fbpx
Wikipedia

Positive train control

Positive train control (PTC) is a family of automatic train protection systems deployed in the United States.[1] Most of the United States' national rail network mileage has a form of PTC. These systems are generally designed to check that trains are moving safely and to stop them when they are not.[2]

A Metrolink locomotive decal on an MP36PH-3C stating that it is equipped with positive train control technology

Positive train control restricts the train movement to an explicit allowance; movement is halted upon invalidation. A train operating under PTC receives a movement authority containing information about its location and where it is allowed to safely travel. PTC was installed and operational on 100% of the statutory-required trackage by December 29, 2020.[3]

Overview edit

The American Railway Engineering and Maintenance-of-Way Association (AREMA) describes positive train control systems as having these primary functions:

  • Train separation or collision avoidance
  • Line speed enforcement
  • Temporary speed restriction enforcement
  • Rail worker wayside safety
  • Blind spot monitoring.[4]

History edit

Background edit

In the late 1980s, interest in train protection solutions heightened after a period of stagnant investment and decline following World War II. Starting in 1990, the United States National Transportation Safety Board (NTSB) counted PTC (then known as positive train separation) among its "Most Wanted List of Transportation Safety Improvements."[5][6][7] At the time, the vast majority of rail lines in US relied upon crew members to comply with all safety rules, and a significant fraction of accidents were attributable to human error, as evidenced in several years of official reports from the Federal Railroad Administration (FRA).[8]

In September 2008, Congress considered a new law that set a deadline of December 15, 2015 for implementation of PTC technology across most of the US rail network. The bill, ushered through the legislative process by the Senate Commerce Committee and the House Transportation and Infrastructure Committee, was drafted in response to the collision of a Metrolink passenger train and a Union Pacific freight train at September 12, 2008, in Los Angeles, which resulted in the deaths of 25 and injuries to more than 135 passengers.

As the bill neared final passage by Congress, the Association of American Railroads (AAR) issued a statement in support of the bill.[9] President George W. Bush signed the 315-page Rail Safety Improvement Act of 2008 into law on October 16, 2008.[10]

Provisions of the law edit

Among its provisions, the law provides funding to help pay for the development of PTC technology, limits the number of hours freight rail crews can work each month, and requires the Department of Transportation to determine work hour limits for passenger train crews.

Implementation edit

To implement the law, the FRA published initial regulations for PTC systems on January 15, 2010.[11] The agency published amended regulations on August 22, 2014.[12]

In December 2010, the Government Accountability Office (GAO) reported that Amtrak and the major Class I railroads have taken steps to install PTC systems under the law, but commuter rail operators were not on track for the 2015 deadline.[13] As of June 2015, only seven commuter systems (29 percent of those represented by APTA) were expecting to make the deadline. Several factors have delayed implementation, including the need to obtain funding (which was not provided by Congress); the time it has taken to design, test, make interoperable, and manufacture the technology; and the need to obtain radio spectrum along the entire rail network, which involves FCC permission and in some cases negotiating with an existing owner for purchase or lease.[14]

The Metrolink commuter rail system in Southern California is planning to be the first US passenger carrier to install the technology on its entire system. After some delays,[15] demonstration PTC in revenue service began in February 2014; the system is expected to be completed in late summer 2015.[16]

In the Chicago metropolitan area, the Metra system expected it will not be fully compliant with the PTC mandate until 2019.[14]

In October 2015, Congress has passed a bill extending the compliance deadline by three years, to December 31, 2018. President Barack Obama signed the bill on October 29, 2015.[17][18] Only four railroads met the December 2018 deadline; the other 37 got extensions to December 2020, which was allowed under the law for railroads that demonstrated implementation progress.[19] On December 29, 2020, it was reported that the safeguards had been installed on all required railroads, two days ahead of the deadline.[20]

Criticism edit

There is some controversy as to whether PTC makes sense in the form mandated by Congress. Not only is the cost of nationwide PTC installation expected to be as much as US$6–22 billion, most all of it borne by U.S. freight railroads,[21] there are questions as to the reliability and maturity of the technology for all forms of mainline freight trains and high density environments.[22] The PTC requirement could also impose startup barriers to new passenger rail or freight services that would trigger millions of dollars in additional PTC costs. The unfunded mandate also ties the hands of the FRA to adopt a more nuanced or flexible approach to the adoption of PTC technology where it makes the most sense or where it is technically most feasible.[21]

While the FRA Rail Safety Advisory Committee identified several thousand "PPAs" (PTC preventable accidents) on US railroads over a 12-year period, cost analysis determined that the accumulated savings to be realized from all of the accidents was not sufficient to cover the cost of PTC across the Class I railroads. Therefore, PTC was not economically justified at that time.[23] The FRA concurred with this cost assessment in its 2009 PTC rulemaking document.

The reason behind the lack of economic justification is that the majority of accidents are minor and FRA crash worthiness standards help mitigate the potential loss of life or release of hazardous chemicals. For example, in the 20 years between 1987 and 2007, there were only two PTC-preventable accidents with major loss of life in the United States (16 deaths in the Chase, Maryland wreck (1987) and 11 in the Silver Spring, Maryland wreck (1996)), and in each case, the causes of the accidents were addressed through changes to operating rules.[citation needed]

The cost of implementing PTC on up to 25 commuter rail services in the United States has been estimated at over $2 billion and because of these costs, several services are having to cancel or reduce repairs, capital improvements, and service.[citation needed] Other services simply do not have the funds available for PTC and have deferred action assuming some change from Congress.[citation needed] Railroads that operate lines equipped with cab signalling and existing Automatic Train Control systems have argued that their proven track record of safety, which goes back decades, is being discounted because ATC is not as aggressive as PTC in all cases.[24]

Basic operation edit

A typical PTC system involves two basic components:

  • Speed display and control unit on the locomotive
  • A method to dynamically inform the speed control unit of changing track or signal conditions.[25]

Optionally, three additional components may exist:

  • An on-board navigation system and track profile database to enforce fixed speed limits
  • A bi-directional data link to inform signaling equipment of the train's presence
  • Centralized systems to directly issue movement authorities to trains

PTC infrastructure edit

There are two main PTC implementation methods currently being developed. The first makes use of fixed signaling infrastructure such as coded track circuits and wireless transponders to communicate with the onboard speed control unit. The other makes use of wireless data radios spread out along the line to transmit the dynamic information. The wireless implementation also allows for the train to transmit its location to the signaling system which could enable the use of moving or "virtual" blocks. The wireless implementation is generally cheaper in terms of equipment costs, but is considered to be much less reliable than using "harder" communications channels. As of 2007, for example, the wireless ITCS system on Amtrak's Michigan Line was still not functioning reliably after 13 years of development,[25] while the fixed ACSES system has been in daily service on the Northeast Corridor since 2002 (see Amtrak, below).

The fixed infrastructure method is proving popular on high-density passenger lines where pulse code cab signaling has already been installed. In some cases, the lack of a reliance on wireless communications is being touted as a benefit.[26] The wireless method has proven most successful on low density, unsignaled dark territory normally controlled via track warrants, where speeds are already low and interruptions in the wireless connection to the train do not tend to compromise safety or train operations.

Some systems, like Amtrak's ACSES, operate with a hybrid technology that uses wireless links to update temporary speed restrictions or pass certain signals, with neither of these systems being critical for train operations.

Locomotive speed control unit edit

The equipment on board the locomotive must continually calculate the train's current speed relative to a speed target some distance away governed by a braking curve. If the train risks not being able to slow to the speed target given the braking curve, the brakes are automatically applied and the train is immediately slowed. The speed targets are updated by information regarding fixed and dynamic speed limits determined by the track profile and signaling system.

Most current PTC implementations also use the speed control unit to store a database of track profiles attached to some sort of navigation system. The unit keeps track of the train's position along the rail line and automatically enforces any speed restrictions as well as the maximum authorized speed. Temporary speed restrictions can be updated before the train departs its terminal or via wireless data links. The track data can also be used to calculate braking curves based on the grade profile. The navigation system can use fixed track beacons or differential GPS stations combined with wheel rotation to accurately determine the train's location on the line within a few feet.

Centralized control edit

While some PTC systems interface directly with the existing signal system, others may maintain a set of vital computer systems at a central location that can keep track of trains and issue movement authorities to them directly via a wireless data network. This is often considered to be a form of Communications Based Train Control and is not a necessary part of PTC.

Trackside device interface edit

The train may be able to detect the status of (and sometimes control) wayside devices, for example switch positions. This information is sent to the control center to further define the train's safe movements. Text messages and alarm conditions may also be automatically and manually exchanged between the train and the control center. Another capability would allow the employee-in-charge (EIC) to give trains permission to pass through their work zones via a wireless device instead of verbal communications.

Technical limitations edit

Even where safety systems such as cab signaling have been present for many decades, the freight railroad industry has been reluctant to fit speed control devices because the often heavy-handed nature of such devices can have an adverse effect on otherwise safe train operation. The advanced processor-based speed control algorithms found in PTC systems claim to be able to properly regulate the speed of freight trains over 5,000 feet (1,500 m) in length and weighing over 10,000 short tons (9,100 t), but concerns remain about taking the final decision out of the hands of skilled railroad engineers. Improper use of the air brake can lead to a train running away, derailment or to an unexpected separation.[citation needed]

Furthermore, an overly conservative PTC system runs the risk of slowing trains below the level at which they had previously been safely operated by human engineers. Railway speeds are calculated with a safety factor such that slight excesses in speed will not result in an accident. If a PTC system applies its own safety margin, then the end result will be an inefficient double safety factor. Moreover, a PTC system might be unable to account for variations in weather conditions or train handling, and might have to assume a worst-case scenario, further decreasing performance.[27] In its 2009 regulatory filing, the FRA stated that PTC was in fact likely to decrease the capacity of freight railroads on many main lines.[28] The European LOCOPROL/LOCOLOC project had shown that EGNOS-enhanced satellite navigation alone was unable to meet the SIL4 safety integrity required for train signaling.[29]

From a purely technical standpoint, PTC will not prevent certain low-speed collisions caused by permissive block operation, accidents caused by "shoving" (reversing with inadequate observation), derailments caused by track or train defect, grade crossing collisions, or collisions with previously derailed trains. Where PTC is installed in the absence of track circuit blocks, it will not detect broken rails, flooded tracks, or dangerous debris fouling the line.

Wireless implementations edit

Radio spectrum availability edit

The wireless infrastructure planned for use by all US Class I freights, most small freight railroads, and many commuter railroads is based on data radios operating in a single frequency band near 220 MHz. A consortium created by two freight railroads called PTC 220 LLC has purchased significant spectrum around 220 MHz, from previous licensees for use in deploying PTC. Some of this spectrum is in the form of nationwide licenses and some is not. The consortium plans to make this spectrum available for use by the US freights, but has indicated as recently as 2011 that they are unsure if they have enough spectrum to meet their needs. Several commuter railroads have begun purchasing 220 MHz spectrum in their geographic areas, but there is widespread concern that the acquisition of enough 220 MHz spectrum may be difficult to accomplish because of a lack of availability, difficulties in negotiating complex multi-party deals to gain enough adjacent spectrum, and because the financial cost of the acquisitions may make the task impossible for some state agencies. However, research suggests that dynamic spectrum allocation can solve the spectrum allocation problem at 220 MHz bandwidth.[30][31]

Many of the railroads have requested that the FCC reallocate parts of the 220 MHz spectrum to them. They argue that they must have 220 MHz spectrum to be interoperable with each other. The FCC has stated that there is no reallocation forthcoming, that the railroads are not justified in requesting spectrum reallocation because they have not quantified how much spectrum they need, and that the railroads should seek spectrum in the secondary 220 MHz markets or in other bands.[32]

Radio band edit

There are no regulatory or technical requirements that demand that 220 MHz be used to implement PTC (if a PTC implementation is to use wireless components at all). If wireless data transmission is necessary, there are a few advantages to the 220 MHz spectrum, provided it can be acquired at a reasonable cost. The first reason to consider using 220 MHz spectrum is PTC interoperability for freights and for some, but not all, commuter rail operations. Freight operations in the US often include the sharing of railroad tracks where one railroad's rail vehicles operate as a guest on another railroad's host tracks. Implementing PTC in such an environment is most easily achieved by using the same PTC equipment, and this includes radios and the associated radio spectrum.

When a commuter railroad operation must operate on a freight railroad territory, the commuter will most likely be required to install PTC equipment (including a radio) on their rail vehicle that is compliant with the freight railroad's PTC system, and this generally means the use of 220 MHz radios and spectrum. If the commuter uses the same PTC equipment, radios, and spectrum on their own property, they will be able to use it when their vehicles travel onto a freight's territory. From a practical standpoint, if the commuter instead elects to use another type of PTC on their own property, they will need to install a second set of onboard equipment so they can operate PTC on their own property while also operating PTC on a freight's property. If a multi-band radio (such as the current generation software-defined radios) is not available, then separate radios and separate antennas will be necessary. With the complexity of track geometries, PTC requires a variable amount of the spectrum in a time critical manner. One way to achieve this is to extend the PTC software-defined radios, such that it has the intelligence to allocate the spectrum dynamically. Adding the intelligence to the radio also helps to improve the security of the PTC communication medium.[33]

If a small freight or commuter railroad does not operate on another railroad territory, then there is no interoperability-based reason that obligates them to use 220 MHz spectrum to implement PTC. In addition, if a small freight or commuter railroad only operates on their own territory and hosts other guest railroads (freight or other passenger rail), there is still no interoperability-based reason the host is obliged to use 220 MHz spectrum to implement PTC. Such a railroad could implement PTC by freely picking any radio spectrum and requiring the guest railroads to either install compliant PTC equipment (including radios) on board their trains or provide wayside equipment for their guest PTC implementation to be installed on the host railroad property. An interesting case that highlights some of these issues is the northeast corridor. Amtrak operates services on two commuter rail properties it does not own: Metro-North Railroad (owned by New York and Connecticut) and Massachusetts Bay Transportation Authority (MBTA) (owned by Massachusetts). In theory, Amtrak could have found themselves installing their own PTC system on these host properties (about 15 percent of the corridor), or worse, found themselves in the ridiculous position of trying to install three different PTC systems on each Amtrak train to traverse the commuter properties. This was not the case. Amtrak had a significant head start over the commuter rail agencies on the corridor in implementing PTC. They spent a considerable amount of time in research and development and won early approvals for their ACSES system on the northeast corridor with the FRA. They chose first to use 900 MHz and then later moved to 220 MHz, in part because of a perceived improvement in radio-system performance and in part because Amtrak was using 220 MHz in Michigan for their ITCS implementation.[34] When the commuter agencies on the corridor looked at options for implementing PTC, many of them chose to take advantage of the advance work Amtrak had done and implement the ACSES solution using 220 MHz. Amtrak's early work paid off and meant that they would be traversing commuter properties that installed the same protocol at the same frequency, making them all interoperable. (Actually most of the Northeast Corridor is owned and operated by Amtrak, not the commuter properties, including the tracks from Washington, D.C. to New York Penn Station and the tracks from Philadelphia to Harrisburg, Pennsylvania. The State of Massachusetts owns the tracks from the Rhode Island state line to the New Hampshire state line, but Amtrak "operates" these lines. Only the line between New York City and New Haven, Connecticut is actually owned and operated by a commuter line.)

One other perceived reason to consider 220 MHz for PTC may be PTC-compatible radio equipment availability. Radio equipment specifically targeted toward PTC is currently only available from a limited number of vendors, and they are focused only on 220 MHz. One radio vendor in particular, Meteorcomm LLC, is able to support the I-ETMS PTC protocol with a 220 MHz radio. Meteorcomm is jointly owned by several of the Class I freights, and some in the industry have indicated that using their 220 MHz radio and associated equipment will be done on a per-site licensing basis. Recurring fees may be associated with this process too. There is further concern that the 'buy in' and licensing fees will be significant, and this has led some to speculate that the owners of Meteorcomm (the freights) may have legal exposure to anti-trust violations.[citation needed] For many railroads, there is no other practical option to meet the federal mandate than to install PTC at 220 MHz using I-ETMS with the Meteorcomm radios. On the northeast corridor, another radio vendor, GE MDS, is able to support the Amtrak ACSES protocol with a 220 MHz radio. It should be stressed that the main concern among the freights regarding the PTC deadline is the availability of PTC equipment.[35] With an eye to anti-trust issues and ready radio availability, Meteorcomm radio designs have been second-sourced to CalAmp radios. This all may mean that there is not enough 220 MHz PTC radio equipment available for all of the railroads that must implement PTC.[citation needed]

There are also issues with the use of these frequencies outside the US; in Canada, 220 MHz remains part of the radioamateur 1.25-metre band.[36][37]

Other bands besides 220 MHz will support PTC, and have been used to win approvals from the FRA for PTC. When Amtrak received their initial approval, they planned to use 900 MHz frequencies for ACSES. BNSF Railway won its first PTC approvals from the FRA for an early version of ETMS using a multi-band radio that included 45 MHz frequencies, 160 MHz frequencies, 900 MHz frequencies and WiFi. A small freight or commuter that selects one or more of these bands or another one such as 450 MHz might find it easier to acquire spectrum. They will need to research spectrum issues, radio equipment, antennas, and protocol compatibility issues to successfully deploy PTC.[citation needed]

Interoperability requirements edit

There is no single defined standard for "interoperable PTC systems". Several examples of interoperable systems illustrate this point. First, the UP and BNSF are interoperable across their systems. They are both implementing I-ETMS and will use different radio frequencies in different locations.[citation needed] In the second example, Amtrak is interoperable with Norfolk Southern in Michigan. Amtrak uses ITCS, while Norfolk Southern uses I-ETMS. To interoperate, two 220 MHz radios are installed in each wayside location and they both interface with a common PTC system through an interface device (similar to a network gateway or protocol converter) at each wayside location. One radio talks to freight trains using I-ETMS and one radio talks to passenger trains using ITCS. In this case interoperability stops at the wayside and does not include the wireless segment out to the rail vehicles or the onboard systems. In the third example, similar to the first, Metrolink, the commuter rail agency in Los Angeles, is implementing I-ETMS and will use the same PTC equipment as both the UP and BNSF. Metrolink is procuring their own 220 MHz spectrum so that trains on Metrolink territory (commuter and freight) will use other channels than those used by the UP and BNSF. Interoperability is achieved by directing the onboard radio to change channels depending on location.[citation needed] For SEPTA, the commuter operation in and around Philadelphia, Ansaldo is implementing ACSES, the Amtrak northeast corridor PTC protocol. For CSX all the ACSES PTC transactions will be handed to CSX at the SEPTA back office, and CSX will be responsible for deploying I-ETMS infrastructure that they will use to communicate with their freight trains. The SEPTA interoperability model is very similar to that of the public safety radio community wherein different radio systems that use different frequencies and protocols are cross-connected only in the back office to support system to system communications.[citation needed]

Multi-band solutions edit

For the major freight railroads and Amtrak the answer seems to be that one frequency band is sufficient. These rail operations measure on-time performance on a much more coarse scale than commuters do so their tolerance for delay is greater and has less impact on train schedules.[citation needed] In addition, the PTC implementations deployed by commuter operations will be running much closer to the performance envelope than that of either Amtrak or the freights. For commuters in particular there is therefore some concern that implementing PTC with a single frequency band may not be sufficient. The single frequency-band approach to supporting real-time train control has a history of being difficult to use for such applications.[citation needed] This difficulty is not unique to train control. Interference, both man-made and natural, can at times affect the operation of any wireless system that relies on one frequency band. When such wireless systems are employed for real-time control networks it is very difficult to ensure that network performance will not sometimes be impacted. CSX encountered this problem when it experienced propagation ducting problems in its 900 MHz Advanced Train Control System (ATCS) network in the 1990s.[38] The ATCS protocol, which the AAR had recommended the FCC consider as PTC in 2000 (when AAR sought a nationwide 900 MHz "ribbon" license),[39] can support train control operation at both 900 MHz and 160 MHz.[40] The latter frequency band is only used for ATCS on a few subdivisions and shortlines. More recently, the industry had been moving toward a more robust multi-band radio solution for data applications such as PTC. In 2007, BNSF first won FRA approval for their original ETMS PTC system using a multi frequency-band radio.[41] In addition, in mid-2008, an FRA sponsored effort by the AAR to develop a Higher Performance Data Radio (HPDR) for use at 160 MHz actually resulted in a contract being awarded to Meteorcomm for a 4-band radio to be used for voice and data.[42] These more recent multi-band radio efforts were shelved in late 2008, after the Rail Safety Improvements Act became law, and the freights decided to pursue PTC using 220 MHz alone, in a single frequency-band configuration. Amtrak and most commuter operations quickly followed suit, selecting 220 MHz.[citation needed]

Suitability of wireless PTC for commuter rail edit

Soon after the Rail Safety Improvements Act was passed, many commuter railroads chose not to develop their own PTC protocol and instead decided to save time and money by using a protocol developed for either freight or long haul passenger (Amtrak) operations. Deploying such a protocol for urban commuter operation, where it will be necessary to support numerous, small, fast-moving trains, will be a challenge. It remains to be seen whether the performance envelope of PTC protocols developed and optimized for less numerous, slower and/or larger trains can support a more complex operational scenario, such as that of a commuter rail operation, without impacting on-time performance. Detailed and exhaustive protocol simulation testing can ease the risk of problems, however, there are too many variables, especially when the wireless component is considered, to guarantee beforehand that under certain worst-case operational profiles in certain locations, train operations will not be impacted. In fact, during system acceptance testing, such worst-case operational profiles may not even be tested because of the effort involved. One need only consider what it would take to identify the PTC protocol train capacity limitations at each interlocking of a large commuter rail operation when a train is broken down at the interlocking and 10–20 other trains are within communications range of a single wayside location. Such a what-if scenario may be tested at a few interlockings but not at the 30 or more interlockings on a large commuter property.[citation needed]

Open standards edit

A large group of industry experts from the federal government,[which?] manufacturers, railroads, and consultants are participating in a study group sponsored by the IEEE 802.15 working group, to look at using lessons learned in protocol development in the IEEE 802 suite to propose a comprehensive solution to the wireless component of PTC. While this effort may not significantly change the current United States PTC efforts already underway, an open standard could possibly provide a way forward for all of the railroads to eventually deploy a more interoperable, robust, reliable, future-proof, and scalable solution for the wireless component of PTC.[citation needed]

Upgrade costs edit

The railroad industry, like the process industry and the power utility industry, has always demanded that the return on investment for large capital investments associated with infrastructure improvements be fully realized before the asset is decommissioned and replaced. This paradigm will be applied to PTC as well. It is highly unlikely that there will be any major upgrades to initial PTC deployments within even the first 10 years. The calculation for return on investment is not a simple one and some railroads may determine, for instance after five years, that an upgrade of certain components of PTC may be justified. An example could be the radio component of PTC. If an open standard creates a less expensive radio product that is backwards compatible to existing systems and that perhaps improves PTC system performance and also includes improvements that save on operational costs, then a railroad would be prudent to consider a plan for replacing their PTC radios.[43]

Deployment edit

Alaska Railroad edit

Wabtec is working with the Alaska Railroad to develop a collision-avoidance, Vital PTC system, for use on their locomotives. The system is designed to prevent train-to-train collisions, enforce speed limits, and protect roadway workers and equipment. Wabtec's Electronic Train Management System, (ETMS) is also designed to work with the Wabtec TMDS dispatching system to provide train control and dispatching operations from Anchorage.[44]

Data between locomotive and dispatcher is transmitted over a digital radio system provided by Meteor Communications Corp (Meteorcomm). An onboard computer alerts workers to approaching restrictions and to stop the train if needed.[45]

Amtrak edit

Alstom's and PHW's Advanced Civil Speed Enforcement System (ACSES) system is installed on parts of Amtrak's Northeast Corridor between Washington and Boston. ACSES enhances the cab signaling systems provided by PHW Inc. It uses passive transponders to enforce permanent civil speed restrictions. The system is designed to prevent train-to-train collisions (PTS), protection against overspeed and protect work crews with temporary speed restrictions.[46][47]

GE Transportation Systems' Incremental Train Control System (ITCS) is installed on Amtrak's Michigan line, allowing trains to travel at 110 mph (180 km/h).[48]

The 2015 Philadelphia train derailment could have been prevented had positive train control been implemented correctly on the section of track that train was travelling. The overspeed warning/penalty commands were not set up on that particular section of track although it was set up elsewhere.[49]

Burlington Northern and Santa Fe (BNSF) edit

Wabtec's Electronic Train Management System, (ETMS) is installed on a segment of the BNSF Railway. It is an overlay technology that augments existing train control methods. ETMS uses GPS for positioning and a digital radio system to monitor train location and speed. It is designed to prevent certain types of accidents, including train collisions. The system includes an in-cab display screen that warns of a problem and then automatically stops the train if appropriate action is not taken.[50]

CSX edit

CSX Transportation is developing a Communications-Based Train Management (CBTM) system to improve the safety of its rail operations. CBTM is the predecessor to ETMS.[51]

Kansas City Southern (KCS) edit

Wabtec's Electronic Train Management System, (ETMS) will provide PTC solutions in conjunction with Wabtec's Train Management and Dispatch System (TMDS), which has served as KCS's dispatch solution since 2007, for all U.S. based rail operations along the KCS line. In January 2015, KCS began training personnel on PTC at its TEaM Training Center in Shreveport, La., with an initial class of 160 people.[52]

Massachusetts Bay Transportation Authority (MBTA) edit

Most MBTA Commuter Rail locomotives and cab cars, except for the 1625–1652 series Bombardier control cars and the (now retired) 1000–1017 series F40PH locomotives, are equipped with the PTC compliant ACSES technology which is installed on the Amtrak Northeast Corridor. All MBTA trains traveling on any segment of the Northeast Corridor must be equipped with functioning ACSES onboard apparatus, which affects trains on Providence/Stoughton Line, Franklin/Foxboro Line and Needham Line routings. The MBTA shut down some lines on weekends in 2017 and 2018 to meet a December 2020 federal deadline for full-system PTC.[53]

Metropolitan Transportation Authority (MTA) edit

In November 2013 the New York Metropolitan Transportation Authority signed a $428 million contract to install positive train control on the Long Island Rail Road and the Metro-North Railroad to a consortium of Bombardier Transportation Rail Control Solutions and Siemens Rail Automation.[54][55] The LIRR and Metro-North installations will include modifications and upgrades of the existing signal systems and the addition of ACSES II[46] equipment. Siemens stated that the PTC installation will be completed by December 2015, but missed that deadline,[56] and did not complete the installation until the end of 2020.[57]

New Jersey Transit (NJT) edit

Ansaldo STS USA Inc's Advanced Speed Enforcement System (ASES) is being installed on New Jersey Transit commuter lines. It is coordinated with Alstom's ACSES so that trains can operate on the Northeast Corridor.[26]

Norfolk Southern (NS) edit

Norfolk Southern Railway began work on the system in 2008 with Wabtec Railway electronics to start developing a plan implement Positive Train Control on NS rails. NS has already implemented PTC on 6,310 miles of track with plans to achieve it on 8,000 miles of track. NS has requested an extension on the time to have PTC active on its miles of track due to the need to work more on areas with no track signals, as well as making provisions for smaller railroads that the company does business with to be PTC capable. NS keeps experiencing issues with the system and wants to take the proper time to fix the system to ensure the safety of its employees and all others using their tracks. NS has been adding and updating its locomotives with PTC capable computers to allow those locomotives for use on mainlines. 2,900 locomotives out of the almost 4,000 the company has have been fitted with the PTC capable computers. NS plans to put at least 500 locomotives into storage using precision NS has been updating it trackside equipment such as radio towers and control point lighting to assist in PTC operations on the railroad. With the new computers on the locomotives it allows the locomotives to interact with each other and trackside systems. Norfolk Southern's General Electric Transportation locomotives are equipped with GPS to aid in the use of PTC. All of NS's locomotives are equipped with Energy Management a computer system that provides real time data on the locomotive. The system can also control train speed and brake systems on board. The EM system allows the locatives to use less fuel and be more efficient. NS's final goal is completely autonomous operations of their trains. This system will be used alongside Auto-router used to route train movements with little to no human interactions. With these two systems integrated with PTC it allows for more precise movement and train control across the railroad. NS, Union Pacific, CSXT, BNSF, and Virginia Railway Express have been testing interoperation to make sure each companies PTC systems work with each other to ensure safe railroad travel. For this a NS train on CSXT tracks has to act like a CSXT train would or vice versa. That requires the railroads to use the same communications and radio frequencies for everything to operate smoothly. Nearly 3,000 locomotives have been fitted with the PTC capable computers.[58][59][60][61]

Peninsula Corridor Joint Powers Board (Caltrain) edit

Caltrain's Communications Based Overlay Signal System (CBOSS) has been installed but not fully tested along the Peninsula Corridor between San Francisco, San Jose and Gilroy, California.[62] Caltrain had selected Parsons Transportation Group (PTG), who had been working on a similar system for Metrolink in Southern California, to implement, install, and test CBOSS in November 2011.[63] In February 2017, Caltrain's board canceled the contract with PTG for failure to meet the scheduled 2015 deadline.[64] PTG and Caltrain would go on to file lawsuits for breach of contract.[62][65] At its board of directors meeting on 1 March 2018, Caltrain announced that it will be awarding a contract to Wabtec for implementation of I-EMTS.[66]

Regional Transportation District (RTD) edit

Positive Train Control (PTC) and vehicle monitoring system technologies have been developed for the Denver Metro Area's new commuter train lines that began opening in 2016.[67] After the University of Colorado A Line opened on 22 April 2016 between Denver Union Station and Denver International Airport, it experienced a series of issues related to having to adjust the length of unpowered gaps between different overhead power sections, direct lightning strikes, snagging wires, and crossing signals behaving unexpectedly.[68] In response to the crossing issues, Denver Transit Partners, the contractor building and operating the A Line, stationed crossing guards at each place where the A line crosses local streets at grade, while it continued to explore software revisions and other fixes to address the underlying issues.[69] The FRA required frequent progress reports, but allowed RTD to open its B Line as originally scheduled on 25 July 2016,[70] because the B Line only has one at-grade crossing along its current route.[69] However, FRA halted testing on the longer G Line to Wheat Ridge – originally scheduled to open in Fall 2016 – until more progress could be shown resolving the A Line crossing issues.[71] G Line testing resumed in January 2018, though the A Line continued to operate under a waiver.[72] The G Line opened to passenger service on 26 April 2019.[73]

Sonoma-Marin Area Rail Transit (SMART) edit

Positive train control has been implemented at Sonoma–Marin Area Rail Transit's 63 crossings for the length of the initial 43-mile (69 km) passenger corridor which began regular service on 25 August 2017 after the FRA gave its final approval for SMART's PTC system.[74] SMART uses the E-ATC system for its PTC implementation.[75]

Southeastern Pennsylvania Transportation Authority (SEPTA) edit

SEPTA received approval from the FRA on 28 February 2016 to launch PTC on its Regional Rail lines.[76] On 18 April 2016, SEPTA launched PTC on the Warminster Line, the first line to use the system.[76][77] Over the course of 2016 and into 2017, PTC was rolled out onto different Regional Rail lines. On 1 May 2017, the Paoli/Thorndale Line, Trenton Line, and Wilmington/Newark Line (all of which run on Amtrak tracks) received PTC, the last of the Regional Rail lines to receive the system.[78]

Southern California Regional Rail Authority (Metrolink) edit

Metrolink, the Southern California commuter rail system involved in the 2008 Chatsworth train collision that provided the impetus for the Rail Safety Improvement Act of 2008, was the first passenger rail system to fully implement positive train control.[79] In October 2010, Metrolink awarded a $120 million contract to PTG to design, procure, and install PTC.[80] PTG designed a PTC system that used GPS technology informing position to on-board train computers, which communicate wirelessly with wayside signals and a central office.[81] Metrolink anticipated placing PTC in revenue service by summer 2013.[81] However, Parsons announced the FRA had authorized Metrolink to operate PTC RSD using Wabtec's I-ETMS in revenue service on the San Bernardino line in March 2015.[82] Metrolink announced PTC had been installed on all owned right-of-way miles by June 2015, and was working to install the system on tracks shared with Amtrak, freight, and other passenger rail partners.[83]

Union Pacific (UP) edit

In the 1990s, Union Pacific Railroad (UP) had a partnership project with General Electric to implement a similar system known as "Precision Train Control." This system would have involved moving block operation, which adjusts a "safe zone" around a train based on its speed and location. The similar abbreviations have sometimes caused confusion over the definition of the technology. GE later abandoned the Precision Train Control platform.[84]

In 2008, a team of Lockheed Martin, Wabtec, and Ansaldo STS USA Inc installed an ITCS subsystem on a 120-mile segment of UP track between Chicago and St. Louis. Other major software companies, such as PK Global, Tech Mahindra, are also some of the strategic IT partners in development of PTC systems.[85]

As of 31 December 2017, Union Pacific Installed 99 percent, or more than 17,000 miles, of total route miles with PTC signal hardware. Union Pacific has partially installed PTC hardware on about 98 percent of its 5,515 locomotives earmarked for the same technology and have equipped and commissioned 4,220 locomotives with PTC hardware and software. Union Pacific has also installed 100 percent of the wayside antennas needed to support PTC along the company's right of way.[86]

References edit

  1. ^ "Positive Train Control". Washington, D.C.: U.S. Federal Railroad Administration (FRA). Retrieved February 12, 2018.
  2. ^ "PTC System Information". FRA. Retrieved February 12, 2018.
  3. ^ "Steps Toward Full PTC System Implementation of Mandated Positive Train Control Systems; Based on Railroads' Self-reported Progress as of December 29, 2020". FRA. December 29, 2020.
  4. ^ (PDF). Lanham, MD: American Railway Engineering and Maintenance-of-Way Association (AREMA). 2009. AREMA 2009 Annual Conference & Exposition, Chicago, IL. Archived from the original (PDF) on August 9, 2011.
  5. ^ National Transportation Safety Board (NTSB), Washington, DC (2010). "Modifications to NTSB Most Wanted List; List of Transportation Safety Improvements after September 1990." 16 September 2008 at the Wayback Machine
  6. ^ NTSB (2010). "NTSB Most Wanted List of Transportation Safety Improvements – Implement Positive Train Control Systems." 7 October 2002 at the Wayback Machine
  7. ^ "Positive Train Control Systems". NTSB. February 27, 2013. Retrieved May 30, 2016. positive train separation (which was renamed positive train control in 2001) was first placed on the Safety Board's Most Wanted List
  8. ^ "Office of Safety Analysis". FRA. August 11, 2023.
  9. ^ Association of American Railroads, Washington, DC (2008-09-24). "Statement by Edward R. Hamberger, President and CEO Association of American Railroads on Passage of the Comprehensive Rail Safety Bill." Press release.
  10. ^ U.S. Rail Safety Improvement Act of 2008, Pub. L.Tooltip Public Law (United States) 110–432 (text) (PDF), 122 Stat. 4848, 49 U.S.C. § 20101. Approved 16 October 2008.
  11. ^ FRA (15 January 2010). "Positive Train Control Systems; Final rule." Federal Register. 75 FR 2598
  12. ^ FRA (2014-08-22). "Positive Train Control Systems (RRR)." 79 FR 49693
  13. ^ Federal Railroad Administration Should Report on Risks to the Successful Implementation of Mandated Safety Technology (PDF) (Report). Washington, DC: U.S. Government Accountability Office. December 2010. GAO-11-133.
  14. ^ a b "Most Commuter Rails Won't Meet Deadline For Mandated Safety Systems". NPR. June 3, 2015. Retrieved February 4, 2016.
  15. ^ Weikel, Dan (24 January 2014) "Metrolink to replace contractor to avoid train control project delays" Los Angeles Times
  16. ^ "An Introduction to Positive Train Control". Metrolink. Los Angeles, CA: Southern California Regional Rail Authority. Retrieved June 3, 2015.
  17. ^ Morris, David Z. (October 29, 2015). "All aboard after Congress votes to avert threatened train shutdown". Fortune.
  18. ^ . Washington Post. October 29, 2015. Archived from the original on March 8, 2019.
  19. ^ Wallace, Gregory (January 1, 2019). "Most US rail systems miss safety deadline". CNN.
  20. ^ George, Justin (December 29, 2020). "Automatic brake system installed on U.S. railroads ahead of federal deadline". The Washington Post. Retrieved September 10, 2021.
  21. ^ a b Eric Jaffe (July 31, 2013). "The Billion-Dollar Technology That May or May Not Prevent the Next Big Train Crash". The Atlantic. Retrieved August 28, 2013.
  22. ^ FRA (21 July 2009). "Positive Train Control Systems; Notice of proposed rulemaking." Federal Register. 74 FR 35950
  23. ^ Resor, Randolph R. (2004). "The Business Benefits of PTC." 20 September 2009 at the Wayback Machine{doubtful} Northwestern University Transportation Center, Evanston, IL.
  24. ^ Mann, Ted (June 17, 2013). "Rail Safety and the Value of a Life". Wall Street Journal.
  25. ^ a b Olson, R.T., Jr. (2007). "Incremental Train Control System On Amtrak's Michigan Line." Presentation at AREMA Annual Conference, 9–12 September 2007, Chicago, IL.
  26. ^ a b Vogler, John (2005). Symposium on Positive Train Control Systems 4 June 2011 at the Wayback Machine
  27. ^ Amtrak Employee Timetable #3, Northeast Region, Jan, 18th, 2010, p.351
  28. ^ Roskind, Frank D. (PDF). Federal Railroad Administration. Archived from the original (PDF) on July 24, 2009. Retrieved December 1, 2011.
  29. ^ Rousseau, Michel, et al. (2004)."LOCOLOC Project: Final Presentation." Noordwijk, December 2004.
  30. ^ Bandara, Damindra; Abadie, Andre; Melaragno, Tony; Wijesekara, Duminda (2014). "Providing Wireless Bandwidth for High-speed Rail Operations". Procedia Technology. 16: 186–191. doi:10.1016/j.protcy.2014.10.082.
  31. ^ Bandara, Damindra; Abadie, Andre; Wijesekara, Duminda (2015). "Cell Planning for High-Speed Train Operations in USA". 2015 Joint Rail Conference. doi:10.1115/JRC2015-5805. ISBN 978-0-7918-5645-1.
  32. ^ 2012 PTC World Congress, Arsenault, Richard (March 1, 2012). "Chief Council, FCC Mobility Division".
  33. ^ Bandara, Damindra; Melaragno, Tony; Wijesekara, Duminda; Costa, Paulo (2016). "Multi-Tiered Cognitive Radio Network for Positive Train Control Operations". 2016 Joint Rail Conference. doi:10.1115/JRC2016-5784. ISBN 978-0-7918-4967-5.
  34. ^ 2012 PTC World Congress, Holtz, Keith (February 29, 2012). "Deputy Chief Engineer, Communications and Signals".
  35. ^ "2012 PTC World Congress Survey". February 29, 2012.
  36. ^ Radio Amateurs of Canada. . rac.ca. Archived from the original on March 7, 2014. Retrieved June 10, 2014.
  37. ^ Radio Amateurs of Canada. . rac.ca. Archived from the original on March 7, 2014. Retrieved June 10, 2014.
  38. ^ Williams, Duard R.; Metzger, Barry R.; Richardson, Gregory R. (2001). "Spec 200 Radio Code Line Ducting – Cause and Effect" (PDF). AREMA.
  39. ^ A "ribbon" license authorizes use of radio frequency spectrum in a specified geographic area, e.g. along a railroad right-of-way. Federal Communications Commission, "In the Matter of Petition of Association of American Railroads (AAR) for Modification of Licenses For Use in Advanced Train Control Systems and Positive Train Control Systems". February 15, 2001.
  40. ^ Manual of Recommended Standards and Practices Section K-II Railway Communications. Association of American Railroads. 2002. pp. K–II–16 Section 3.1.3.7.1.1.
  41. ^ "MeteorComm Official Blog". meteorcomm.blogspot.com.
  42. ^ "MeteorComm Wins Next Generation Railroad Voice/Data Radio Development Project". PR.com.
  43. ^ Kenton, Malcolm. "After PTC". Trains. No. February 2021. Kalmbach. pp. 34–41.
  44. ^ (PDF). Archived from the original (PDF) on April 5, 2012. Retrieved February 4, 2016.
  45. ^ "Alaska Railroad to install positive train-control system". Progressive Railroading. August 27, 2003. Retrieved June 19, 2007.
  46. ^ a b (PDF). Archived from the original (PDF) on December 24, 2013. Retrieved December 23, 2013.
  47. ^ . Positive Train Control. Archived from the original on April 14, 2008. Retrieved April 20, 2019.
  48. ^ (PDF). General Electric press release. October 11, 2005. Archived from the original (PDF) on October 25, 2007. Retrieved September 21, 2007.
  49. ^ "As Train Crash Death Toll Reaches 7, GOP Votes to Cut Amtrak Budget by $250M & Delay Safety Upgrades". Democracy Now!. May 14, 2015. Retrieved May 14, 2015.
  50. ^ . American Public Transportation Association. January 22, 2007. Archived from the original on September 27, 2007. Retrieved June 19, 2007.
  51. ^ "Advances At CSX Intermodal". Forbes. July 13, 2006. Retrieved July 28, 2008.
  52. ^ "KCS PTC update: Data surveying and training underway". Railway Track & Structures. January 12, 2015. Retrieved January 13, 2015.
  53. ^ (PDF). Massachusetts Bay Transportation Authority. March 27, 2017. p. 6. Archived from the original (PDF) on March 31, 2017. Retrieved March 30, 2017.
  54. ^ . Archived from the original on December 19, 2013. Retrieved December 23, 2013.
  55. ^ . Archived from the original on December 24, 2013. Retrieved December 23, 2013.
  56. ^ Coyne, Matt (August 22, 2016). "Metro-North making little progress on positive train control, report shows". Poughkeepsie Journal.
  57. ^ "MTA Railroads Announce All Trains Operating in Positive Train Control, Critical Safety Technology". MTA. December 23, 2020. Retrieved February 25, 2022.
  58. ^ "Positive Train Control". Government Relations. Norfolk Southern. Retrieved August 20, 2023.
  59. ^ "Rail Insider-On a high-tech trek: Norfolk Southern notes progress in its quest to become a 'technology-enabled railroad of the future'. Information For Rail Career Professionals From Progressive Railroading Magazine". Progressive Railroading.
  60. ^ "What is positive train control ... and will it work?". Trains.[dead link]
  61. ^ "At Norfolk Southern, automation is driving information". Railway Age. December 12, 2018.
  62. ^ a b Renda, Matthew (March 6, 2017). "Caltrain, Safety Contractor Trade Lawsuits". Courthouse News Service. Retrieved April 6, 2017.
  63. ^ (PDF) (Press release). Parsons News. November 22, 2011. Archived from the original (PDF) on September 1, 2013. Retrieved March 31, 2017.
  64. ^ "Caltrain Terminates Contract with Parsons Transportation Group (PTG)" (Press release). Peninsula Corridor Joint Powers Board. February 24, 2017. from the original on March 20, 2017. Retrieved March 25, 2017.
  65. ^ Baldassari, Erin (March 1, 2017). "Caltrain fires contractor before testing of new safety system is completed". San Jose Mercury News. Retrieved April 4, 2017.
  66. ^ "Caltrain PTC Program Status & Wabtec Contract Award" (PDF). Caltrain. March 1, 2018. Retrieved March 5, 2018.
  67. ^ "Electric Commuter Rail Vehicle" (PDF). Rtd-fastracks.com. Retrieved February 4, 2016.
  68. ^ "What's Causing Delays With RTD's A Line To DIA?". Retrieved February 27, 2017.
  69. ^ a b "RTD gets 90-day extension from feds to fix airport-train crossing gates". Retrieved February 27, 2017.
  70. ^ "B Line to Westminster opens July 25". Retrieved February 27, 2017.
  71. ^ "RTD G-Line to Arvada, Wheat Ridge will be delayed — again". January 10, 2017. Retrieved February 27, 2017.
  72. ^ Boyd, Kirsten (December 14, 2018). "RTD says it will meet feds' deadline for A Line crossing fix to avoid possible service disruption". TheDenverChannel.com. Scripps TV Station Group. Retrieved February 21, 2019.
  73. ^ Wingerter, Meg (April 1, 2019). "RTD: Long-delayed G-Line from Denver to Wheat Ridge will open April 26". The Denver Post. Retrieved April 1, 2019.
  74. ^ . KSRO. April 14, 2016. Archived from the original on August 9, 2016. Retrieved June 15, 2016.
  75. ^ "FRA Awards More Than $200 Million for PTC Implementation" (Press release). Federal Railroad Administration. August 24, 2018. Retrieved February 27, 2020.
  76. ^ a b Laughlin, Jason (February 28, 2016). "Feds approve new SEPTA train-control safety system". The Philadelphia Inquirer. Retrieved May 22, 2016.
  77. ^ "Positive Train Control Update". SEPTA. April 28, 2016. Retrieved May 22, 2016.
  78. ^ "Positive Train Control Update". SEPTA. May 1, 2017. Retrieved May 17, 2017.
  79. ^ "Metrolink leads the nation with life-saving PTC technology". Southern California Regional Rail Authority. Retrieved April 7, 2017.
  80. ^ Vantuono, William C. (October 27, 2010). "Metrolink, Parsons first out of the gate with PTC". Railway Age. Retrieved April 7, 2017.
  81. ^ a b . Parsons. Archived from the original on April 8, 2017.
  82. ^ "Parsons' Positive Train Control to Launch on Metrolink's San Bernardino Rail Line" (Press release). Parsons. March 5, 2015. Retrieved April 7, 2017.
  83. ^ Weikel, Dan (June 24, 2015). "Safety system for Metrolink trains advances". Los Angeles Times. Retrieved April 7, 2017.
  84. ^ Lindsey, Ron (7 December 2010). "Really! You Gotta Let It Go." Strategic Railroading.
  85. ^ "Positive train control in transition". Progressive Railroading. October 2007. Retrieved December 21, 2016.
  86. ^ "Positive Train Control". Union Pacific. Retrieved August 20, 2023.

Further reading edit

  • Positive Train Control (PTC): Overview and Policy Issues, Congressional Research Service
  • Positive Train Control: Additional Authorities Could Benefit Implementation", Report to the Chairman, Committee on Commerce, Science, and Transportation, U.S. Senate, Government Accountability Office
  • "Communications-Based Signaling (CBS) – Vital PTC", Paper presented at AREMA C&S Technical Conference 22 May 2007
  • "Integration and Alignment of PTC Track Data with Legacy Dispatch Data to Reduce PTC Implementation Cost and Safety Risks", Paper presented at PTC World Congress 22 March 2016 Washington, D.C. Andrew Brant & Ken Xu

External links edit

  • Positive Train Control  – Federal Railroad Administration

positive, train, control, family, automatic, train, protection, systems, deployed, united, states, most, united, states, national, rail, network, mileage, form, these, systems, generally, designed, check, that, trains, moving, safely, stop, them, when, they, m. Positive train control PTC is a family of automatic train protection systems deployed in the United States 1 Most of the United States national rail network mileage has a form of PTC These systems are generally designed to check that trains are moving safely and to stop them when they are not 2 A Metrolink locomotive decal on an MP36PH 3C stating that it is equipped with positive train control technologyPositive train control restricts the train movement to an explicit allowance movement is halted upon invalidation A train operating under PTC receives a movement authority containing information about its location and where it is allowed to safely travel PTC was installed and operational on 100 of the statutory required trackage by December 29 2020 3 Contents 1 Overview 2 History 2 1 Background 2 2 Provisions of the law 2 3 Implementation 2 4 Criticism 3 Basic operation 3 1 PTC infrastructure 3 2 Locomotive speed control unit 3 3 Centralized control 3 4 Trackside device interface 3 5 Technical limitations 4 Wireless implementations 4 1 Radio spectrum availability 4 2 Radio band 4 3 Interoperability requirements 4 4 Multi band solutions 4 5 Suitability of wireless PTC for commuter rail 4 6 Open standards 4 7 Upgrade costs 5 Deployment 5 1 Alaska Railroad 5 2 Amtrak 5 3 Burlington Northern and Santa Fe BNSF 5 4 CSX 5 5 Kansas City Southern KCS 5 6 Massachusetts Bay Transportation Authority MBTA 5 7 Metropolitan Transportation Authority MTA 5 8 New Jersey Transit NJT 5 9 Norfolk Southern NS 5 10 Peninsula Corridor Joint Powers Board Caltrain 5 11 Regional Transportation District RTD 5 12 Sonoma Marin Area Rail Transit SMART 5 13 Southeastern Pennsylvania Transportation Authority SEPTA 5 14 Southern California Regional Rail Authority Metrolink 5 15 Union Pacific UP 6 References 7 Further reading 8 External linksOverview editThe American Railway Engineering and Maintenance of Way Association AREMA describes positive train control systems as having these primary functions Train separation or collision avoidance Line speed enforcement Temporary speed restriction enforcement Rail worker wayside safety Blind spot monitoring 4 History editBackground edit In the late 1980s interest in train protection solutions heightened after a period of stagnant investment and decline following World War II Starting in 1990 the United States National Transportation Safety Board NTSB counted PTC then known as positive train separation among its Most Wanted List of Transportation Safety Improvements 5 6 7 At the time the vast majority of rail lines in US relied upon crew members to comply with all safety rules and a significant fraction of accidents were attributable to human error as evidenced in several years of official reports from the Federal Railroad Administration FRA 8 In September 2008 Congress considered a new law that set a deadline of December 15 2015 for implementation of PTC technology across most of the US rail network The bill ushered through the legislative process by the Senate Commerce Committee and the House Transportation and Infrastructure Committee was drafted in response to the collision of a Metrolink passenger train and a Union Pacific freight train at September 12 2008 in Los Angeles which resulted in the deaths of 25 and injuries to more than 135 passengers As the bill neared final passage by Congress the Association of American Railroads AAR issued a statement in support of the bill 9 President George W Bush signed the 315 page Rail Safety Improvement Act of 2008 into law on October 16 2008 10 Provisions of the law edit Among its provisions the law provides funding to help pay for the development of PTC technology limits the number of hours freight rail crews can work each month and requires the Department of Transportation to determine work hour limits for passenger train crews Implementation edit This section needs to be updated Please help update this article to reflect recent events or newly available information June 2021 To implement the law the FRA published initial regulations for PTC systems on January 15 2010 11 The agency published amended regulations on August 22 2014 12 In December 2010 the Government Accountability Office GAO reported that Amtrak and the major Class I railroads have taken steps to install PTC systems under the law but commuter rail operators were not on track for the 2015 deadline 13 As of June 2015 update only seven commuter systems 29 percent of those represented by APTA were expecting to make the deadline Several factors have delayed implementation including the need to obtain funding which was not provided by Congress the time it has taken to design test make interoperable and manufacture the technology and the need to obtain radio spectrum along the entire rail network which involves FCC permission and in some cases negotiating with an existing owner for purchase or lease 14 The Metrolink commuter rail system in Southern California is planning to be the first US passenger carrier to install the technology on its entire system After some delays 15 demonstration PTC in revenue service began in February 2014 the system is expected to be completed in late summer 2015 16 In the Chicago metropolitan area the Metra system expected it will not be fully compliant with the PTC mandate until 2019 14 In October 2015 Congress has passed a bill extending the compliance deadline by three years to December 31 2018 President Barack Obama signed the bill on October 29 2015 17 18 Only four railroads met the December 2018 deadline the other 37 got extensions to December 2020 which was allowed under the law for railroads that demonstrated implementation progress 19 On December 29 2020 it was reported that the safeguards had been installed on all required railroads two days ahead of the deadline 20 Criticism edit This section needs to be updated The reason given is at least nine US train accidents with fatalities since 2012 See List of American railroad accidents 2010s Please help update this article to reflect recent events or newly available information June 2021 There is some controversy as to whether PTC makes sense in the form mandated by Congress Not only is the cost of nationwide PTC installation expected to be as much as US 6 22 billion most all of it borne by U S freight railroads 21 there are questions as to the reliability and maturity of the technology for all forms of mainline freight trains and high density environments 22 The PTC requirement could also impose startup barriers to new passenger rail or freight services that would trigger millions of dollars in additional PTC costs The unfunded mandate also ties the hands of the FRA to adopt a more nuanced or flexible approach to the adoption of PTC technology where it makes the most sense or where it is technically most feasible 21 While the FRA Rail Safety Advisory Committee identified several thousand PPAs PTC preventable accidents on US railroads over a 12 year period cost analysis determined that the accumulated savings to be realized from all of the accidents was not sufficient to cover the cost of PTC across the Class I railroads Therefore PTC was not economically justified at that time 23 The FRA concurred with this cost assessment in its 2009 PTC rulemaking document The reason behind the lack of economic justification is that the majority of accidents are minor and FRA crash worthiness standards help mitigate the potential loss of life or release of hazardous chemicals For example in the 20 years between 1987 and 2007 there were only two PTC preventable accidents with major loss of life in the United States 16 deaths in the Chase Maryland wreck 1987 and 11 in the Silver Spring Maryland wreck 1996 and in each case the causes of the accidents were addressed through changes to operating rules citation needed The cost of implementing PTC on up to 25 commuter rail services in the United States has been estimated at over 2 billion and because of these costs several services are having to cancel or reduce repairs capital improvements and service citation needed Other services simply do not have the funds available for PTC and have deferred action assuming some change from Congress citation needed Railroads that operate lines equipped with cab signalling and existing Automatic Train Control systems have argued that their proven track record of safety which goes back decades is being discounted because ATC is not as aggressive as PTC in all cases 24 Basic operation editA typical PTC system involves two basic components Speed display and control unit on the locomotive A method to dynamically inform the speed control unit of changing track or signal conditions 25 Optionally three additional components may exist An on board navigation system and track profile database to enforce fixed speed limits A bi directional data link to inform signaling equipment of the train s presence Centralized systems to directly issue movement authorities to trainsPTC infrastructure edit There are two main PTC implementation methods currently being developed The first makes use of fixed signaling infrastructure such as coded track circuits and wireless transponders to communicate with the onboard speed control unit The other makes use of wireless data radios spread out along the line to transmit the dynamic information The wireless implementation also allows for the train to transmit its location to the signaling system which could enable the use of moving or virtual blocks The wireless implementation is generally cheaper in terms of equipment costs but is considered to be much less reliable than using harder communications channels As of 2007 update for example the wireless ITCS system on Amtrak s Michigan Line was still not functioning reliably after 13 years of development 25 while the fixed ACSES system has been in daily service on the Northeast Corridor since 2002 see Amtrak below The fixed infrastructure method is proving popular on high density passenger lines where pulse code cab signaling has already been installed In some cases the lack of a reliance on wireless communications is being touted as a benefit 26 The wireless method has proven most successful on low density unsignaled dark territory normally controlled via track warrants where speeds are already low and interruptions in the wireless connection to the train do not tend to compromise safety or train operations Some systems like Amtrak s ACSES operate with a hybrid technology that uses wireless links to update temporary speed restrictions or pass certain signals with neither of these systems being critical for train operations Locomotive speed control unit edit The equipment on board the locomotive must continually calculate the train s current speed relative to a speed target some distance away governed by a braking curve If the train risks not being able to slow to the speed target given the braking curve the brakes are automatically applied and the train is immediately slowed The speed targets are updated by information regarding fixed and dynamic speed limits determined by the track profile and signaling system Most current PTC implementations also use the speed control unit to store a database of track profiles attached to some sort of navigation system The unit keeps track of the train s position along the rail line and automatically enforces any speed restrictions as well as the maximum authorized speed Temporary speed restrictions can be updated before the train departs its terminal or via wireless data links The track data can also be used to calculate braking curves based on the grade profile The navigation system can use fixed track beacons or differential GPS stations combined with wheel rotation to accurately determine the train s location on the line within a few feet Centralized control edit While some PTC systems interface directly with the existing signal system others may maintain a set of vital computer systems at a central location that can keep track of trains and issue movement authorities to them directly via a wireless data network This is often considered to be a form of Communications Based Train Control and is not a necessary part of PTC Trackside device interface edit The train may be able to detect the status of and sometimes control wayside devices for example switch positions This information is sent to the control center to further define the train s safe movements Text messages and alarm conditions may also be automatically and manually exchanged between the train and the control center Another capability would allow the employee in charge EIC to give trains permission to pass through their work zones via a wireless device instead of verbal communications Technical limitations edit Even where safety systems such as cab signaling have been present for many decades the freight railroad industry has been reluctant to fit speed control devices because the often heavy handed nature of such devices can have an adverse effect on otherwise safe train operation The advanced processor based speed control algorithms found in PTC systems claim to be able to properly regulate the speed of freight trains over 5 000 feet 1 500 m in length and weighing over 10 000 short tons 9 100 t but concerns remain about taking the final decision out of the hands of skilled railroad engineers Improper use of the air brake can lead to a train running away derailment or to an unexpected separation citation needed Furthermore an overly conservative PTC system runs the risk of slowing trains below the level at which they had previously been safely operated by human engineers Railway speeds are calculated with a safety factor such that slight excesses in speed will not result in an accident If a PTC system applies its own safety margin then the end result will be an inefficient double safety factor Moreover a PTC system might be unable to account for variations in weather conditions or train handling and might have to assume a worst case scenario further decreasing performance 27 In its 2009 regulatory filing the FRA stated that PTC was in fact likely to decrease the capacity of freight railroads on many main lines 28 The European LOCOPROL LOCOLOC project had shown that EGNOS enhanced satellite navigation alone was unable to meet the SIL4 safety integrity required for train signaling 29 From a purely technical standpoint PTC will not prevent certain low speed collisions caused by permissive block operation accidents caused by shoving reversing with inadequate observation derailments caused by track or train defect grade crossing collisions or collisions with previously derailed trains Where PTC is installed in the absence of track circuit blocks it will not detect broken rails flooded tracks or dangerous debris fouling the line Wireless implementations editThis section is written like a personal reflection personal essay or argumentative essay that states a Wikipedia editor s personal feelings or presents an original argument about a topic Please help improve it by rewriting it in an encyclopedic style February 2022 Learn how and when to remove this template message Radio spectrum availability edit The wireless infrastructure planned for use by all US Class I freights most small freight railroads and many commuter railroads is based on data radios operating in a single frequency band near 220 MHz A consortium created by two freight railroads called PTC 220 LLC has purchased significant spectrum around 220 MHz from previous licensees for use in deploying PTC Some of this spectrum is in the form of nationwide licenses and some is not The consortium plans to make this spectrum available for use by the US freights but has indicated as recently as 2011 that they are unsure if they have enough spectrum to meet their needs Several commuter railroads have begun purchasing 220 MHz spectrum in their geographic areas but there is widespread concern that the acquisition of enough 220 MHz spectrum may be difficult to accomplish because of a lack of availability difficulties in negotiating complex multi party deals to gain enough adjacent spectrum and because the financial cost of the acquisitions may make the task impossible for some state agencies However research suggests that dynamic spectrum allocation can solve the spectrum allocation problem at 220 MHz bandwidth 30 31 Many of the railroads have requested that the FCC reallocate parts of the 220 MHz spectrum to them They argue that they must have 220 MHz spectrum to be interoperable with each other The FCC has stated that there is no reallocation forthcoming that the railroads are not justified in requesting spectrum reallocation because they have not quantified how much spectrum they need and that the railroads should seek spectrum in the secondary 220 MHz markets or in other bands 32 Radio band edit There are no regulatory or technical requirements that demand that 220 MHz be used to implement PTC if a PTC implementation is to use wireless components at all If wireless data transmission is necessary there are a few advantages to the 220 MHz spectrum provided it can be acquired at a reasonable cost The first reason to consider using 220 MHz spectrum is PTC interoperability for freights and for some but not all commuter rail operations Freight operations in the US often include the sharing of railroad tracks where one railroad s rail vehicles operate as a guest on another railroad s host tracks Implementing PTC in such an environment is most easily achieved by using the same PTC equipment and this includes radios and the associated radio spectrum When a commuter railroad operation must operate on a freight railroad territory the commuter will most likely be required to install PTC equipment including a radio on their rail vehicle that is compliant with the freight railroad s PTC system and this generally means the use of 220 MHz radios and spectrum If the commuter uses the same PTC equipment radios and spectrum on their own property they will be able to use it when their vehicles travel onto a freight s territory From a practical standpoint if the commuter instead elects to use another type of PTC on their own property they will need to install a second set of onboard equipment so they can operate PTC on their own property while also operating PTC on a freight s property If a multi band radio such as the current generation software defined radios is not available then separate radios and separate antennas will be necessary With the complexity of track geometries PTC requires a variable amount of the spectrum in a time critical manner One way to achieve this is to extend the PTC software defined radios such that it has the intelligence to allocate the spectrum dynamically Adding the intelligence to the radio also helps to improve the security of the PTC communication medium 33 If a small freight or commuter railroad does not operate on another railroad territory then there is no interoperability based reason that obligates them to use 220 MHz spectrum to implement PTC In addition if a small freight or commuter railroad only operates on their own territory and hosts other guest railroads freight or other passenger rail there is still no interoperability based reason the host is obliged to use 220 MHz spectrum to implement PTC Such a railroad could implement PTC by freely picking any radio spectrum and requiring the guest railroads to either install compliant PTC equipment including radios on board their trains or provide wayside equipment for their guest PTC implementation to be installed on the host railroad property An interesting case that highlights some of these issues is the northeast corridor Amtrak operates services on two commuter rail properties it does not own Metro North Railroad owned by New York and Connecticut and Massachusetts Bay Transportation Authority MBTA owned by Massachusetts In theory Amtrak could have found themselves installing their own PTC system on these host properties about 15 percent of the corridor or worse found themselves in the ridiculous position of trying to install three different PTC systems on each Amtrak train to traverse the commuter properties This was not the case Amtrak had a significant head start over the commuter rail agencies on the corridor in implementing PTC They spent a considerable amount of time in research and development and won early approvals for their ACSES system on the northeast corridor with the FRA They chose first to use 900 MHz and then later moved to 220 MHz in part because of a perceived improvement in radio system performance and in part because Amtrak was using 220 MHz in Michigan for their ITCS implementation 34 When the commuter agencies on the corridor looked at options for implementing PTC many of them chose to take advantage of the advance work Amtrak had done and implement the ACSES solution using 220 MHz Amtrak s early work paid off and meant that they would be traversing commuter properties that installed the same protocol at the same frequency making them all interoperable Actually most of the Northeast Corridor is owned and operated by Amtrak not the commuter properties including the tracks from Washington D C to New York Penn Station and the tracks from Philadelphia to Harrisburg Pennsylvania The State of Massachusetts owns the tracks from the Rhode Island state line to the New Hampshire state line but Amtrak operates these lines Only the line between New York City and New Haven Connecticut is actually owned and operated by a commuter line One other perceived reason to consider 220 MHz for PTC may be PTC compatible radio equipment availability Radio equipment specifically targeted toward PTC is currently only available from a limited number of vendors and they are focused only on 220 MHz One radio vendor in particular Meteorcomm LLC is able to support the I ETMS PTC protocol with a 220 MHz radio Meteorcomm is jointly owned by several of the Class I freights and some in the industry have indicated that using their 220 MHz radio and associated equipment will be done on a per site licensing basis Recurring fees may be associated with this process too There is further concern that the buy in and licensing fees will be significant and this has led some to speculate that the owners of Meteorcomm the freights may have legal exposure to anti trust violations citation needed For many railroads there is no other practical option to meet the federal mandate than to install PTC at 220 MHz using I ETMS with the Meteorcomm radios On the northeast corridor another radio vendor GE MDS is able to support the Amtrak ACSES protocol with a 220 MHz radio It should be stressed that the main concern among the freights regarding the PTC deadline is the availability of PTC equipment 35 With an eye to anti trust issues and ready radio availability Meteorcomm radio designs have been second sourced to CalAmp radios This all may mean that there is not enough 220 MHz PTC radio equipment available for all of the railroads that must implement PTC citation needed There are also issues with the use of these frequencies outside the US in Canada 220 MHz remains part of the radioamateur 1 25 metre band 36 37 Other bands besides 220 MHz will support PTC and have been used to win approvals from the FRA for PTC When Amtrak received their initial approval they planned to use 900 MHz frequencies for ACSES BNSF Railway won its first PTC approvals from the FRA for an early version of ETMS using a multi band radio that included 45 MHz frequencies 160 MHz frequencies 900 MHz frequencies and WiFi A small freight or commuter that selects one or more of these bands or another one such as 450 MHz might find it easier to acquire spectrum They will need to research spectrum issues radio equipment antennas and protocol compatibility issues to successfully deploy PTC citation needed Interoperability requirements edit There is no single defined standard for interoperable PTC systems Several examples of interoperable systems illustrate this point First the UP and BNSF are interoperable across their systems They are both implementing I ETMS and will use different radio frequencies in different locations citation needed In the second example Amtrak is interoperable with Norfolk Southern in Michigan Amtrak uses ITCS while Norfolk Southern uses I ETMS To interoperate two 220 MHz radios are installed in each wayside location and they both interface with a common PTC system through an interface device similar to a network gateway or protocol converter at each wayside location One radio talks to freight trains using I ETMS and one radio talks to passenger trains using ITCS In this case interoperability stops at the wayside and does not include the wireless segment out to the rail vehicles or the onboard systems In the third example similar to the first Metrolink the commuter rail agency in Los Angeles is implementing I ETMS and will use the same PTC equipment as both the UP and BNSF Metrolink is procuring their own 220 MHz spectrum so that trains on Metrolink territory commuter and freight will use other channels than those used by the UP and BNSF Interoperability is achieved by directing the onboard radio to change channels depending on location citation needed For SEPTA the commuter operation in and around Philadelphia Ansaldo is implementing ACSES the Amtrak northeast corridor PTC protocol For CSX all the ACSES PTC transactions will be handed to CSX at the SEPTA back office and CSX will be responsible for deploying I ETMS infrastructure that they will use to communicate with their freight trains The SEPTA interoperability model is very similar to that of the public safety radio community wherein different radio systems that use different frequencies and protocols are cross connected only in the back office to support system to system communications citation needed Multi band solutions edit For the major freight railroads and Amtrak the answer seems to be that one frequency band is sufficient These rail operations measure on time performance on a much more coarse scale than commuters do so their tolerance for delay is greater and has less impact on train schedules citation needed In addition the PTC implementations deployed by commuter operations will be running much closer to the performance envelope than that of either Amtrak or the freights For commuters in particular there is therefore some concern that implementing PTC with a single frequency band may not be sufficient The single frequency band approach to supporting real time train control has a history of being difficult to use for such applications citation needed This difficulty is not unique to train control Interference both man made and natural can at times affect the operation of any wireless system that relies on one frequency band When such wireless systems are employed for real time control networks it is very difficult to ensure that network performance will not sometimes be impacted CSX encountered this problem when it experienced propagation ducting problems in its 900 MHz Advanced Train Control System ATCS network in the 1990s 38 The ATCS protocol which the AAR had recommended the FCC consider as PTC in 2000 when AAR sought a nationwide 900 MHz ribbon license 39 can support train control operation at both 900 MHz and 160 MHz 40 The latter frequency band is only used for ATCS on a few subdivisions and shortlines More recently the industry had been moving toward a more robust multi band radio solution for data applications such as PTC In 2007 BNSF first won FRA approval for their original ETMS PTC system using a multi frequency band radio 41 In addition in mid 2008 an FRA sponsored effort by the AAR to develop a Higher Performance Data Radio HPDR for use at 160 MHz actually resulted in a contract being awarded to Meteorcomm for a 4 band radio to be used for voice and data 42 These more recent multi band radio efforts were shelved in late 2008 after the Rail Safety Improvements Act became law and the freights decided to pursue PTC using 220 MHz alone in a single frequency band configuration Amtrak and most commuter operations quickly followed suit selecting 220 MHz citation needed Suitability of wireless PTC for commuter rail edit Soon after the Rail Safety Improvements Act was passed many commuter railroads chose not to develop their own PTC protocol and instead decided to save time and money by using a protocol developed for either freight or long haul passenger Amtrak operations Deploying such a protocol for urban commuter operation where it will be necessary to support numerous small fast moving trains will be a challenge It remains to be seen whether the performance envelope of PTC protocols developed and optimized for less numerous slower and or larger trains can support a more complex operational scenario such as that of a commuter rail operation without impacting on time performance Detailed and exhaustive protocol simulation testing can ease the risk of problems however there are too many variables especially when the wireless component is considered to guarantee beforehand that under certain worst case operational profiles in certain locations train operations will not be impacted In fact during system acceptance testing such worst case operational profiles may not even be tested because of the effort involved One need only consider what it would take to identify the PTC protocol train capacity limitations at each interlocking of a large commuter rail operation when a train is broken down at the interlocking and 10 20 other trains are within communications range of a single wayside location Such a what if scenario may be tested at a few interlockings but not at the 30 or more interlockings on a large commuter property citation needed Open standards edit A large group of industry experts from the federal government which manufacturers railroads and consultants are participating in a study group sponsored by the IEEE 802 15 working group to look at using lessons learned in protocol development in the IEEE 802 suite to propose a comprehensive solution to the wireless component of PTC While this effort may not significantly change the current United States PTC efforts already underway an open standard could possibly provide a way forward for all of the railroads to eventually deploy a more interoperable robust reliable future proof and scalable solution for the wireless component of PTC citation needed Upgrade costs edit The railroad industry like the process industry and the power utility industry has always demanded that the return on investment for large capital investments associated with infrastructure improvements be fully realized before the asset is decommissioned and replaced This paradigm will be applied to PTC as well It is highly unlikely that there will be any major upgrades to initial PTC deployments within even the first 10 years The calculation for return on investment is not a simple one and some railroads may determine for instance after five years that an upgrade of certain components of PTC may be justified An example could be the radio component of PTC If an open standard creates a less expensive radio product that is backwards compatible to existing systems and that perhaps improves PTC system performance and also includes improvements that save on operational costs then a railroad would be prudent to consider a plan for replacing their PTC radios 43 Deployment editAlaska Railroad edit Wabtec is working with the Alaska Railroad to develop a collision avoidance Vital PTC system for use on their locomotives The system is designed to prevent train to train collisions enforce speed limits and protect roadway workers and equipment Wabtec s Electronic Train Management System ETMS is also designed to work with the Wabtec TMDS dispatching system to provide train control and dispatching operations from Anchorage 44 Data between locomotive and dispatcher is transmitted over a digital radio system provided by Meteor Communications Corp Meteorcomm An onboard computer alerts workers to approaching restrictions and to stop the train if needed 45 Amtrak edit Alstom s and PHW s Advanced Civil Speed Enforcement System ACSES system is installed on parts of Amtrak s Northeast Corridor between Washington and Boston ACSES enhances the cab signaling systems provided by PHW Inc It uses passive transponders to enforce permanent civil speed restrictions The system is designed to prevent train to train collisions PTS protection against overspeed and protect work crews with temporary speed restrictions 46 47 GE Transportation Systems Incremental Train Control System ITCS is installed on Amtrak s Michigan line allowing trains to travel at 110 mph 180 km h 48 The 2015 Philadelphia train derailment could have been prevented had positive train control been implemented correctly on the section of track that train was travelling The overspeed warning penalty commands were not set up on that particular section of track although it was set up elsewhere 49 Burlington Northern and Santa Fe BNSF edit Wabtec s Electronic Train Management System ETMS is installed on a segment of the BNSF Railway It is an overlay technology that augments existing train control methods ETMS uses GPS for positioning and a digital radio system to monitor train location and speed It is designed to prevent certain types of accidents including train collisions The system includes an in cab display screen that warns of a problem and then automatically stops the train if appropriate action is not taken 50 CSX edit CSX Transportation is developing a Communications Based Train Management CBTM system to improve the safety of its rail operations CBTM is the predecessor to ETMS 51 Kansas City Southern KCS edit Wabtec s Electronic Train Management System ETMS will provide PTC solutions in conjunction with Wabtec s Train Management and Dispatch System TMDS which has served as KCS s dispatch solution since 2007 for all U S based rail operations along the KCS line In January 2015 KCS began training personnel on PTC at its TEaM Training Center in Shreveport La with an initial class of 160 people 52 Massachusetts Bay Transportation Authority MBTA edit Most MBTA Commuter Rail locomotives and cab cars except for the 1625 1652 series Bombardier control cars and the now retired 1000 1017 series F40PH locomotives are equipped with the PTC compliant ACSES technology which is installed on the Amtrak Northeast Corridor All MBTA trains traveling on any segment of the Northeast Corridor must be equipped with functioning ACSES onboard apparatus which affects trains on Providence Stoughton Line Franklin Foxboro Line and Needham Line routings The MBTA shut down some lines on weekends in 2017 and 2018 to meet a December 2020 federal deadline for full system PTC 53 Metropolitan Transportation Authority MTA edit In November 2013 the New York Metropolitan Transportation Authority signed a 428 million contract to install positive train control on the Long Island Rail Road and the Metro North Railroad to a consortium of Bombardier Transportation Rail Control Solutions and Siemens Rail Automation 54 55 The LIRR and Metro North installations will include modifications and upgrades of the existing signal systems and the addition of ACSES II 46 equipment Siemens stated that the PTC installation will be completed by December 2015 but missed that deadline 56 and did not complete the installation until the end of 2020 57 New Jersey Transit NJT edit Ansaldo STS USA Inc s Advanced Speed Enforcement System ASES is being installed on New Jersey Transit commuter lines It is coordinated with Alstom s ACSES so that trains can operate on the Northeast Corridor 26 Norfolk Southern NS edit Norfolk Southern Railway began work on the system in 2008 with Wabtec Railway electronics to start developing a plan implement Positive Train Control on NS rails NS has already implemented PTC on 6 310 miles of track with plans to achieve it on 8 000 miles of track NS has requested an extension on the time to have PTC active on its miles of track due to the need to work more on areas with no track signals as well as making provisions for smaller railroads that the company does business with to be PTC capable NS keeps experiencing issues with the system and wants to take the proper time to fix the system to ensure the safety of its employees and all others using their tracks NS has been adding and updating its locomotives with PTC capable computers to allow those locomotives for use on mainlines 2 900 locomotives out of the almost 4 000 the company has have been fitted with the PTC capable computers NS plans to put at least 500 locomotives into storage using precision NS has been updating it trackside equipment such as radio towers and control point lighting to assist in PTC operations on the railroad With the new computers on the locomotives it allows the locomotives to interact with each other and trackside systems Norfolk Southern s General Electric Transportation locomotives are equipped with GPS to aid in the use of PTC All of NS s locomotives are equipped with Energy Management a computer system that provides real time data on the locomotive The system can also control train speed and brake systems on board The EM system allows the locatives to use less fuel and be more efficient NS s final goal is completely autonomous operations of their trains This system will be used alongside Auto router used to route train movements with little to no human interactions With these two systems integrated with PTC it allows for more precise movement and train control across the railroad NS Union Pacific CSXT BNSF and Virginia Railway Express have been testing interoperation to make sure each companies PTC systems work with each other to ensure safe railroad travel For this a NS train on CSXT tracks has to act like a CSXT train would or vice versa That requires the railroads to use the same communications and radio frequencies for everything to operate smoothly Nearly 3 000 locomotives have been fitted with the PTC capable computers 58 59 60 61 Peninsula Corridor Joint Powers Board Caltrain edit Caltrain s Communications Based Overlay Signal System CBOSS has been installed but not fully tested along the Peninsula Corridor between San Francisco San Jose and Gilroy California 62 Caltrain had selected Parsons Transportation Group PTG who had been working on a similar system for Metrolink in Southern California to implement install and test CBOSS in November 2011 63 In February 2017 Caltrain s board canceled the contract with PTG for failure to meet the scheduled 2015 deadline 64 PTG and Caltrain would go on to file lawsuits for breach of contract 62 65 At its board of directors meeting on 1 March 2018 Caltrain announced that it will be awarding a contract to Wabtec for implementation of I EMTS 66 Regional Transportation District RTD edit Positive Train Control PTC and vehicle monitoring system technologies have been developed for the Denver Metro Area s new commuter train lines that began opening in 2016 67 After the University of Colorado A Line opened on 22 April 2016 between Denver Union Station and Denver International Airport it experienced a series of issues related to having to adjust the length of unpowered gaps between different overhead power sections direct lightning strikes snagging wires and crossing signals behaving unexpectedly 68 In response to the crossing issues Denver Transit Partners the contractor building and operating the A Line stationed crossing guards at each place where the A line crosses local streets at grade while it continued to explore software revisions and other fixes to address the underlying issues 69 The FRA required frequent progress reports but allowed RTD to open its B Line as originally scheduled on 25 July 2016 70 because the B Line only has one at grade crossing along its current route 69 However FRA halted testing on the longer G Line to Wheat Ridge originally scheduled to open in Fall 2016 until more progress could be shown resolving the A Line crossing issues 71 G Line testing resumed in January 2018 though the A Line continued to operate under a waiver 72 The G Line opened to passenger service on 26 April 2019 73 Sonoma Marin Area Rail Transit SMART edit Positive train control has been implemented at Sonoma Marin Area Rail Transit s 63 crossings for the length of the initial 43 mile 69 km passenger corridor which began regular service on 25 August 2017 after the FRA gave its final approval for SMART s PTC system 74 SMART uses the E ATC system for its PTC implementation 75 Southeastern Pennsylvania Transportation Authority SEPTA edit SEPTA received approval from the FRA on 28 February 2016 to launch PTC on its Regional Rail lines 76 On 18 April 2016 SEPTA launched PTC on the Warminster Line the first line to use the system 76 77 Over the course of 2016 and into 2017 PTC was rolled out onto different Regional Rail lines On 1 May 2017 the Paoli Thorndale Line Trenton Line and Wilmington Newark Line all of which run on Amtrak tracks received PTC the last of the Regional Rail lines to receive the system 78 Southern California Regional Rail Authority Metrolink edit Metrolink the Southern California commuter rail system involved in the 2008 Chatsworth train collision that provided the impetus for the Rail Safety Improvement Act of 2008 was the first passenger rail system to fully implement positive train control 79 In October 2010 Metrolink awarded a 120 million contract to PTG to design procure and install PTC 80 PTG designed a PTC system that used GPS technology informing position to on board train computers which communicate wirelessly with wayside signals and a central office 81 Metrolink anticipated placing PTC in revenue service by summer 2013 81 However Parsons announced the FRA had authorized Metrolink to operate PTC RSD using Wabtec s I ETMS in revenue service on the San Bernardino line in March 2015 82 Metrolink announced PTC had been installed on all owned right of way miles by June 2015 and was working to install the system on tracks shared with Amtrak freight and other passenger rail partners 83 Union Pacific UP edit In the 1990s Union Pacific Railroad UP had a partnership project with General Electric to implement a similar system known as Precision Train Control This system would have involved moving block operation which adjusts a safe zone around a train based on its speed and location The similar abbreviations have sometimes caused confusion over the definition of the technology GE later abandoned the Precision Train Control platform 84 In 2008 a team of Lockheed Martin Wabtec and Ansaldo STS USA Inc installed an ITCS subsystem on a 120 mile segment of UP track between Chicago and St Louis Other major software companies such as PK Global Tech Mahindra are also some of the strategic IT partners in development of PTC systems 85 As of 31 December 2017 update Union Pacific Installed 99 percent or more than 17 000 miles of total route miles with PTC signal hardware Union Pacific has partially installed PTC hardware on about 98 percent of its 5 515 locomotives earmarked for the same technology and have equipped and commissioned 4 220 locomotives with PTC hardware and software Union Pacific has also installed 100 percent of the wayside antennas needed to support PTC along the company s right of way 86 References edit Positive Train Control Washington D C U S Federal Railroad Administration FRA Retrieved February 12 2018 PTC System Information FRA Retrieved February 12 2018 Steps Toward Full PTC System Implementation of Mandated Positive Train Control Systems Based on Railroads Self reported Progress as of December 29 2020 FRA December 29 2020 Meeting the Communication Challenges for Positive Train Control PDF Lanham MD American Railway Engineering and Maintenance of Way Association AREMA 2009 AREMA 2009 Annual Conference amp Exposition Chicago IL Archived from the original PDF on August 9 2011 National Transportation Safety Board NTSB Washington DC 2010 Modifications to NTSB Most Wanted List List of Transportation Safety Improvements after September 1990 Archived 16 September 2008 at the Wayback Machine NTSB 2010 NTSB Most Wanted List of Transportation Safety Improvements Implement Positive Train Control Systems Archived 7 October 2002 at the Wayback Machine Positive Train Control Systems NTSB February 27 2013 Retrieved May 30 2016 positive train separation which was renamed positive train control in 2001 was first placed on the Safety Board s Most Wanted List Office of Safety Analysis FRA August 11 2023 Association of American Railroads Washington DC 2008 09 24 Statement by Edward R Hamberger President and CEO Association of American Railroads on Passage of the Comprehensive Rail Safety Bill Press release U S Rail Safety Improvement Act of 2008 Pub L Tooltip Public Law United States 110 432 text PDF 122 Stat 4848 49 U S C 20101 Approved 16 October 2008 FRA 15 January 2010 Positive Train Control Systems Final rule Federal Register 75 FR 2598 FRA 2014 08 22 Positive Train Control Systems RRR 79 FR 49693 Federal Railroad Administration Should Report on Risks to the Successful Implementation of Mandated Safety Technology PDF Report Washington DC U S Government Accountability Office December 2010 GAO 11 133 a b Most Commuter Rails Won t Meet Deadline For Mandated Safety Systems NPR June 3 2015 Retrieved February 4 2016 Weikel Dan 24 January 2014 Metrolink to replace contractor to avoid train control project delays Los Angeles Times An Introduction to Positive Train Control Metrolink Los Angeles CA Southern California Regional Rail Authority Retrieved June 3 2015 Morris David Z October 29 2015 All aboard after Congress votes to avert threatened train shutdown Fortune Obama signs short term transportation bill Washington Post October 29 2015 Archived from the original on March 8 2019 Wallace Gregory January 1 2019 Most US rail systems miss safety deadline CNN George Justin December 29 2020 Automatic brake system installed on U S railroads ahead of federal deadline The Washington Post Retrieved September 10 2021 a b Eric Jaffe July 31 2013 The Billion Dollar Technology That May or May Not Prevent the Next Big Train Crash The Atlantic Retrieved August 28 2013 FRA 21 July 2009 Positive Train Control Systems Notice of proposed rulemaking Federal Register 74 FR 35950 Resor Randolph R 2004 The Business Benefits of PTC Archived 20 September 2009 at the Wayback Machine doubtful Northwestern University Transportation Center Evanston IL Mann Ted June 17 2013 Rail Safety and the Value of a Life Wall Street Journal a b Olson R T Jr 2007 Incremental Train Control System On Amtrak s Michigan Line Presentation at AREMA Annual Conference 9 12 September 2007 Chicago IL a b Vogler John 2005 Symposium on Positive Train Control Systems Archived 4 June 2011 at the Wayback Machine Amtrak Employee Timetable 3 Northeast Region Jan 18th 2010 p 351 Roskind Frank D Positive Train Control Systems Economic Analysis PDF Federal Railroad Administration Archived from the original PDF on July 24 2009 Retrieved December 1 2011 Rousseau Michel et al 2004 LOCOLOC Project Final Presentation Noordwijk December 2004 Bandara Damindra Abadie Andre Melaragno Tony Wijesekara Duminda 2014 Providing Wireless Bandwidth for High speed Rail Operations Procedia Technology 16 186 191 doi 10 1016 j protcy 2014 10 082 Bandara Damindra Abadie Andre Wijesekara Duminda 2015 Cell Planning for High Speed Train Operations in USA 2015 Joint Rail Conference doi 10 1115 JRC2015 5805 ISBN 978 0 7918 5645 1 2012 PTC World Congress Arsenault Richard March 1 2012 Chief Council FCC Mobility Division Bandara Damindra Melaragno Tony Wijesekara Duminda Costa Paulo 2016 Multi Tiered Cognitive Radio Network for Positive Train Control Operations 2016 Joint Rail Conference doi 10 1115 JRC2016 5784 ISBN 978 0 7918 4967 5 2012 PTC World Congress Holtz Keith February 29 2012 Deputy Chief Engineer Communications and Signals 2012 PTC World Congress Survey February 29 2012 Radio Amateurs of Canada 220 MHz Band Plan rac ca Archived from the original on March 7 2014 Retrieved June 10 2014 Radio Amateurs of Canada 220 MHz 1 25m Information rac ca Archived from the original on March 7 2014 Retrieved June 10 2014 Williams Duard R Metzger Barry R Richardson Gregory R 2001 Spec 200 Radio Code Line Ducting Cause and Effect PDF AREMA A ribbon license authorizes use of radio frequency spectrum in a specified geographic area e g along a railroad right of way Federal Communications Commission In the Matter of Petition of Association of American Railroads AAR for Modification of Licenses For Use in Advanced Train Control Systems and Positive Train Control Systems February 15 2001 Manual of Recommended Standards and Practices Section K II Railway Communications Association of American Railroads 2002 pp K II 16 Section 3 1 3 7 1 1 MeteorComm Official Blog meteorcomm blogspot com MeteorComm Wins Next Generation Railroad Voice Data Radio Development Project PR com Kenton Malcolm After PTC Trains No February 2021 Kalmbach pp 34 41 Alaska Railroad PDF Archived from the original PDF on April 5 2012 Retrieved February 4 2016 Alaska Railroad to install positive train control system Progressive Railroading August 27 2003 Retrieved June 19 2007 a b ACSES II Advanced Civil Speed Enforcement System PDF Archived from the original PDF on December 24 2013 Retrieved December 23 2013 PHW Inc Positive Train Control Products Positive Train Control Archived from the original on April 14 2008 Retrieved April 20 2019 AGE s Positive Train Control Technology is Full Speed Ahead on Amtrak s Michigan Line PDF General Electric press release October 11 2005 Archived from the original PDF on October 25 2007 Retrieved September 21 2007 As Train Crash Death Toll Reaches 7 GOP Votes to Cut Amtrak Budget by 250M amp Delay Safety Upgrades Democracy Now May 14 2015 Retrieved May 14 2015 FRA Approves Positive Train Control System at BNSF American Public Transportation Association January 22 2007 Archived from the original on September 27 2007 Retrieved June 19 2007 Advances At CSX Intermodal Forbes July 13 2006 Retrieved July 28 2008 KCS PTC update Data surveying and training underway Railway Track amp Structures January 12 2015 Retrieved January 13 2015 Commuter Rail Positive Train Control PTC Update and Communications Plan for Suspension of Weekend Service PDF Massachusetts Bay Transportation Authority March 27 2017 p 6 Archived from the original PDF on March 31 2017 Retrieved March 30 2017 Siemens Bombardier pair on NYMTA PTC Archived from the original on December 19 2013 Retrieved December 23 2013 Bombardier Strengthens Presence in North American Rail Control Sector Archived from the original on December 24 2013 Retrieved December 23 2013 Coyne Matt August 22 2016 Metro North making little progress on positive train control report shows Poughkeepsie Journal MTA Railroads Announce All Trains Operating in Positive Train Control Critical Safety Technology MTA December 23 2020 Retrieved February 25 2022 Positive Train Control Government Relations Norfolk Southern Retrieved August 20 2023 Rail Insider On a high tech trek Norfolk Southern notes progress in its quest to become a technology enabled railroad of the future Information For Rail Career Professionals From Progressive Railroading Magazine Progressive Railroading What is positive train control and will it work Trains dead link At Norfolk Southern automation is driving information Railway Age December 12 2018 a b Renda Matthew March 6 2017 Caltrain Safety Contractor Trade Lawsuits Courthouse News Service Retrieved April 6 2017 Parsons Selected by Caltrain for Communications Based Overlay Signal System Positive Train Control PDF Press release Parsons News November 22 2011 Archived from the original PDF on September 1 2013 Retrieved March 31 2017 Caltrain Terminates Contract with Parsons Transportation Group PTG Press release Peninsula Corridor Joint Powers Board February 24 2017 Archived from the original on March 20 2017 Retrieved March 25 2017 Baldassari Erin March 1 2017 Caltrain fires contractor before testing of new safety system is completed San Jose Mercury News Retrieved April 4 2017 Caltrain PTC Program Status amp Wabtec Contract Award PDF Caltrain March 1 2018 Retrieved March 5 2018 Electric Commuter Rail Vehicle PDF Rtd fastracks com Retrieved February 4 2016 What s Causing Delays With RTD s A Line To DIA Retrieved February 27 2017 a b RTD gets 90 day extension from feds to fix airport train crossing gates Retrieved February 27 2017 B Line to Westminster opens July 25 Retrieved February 27 2017 RTD G Line to Arvada Wheat Ridge will be delayed again January 10 2017 Retrieved February 27 2017 Boyd Kirsten December 14 2018 RTD says it will meet feds deadline for A Line crossing fix to avoid possible service disruption TheDenverChannel com Scripps TV Station Group Retrieved February 21 2019 Wingerter Meg April 1 2019 RTD Long delayed G Line from Denver to Wheat Ridge will open April 26 The Denver Post Retrieved April 1 2019 SMART Train Looking for a Windsor Stop KSRO April 14 2016 Archived from the original on August 9 2016 Retrieved June 15 2016 FRA Awards More Than 200 Million for PTC Implementation Press release Federal Railroad Administration August 24 2018 Retrieved February 27 2020 a b Laughlin Jason February 28 2016 Feds approve new SEPTA train control safety system The Philadelphia Inquirer Retrieved May 22 2016 Positive Train Control Update SEPTA April 28 2016 Retrieved May 22 2016 Positive Train Control Update SEPTA May 1 2017 Retrieved May 17 2017 Metrolink leads the nation with life saving PTC technology Southern California Regional Rail Authority Retrieved April 7 2017 Vantuono William C October 27 2010 Metrolink Parsons first out of the gate with PTC Railway Age Retrieved April 7 2017 a b Metrolink PTC Parsons Archived from the original on April 8 2017 Parsons Positive Train Control to Launch on Metrolink s San Bernardino Rail Line Press release Parsons March 5 2015 Retrieved April 7 2017 Weikel Dan June 24 2015 Safety system for Metrolink trains advances Los Angeles Times Retrieved April 7 2017 Lindsey Ron 7 December 2010 Really You Gotta Let It Go Strategic Railroading Positive train control in transition Progressive Railroading October 2007 Retrieved December 21 2016 Positive Train Control Union Pacific Retrieved August 20 2023 Further reading editPositive Train Control PTC Overview and Policy Issues Congressional Research Service Positive Train Control Additional Authorities Could Benefit Implementation Report to the Chairman Committee on Commerce Science and Transportation U S Senate Government Accountability Office Communications Based Signaling CBS Vital PTC Paper presented at AREMA C amp S Technical Conference 22 May 2007 Integration and Alignment of PTC Track Data with Legacy Dispatch Data to Reduce PTC Implementation Cost and Safety Risks Paper presented at PTC World Congress 22 March 2016 Washington D C Andrew Brant amp Ken XuExternal links editPositive Train Control Federal Railroad Administration Retrieved from https en wikipedia org w index php title Positive train control amp oldid 1182664888 United States, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.