrometry or IDMS in which the isotopic ratio can be determined with precision typically better than 0 25 5 Optimum composition of the blend edit In a simplified manner the uncertainty of the measurement results is largely determined from the measurement of RAB u n A 2 n A R A B 2 u R A B 2 n A 2 R A R B 2 R A R A B 2 R A B R B 2 u R A B 2 displaystyle u n mathrm A 2 propto left frac partial n mathrm A partial R mathrm AB right 2 u R mathrm AB 2 n mathrm A 2 frac R mathrm A R mathrm B 2 R mathrm A R mathrm AB 2 R mathrm AB R mathrm B 2 u R mathrm AB 2 nbsp From here we obtain the relative uncertainty of nA ur nA u nA nA u r n A 2 R A R B 2 R A R A B 2 R A B R B 2 u R A B 2 displaystyle u mathrm r n mathrm A 2 propto frac R mathrm A R mathrm B 2 R mathrm A R mathrm AB 2 R mathrm AB R mathrm B 2 u R mathrm AB 2 nbsp The lowest relative uncertainty of nA corresponds to the condition when the first derivative with respect to RAB equals zero In addition it is common in mass spectrometry that u RAB RAB is constant and therefore we can replace u RAB with RAB These ideas combine to give u r n A m i n R A R B R A R A B R A B R B R A B R A B 0 displaystyle u mathrm r n mathrm A mathrm min mapsto partial left frac R mathrm A R mathrm B R mathrm A R mathrm AB R mathrm AB R mathrm B R mathrm AB right partial R mathrm AB 0 nbsp Solving this equation leads to the optimum composition of the blend AB i e the geometric mean between the isotopic compositions of standard A and spike B R A B R A R B displaystyle R mathrm AB sqrt R mathrm A R mathrm B nbsp This simplified equation was first proposed by De Bievre and Debus numerically 4 and later by Komori et al 6 and by Riepe and Kaiser analytically 7 It has been noted that this simple expression is only a general approximation and it does not hold for example in the presence of Poisson statistics 8 or in the presence of strong isotope signal ratio correlation 9 Double dilution method editThe single dilution method requires the knowledge of the isotopic composition of the isotopically enriched analyte RB and the amount of the enriched analyte added nB Both of these variables are hard to establish since isotopically enriched substances are generally available in small quantities of questionable purity As a result before isotope dilution is performed on the sample the amount of the enriched analyte is ascertained beforehand using isotope dilution This preparatory step is called the reverse isotope dilution and it involves a standard of natural isotopic composition analyte denoted as A First proposed in the 1940s 10 and further developed in the 1950s 11 reverse isotope dilution remains an effective means of characterizing a labeled material Isotope dilution notation Name Symbol Analyte A Natural standard A Isotopic standard Spike B Analyte Spike AB Standard Spike A B Reverse isotope dilution analysis of the enriched analyte n B n A R A R A B R A B R B x j A A x j A B displaystyle n mathrm B n mathrm A frac R mathrm A R mathrm A B R mathrm A B R mathrm B times frac x j mathrm A mathrm A x j mathrm A mathrm B nbsp Isotope dilution analysis of the analyte n A n B R B R A B R A B R A x j A B x j A A displaystyle n mathrm A n mathrm B frac R mathrm B R mathrm AB R mathrm AB R mathrm A times frac x j mathrm A mathrm B x j mathrm A mathrm A nbsp Since isotopic composition of A and A are identical combining these two expressions eliminates the need to measure the amount of the added enriched standard nB n A n A R A R A B R A B R B R B R A B R A B R A displaystyle n mathrm A n mathrm A frac R mathrm A R mathrm A B R mathrm A B R mathrm B times frac R mathrm B R mathrm AB R mathrm AB R mathrm A nbsp Double dilution method can be designed such that the isotopic composition of the two blends A B and A B is identical i e RAB RA B This condition of exact matching double isotope dilution simplifies the above equation significantly 12 n A n A R A B R A B R A R A displaystyle n mathrm A n mathrm A R mathrm A B R mathrm AB land R mathrm A R mathrm A nbsp Triple dilution method editTo avoid contamination of the mass spectrometer with the isotopically enriched spike an additional blend of the primary standard A and the spike B can be measured instead of measuring the enriched spike B directly This approach was first put forward in the 1970s and developed in 2002 13 Calculations using calibration curve editMany analysts do not employ analytical equations for isotope dilution analysis Instead they rely on building a calibration curve from mixtures of the natural primary standard A and the isotopically enriched standard the spike B Calibration curves are obtained by plotting measured isotope ratios in the prepared blends against the known ratio of the sample mass to the mass of the spike solution in each blend Isotope dilution calibration plots sometimes show nonlinear relationships and in practice polynomial fitting is often performed to empirically describe such curves 14 When calibration plots are markedly nonlinear one can bypass the empirical polynomial fitting and employ the ratio of two linear functions known as Pade approximant which is shown to describe the curvature of isotope dilution curves exactly 15 See also editStandard addition Internal standard Mass spectrometry Mark and recapture Lincoln indexReferences edit M J T Milton R I Wielgosz 2000 Uncertainty in SI traceable measurements of amount of substance by isotope dilution mass spectrometry Metrologia 37 3 199 206 Bibcode 2000Metro 37 199M doi 10 1088 0026 1394 37 3 3 S2CID 250890206 G V Hevesy F Paneth 1913 Die Loslichkeit des Bleisulfids und Bleichromats Z Anorg Allg Chem 82 1 323 328 doi 10 1002 zaac 19130820125 Isotope dilution Biographical Memoirs of the National Academy of Sciences a b P J De Bievre G H Debus 1965 Precision mass spectrometric isotope dilution analysis Nucl Instrum Methods 32 2 224 228 Bibcode 1965NucIM 32 224D doi 10 1016 0029 554X 65 90516 1 EPA publication SW 846 Test Methods for Evaluating Solid Waste Physical Chemical Methods available at http www epa gov epaoswer hazwaste test sw846 htm See Method 6800 Elemental and Speciated Isotope Dilution Mass Spectrometry available at http www epa gov epaoswer hazwaste test pdfs 6800 pdf T Komori et al 1966 Determination of cerium gadolinium dysprosium erbium and ytterbium Bunseki Kagaku 15 6 589 594 doi 10 2116 bunsekikagaku 15 589 W Riepe W Kaiser 1966 Massenspektrometrische Spurenanalyse von Calcium Strontium und Barium in Natriumazid durch Isotopenverdunnungstechnik Anal Bioanal Chem 223 5 321 335 doi 10 1007 BF00513462 S2CID 197597174 R Hoelzl C Hoelzl L Kotz L Fabry 1998 The optimal amount of isotopic spike solution for ultratrace analysis by isotope dilution mass spectrometry Accred Qual Assur 3 5 185 188 doi 10 1007 s007690050219 S2CID 98759002 Meija Juris Mester Zoltan 2007 Signal correlation in isotope ratio measurements with mass spectrometry Effects on uncertainty propagation Spectrochimica Acta B 62 11 1278 1284 doi 10 1007 BF00513462 S2CID 197597174 K Bloch H S Anker 1948 An Extension of the Isotope Dilution Method Science 107 2774 228 Bibcode 1948Sci 107R 228B doi 10 1126 science 107 2774 228 PMID 17749210 C Rosenblum 1957 Principles of Isotope Dilution Assays Anal Chem 29 12 1740 1744 doi 10 1021 ac60132a021 A Henrion 1994 Reduction of systematic errors in quantitative analysis by isotope dilution mass spectrometry IDMS an iterative method Fresenius J Anal Chem 350 12 657 658 doi 10 1007 BF00323658 S2CID 95434977 M J T Milton J A Wang 2002 High Accuracy Method for Isotope Dilution Mass Spectrometry with Application to the Measurement of Carbon Dioxide Int J Mass Spectrom 218 1 63 73 Bibcode 2002IJMSp 218 63M doi 10 1016 S1387 3806 02 00663 2 J A Jonckheere A P De Leenheer H L Steyaert 1983 Statistical evaluation of calibration curve nonlinearity in isotope dilution gas chromatography mass spectrometry Anal Chem 55 153 155 doi 10 1021 ac00252a042 Pagliano E Mester Zoltan Meija Juris 2015 Calibration graphs in isotope dilution mass spectrometry Analytica Chimica Acta 896 63 67 doi 10 1016 j aca 2015 09 020 PMID 26481988 S2CID 7543394 Further reading editSargent ed Mike Harte ed Rita Harrington ed Chris 2002 Guidelines for Achieving High Accuracy in Isotope Dilution Mass Spectrometry IDMS Royal Society of Chemistry p 58 ISBN 978 0 85404 418 4 a href Template Cite book html title Template Cite book cite book a last1 has generic name help Garcia Alonso J Ignacio Rodriguez Gonzalez Pablo 2013 Isotope Dilution Mass Spectrometry Royal Society of Chemistry p 453 ISBN 978 1 84973 333 5 Retrieved from https en wikipedia org w index php title Isotope dilution amp oldid 1178513297, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.