fbpx
Wikipedia

Gustav Ludwig Hertz

Gustav Ludwig Hertz (German: [ˈɡʊs.taf ˈluːt.vɪç hɛʁt͡s] (listen); 22 July 1887 – 30 October 1975)[3] was a German experimental physicist and Nobel Prize winner for his work on inelastic electron collisions in gases, and a nephew of Heinrich Rudolf Hertz.

Gustav Ludwig Hertz
Hertz in 1925
Born(1887-07-22)22 July 1887
Died30 October 1975(1975-10-30) (aged 88)
Alma materHumboldt University of Berlin
Known forFranck–Hertz experiment
AwardsNobel Prize in Physics (1925)
Max Planck Medal (1951)
Scientific career
FieldsPhysics
InstitutionsHalle University
Technical University of Berlin
University of Leipzig
Doctoral advisorHeinrich Rubens
Max Planck
Doctoral studentsHeinz Pose
Notes
Father of Carl Hellmuth Hertz, co-inventor of echocardiography[1]
Grandfather of Hans Hertz, inventor of the metal-jet-anode microfocus X-ray tube[2]

Biography

Hertz was born in Hamburg, the son of Auguste (née Arning) and a lawyer, Gustav Theodor Hertz (1858–1904),[3] Heinrich Rudolf Hertz' brother. He attended the Gelehrtenschule des Johanneums before studying at the Georg-August University of Göttingen (1906–1907), the Ludwig Maximilian University of Munich (1907–1908), and the Humboldt University of Berlin (1908–1911). He received his doctorate in 1911 under Heinrich Leopold Rubens.[4][5]

From 1911 to 1914, Hertz was an assistant to Rubens at the University of Berlin. It was during this time that Hertz and James Franck performed experiments on inelastic electron collisions in gases,[6] known as the Franck–Hertz experiments, and for which they received the Nobel Prize in Physics in 1925.[7]

During World War I, Hertz served in the military from 1914. In 1915 he joined Fritz Haber's unit that would introduce poisonous chlorine gas as a weapon.[8] He was seriously wounded in 1915. In 1917, he returned to the University of Berlin as a Privatdozent. In 1920, he took a job as a research physicist at the Philips Incandescent Lamp Factory in Eindhoven, which he held until 1925.[3]

Career

In 1925, Hertz became ordinarius professor and director of the Physics Institute of the Martin Luther University of Halle-Wittenberg. In 1928 he became ordinarius professor of experimental physics and director of the Physics Institute of the Technische Hochschule Berlin ("THB"), now Technical University of Berlin. While there, he developed an isotope separation technique via gaseous diffusion. Since Hertz was an officer during World War I, he was temporarily protected from National Socialist policies and the Law for the Restoration of the Professional Civil Service, but eventually the policies and laws became more stringent, and at the end of 1934, he was forced to resign his position at THB, as he was classified as a "second degree part-Jew" (his paternal grandfather Gustav Ferdinand Hertz (originally named David Gustav Hertz) (1827–1914) had been Jewish as a child, before his whole family had converted to Lutheranism in 1834).[9] He then took a position at Siemens, as director of Research Laboratory II. While there, he continued his work on atomic physics and ultrasound, but he eventually discontinued his work on isotope separation. He held this position until he departed for the Soviet Union in 1945.[5][3][10]

In the Soviet Union

"Pact to defect"

Hertz was concerned for his safety and, like his fellow Nobel laureate James Franck, was looking to move to the USA or any other place outside Germany. So he made a pact with three colleagues: Manfred von Ardenne, director of his private laboratory Forschungslaboratorium für Elektronenphysik, Peter Adolf Thiessen, ordinarius professor at the Humboldt University of Berlin and director of the Kaiser-Wilhelm Institut für physikalische Chemie und Elektrochemie (KWIPC) in Berlin-Dahlem, and Max Volmer, ordinarius professor and director of the Physical Chemistry Institute at the THB.[11] The pact was a pledge that whoever first made contact with the Soviets would speak for the rest. The objectives of their pact were threefold: (1) Prevent plunder of their institutes, (2) Continue their work with minimal interruption, and (3) Protect themselves from prosecution for any political acts of the past.[12] Before the end of World War II, Thiessen, a member of the Nazi Party, had Communist contacts.[13]

Participation in Soviet Nuclear Project

On 27 April 1945, Thiessen arrived at von Ardenne's institute in an armored vehicle with a major of the Soviet Army, who was also a leading Soviet chemist.[14] All four of the pact members were taken to the Soviet Union. Hertz was made head of Institute G, in Agudseri (Agudzery), about 10 km southeast of Sukhumi and a suburb of Gul'rips (Gulrip'shi).[14][15] Topics assigned to Gustav Hertz's Institute G included: (1) Separation of isotopes by diffusion in a flow of inert gases, for which Gustav Hertz was the leader, (2) Development of a condensation pump, for which Justus Mühlenpfordt was the leader, (3) Design and build a mass spectrometer for determining the isotopic composition of uranium, for which Werner Schütze was the leader, (4) Development of frameless (ceramic) diffusion partitions for filters, for which Reinhold Reichmann was the leader, and (5) Development of a theory of stability and control of a diffusion cascade, for which Heinz Barwich was the leader;[14][16]

Barwich had been deputy to Hertz at Siemens.[17] Other members of Institute G were Werner Hartmann and Karl-Franz Zühlke.[18] Manfred von Ardenne was made head of Institute A. Goals of von Ardenne's Institute A included: (1) Electromagnetic separation of isotopes, for which von Ardenne was the leader, (2) Techniques for manufacturing porous barriers for isotope separation, for which Peter Adolf Thiessen was the leader, and (3) Molecular techniques for separation of uranium isotopes, for which Max Steenbeck was the leader.

In his first meeting with Lavrentij Beria, von Ardenne was asked to participate in building the bomb, but von Ardenne quickly realized that participation would prohibit his repatriation to Germany, so he suggested isotope enrichment as an objective, which was agreed to.

Research at Sukhumi

By the end of the 1940s, nearly 300 Germans were working at the institute, and they were not the total work force. Institute A was used as the basis for the Sukhumi Physical-Technical Institute in Sinop, a suburb of Sukhumi.[14][15] Volmer went to the Scientific Research Institute No. 9 (NII-9).[19] in Moscow; he was given a design bureau to work on the production of heavy water. In Institute A, Thiessen became leader for developing techniques for manufacturing porous barriers for isotope separation.[14]

In 1949, six German scientists, including Hertz, Thiessen, and Barwich were called in for consultation at Sverdlovsk-44, which was responsible for uranium enrichment. The plant, smaller than the American Oak Ridge gaseous diffusion plant, was getting only a little over half of the expected 90% or higher enrichment.[20]

After 1950, Hertz moved to Moscow. In 1951, Hertz was awarded a Stalin Prize, second class, with Barwich.[14] In that year, James Franck and Hertz were jointly awarded the Max Planck Medal by the Deutsche Physikalische Gesellschaft. Hertz remained in the Soviet Union until 1955.[5]

Return to the GDR

Upon return from the Soviet Union, Hertz became ordinarius professor at the University of Leipzig. From 1955 to 1967, he was also the chairman of the Physical Society of the Deutsche Demokratische Republik (GDR); he was honorary chairman from 1967 to 1975.[7]

Personal life

Gustav Hertz was a nephew of Heinrich Rudolf Hertz and a cousin of Mathilde Carmen Hertz. In 1919, Hertz married Ellen née Dihlmann, who died in 1941. They had two sons, Carl Helmut Hertz and Johannes Heinrich Hertz; both became physicists.[3]

He died on 30 October 1975 in East Berlin at the age 88.

Scientific memberships

Hertz was a Member of the German Academy of Sciences in Berlin, Corresponding Member of the Göttingen Academy of Sciences, an Honorary Member of the Hungarian Academy of Sciences, a Member of the Czechoslovakian Academy of Sciences, and a Foreign Member of the USSR Academy of Sciences.[3]

Publications

  • Franck, J.; Hertz, G. (1914). "Über Zusammenstöße zwischen Elektronen und Molekülen des Quecksilberdampfes und die Ionisierungsspannung desselben". Verh. Dtsch. Phys. Ges. 16: 457–467.
  • Gustav Hertz Über das ultrarote Adsorptionsspektrum der Kohlensäure in seiner Abhängigkeit von Druck und Partialdruck. (Dissertation). (Vieweg Braunschweig, 1911)
  • Gustav Hertz (editor) Lehrbuch der Kernphysik I-III (Teubner, 1961–1966)
  • Gustav Hertz (editor) Grundlagen und Arbeitsmethoden der Kernphysik (Akademie Verlag, 1957)
  • Gustav Hertz Gustav Hertz in der Entwicklung der modernen Physik (Akademie Verlag, 1967)

See also

References

  1. ^ Singh, S; Goyal, A (2007). "The origin of echocardiography: a tribute to Inge Edler". Tex Heart Inst J. 34 (4): 431–8. PMC 2170493. PMID 18172524.
  2. ^ [1] Wallenberg Foundation, "X-ray research that raises hopes", with portrait photograph of Dr. Hans Hertz and photographs of the Doctor in his laboratories
  3. ^ a b c d e f Hertz – Nobel Biography.
  4. ^ Gustav Hertz Über das ultrarote Adsorptionsspektrum der Kohlensäure in seiner Abhängigkeit von Druck und Partialdruck. (Dissertation). (Vieweg Braunschweig, 1911)
  5. ^ a b c Mehra and Rechenberg, 2001, 197.
  6. ^ Franck, J.; Hertz, G. (1914). "Über Zusammenstöße zwischen Elektronen und Molekülen des Quecksilberdampfes und die Ionisierungsspannung desselben". Verh. Dtsch. Phys. Ges. 16: 457–467.
  7. ^ a b Hentschel, 1996, Appendix F; see entry for Hertz.
  8. ^ Van der Kloot, W. (2004). "April 1918: Five Future Nobel prize-winners inaugurate weapons of mass destruction and the academic-industrial-military complex". Notes Rec. R. Soc. Lond. 58 (2): 149–160. doi:10.1098/rsnr.2004.0053. S2CID 145243958.
  9. ^ Wolff, Stefan L. (4 January 2008). "Juden wider Willen – Wie es den Nachkommen des Physikers Heinrich Hertz im NS-Wissenschaftsbetrieb erging". Jüdische Allgemeine.
  10. ^ Hentschel, 1996, 23 and Appendix F – see entry for Hertz.
  11. ^ sachen.de 25 March 2008 at the Wayback MachineZur Ehrung von Manfred von Ardenne.
  12. ^ Heinemann-Grüder, 2002, 44.
  13. ^ Hentschel, 1996, Appendix F; see the entry for Thiessen.
  14. ^ a b c d e f Oleynikov, 2000, pp 5, 10–13, 18, 21
  15. ^ a b Naimark, 1995, 213.
  16. ^ Kruglov, 2002, 131.
  17. ^ Naimark, 1995, 209.
  18. ^ Maddrell, 2006, 179–180.
  19. ^ Today, NII-9 is the Bochvar All-Russian Scientific Research Institute of Inorganic Materials, Bochvar VNIINM. See Oleynikov, 2000, 4.
  20. ^ Holloway, 1994, 191–192.

Further reading

  • Albrecht, Ulrich, Andreas Heinemann-Grüder, and Arend Wellmann Die Spezialisten: Deutsche Naturwissenschaftler und Techniker in der Sowjetunion nach 1945 (Dietz, 1992, 2001) ISBN 3-320-01788-8
  • Barwich, Heinz and Elfi Barwich Das rote Atom (Fischer-TB.-Vlg., 1984)
  • Beneke, Klaus Die Kolloidwissenschaftler Peter Adolf Thiessen, Gerhart Jander, Robert Havemann, Hans Witzmann und ihre Zeit (Knof, 2000)
  • Heinemann-Grüder, Andreas Die sowjetische Atombombe (Westfaelisches Dampfboot, 1992)
  • Heinemann-Grüder, Andreas Keinerlei Untergang: German Armaments Engineers during the Second World War and in the Service of the Victorious Powers in Monika Renneberg and Mark Walker (editors) Science, Technology and National Socialism 30–50 (Cambridge, 2002 paperback edition) ISBN 0-521-52860-7
  • Hentschel, Klaus (editor) and Ann M. Hentschel (editorial assistant and translator) Physics and National Socialism: An Anthology of Primary Sources (Birkhäuser, 1996) ISBN 0-8176-5312-0
  • Holloway, David Stalin and the Bomb: The Soviet Union and Atomic Energy 1939–1956 (Yale, 1994) ISBN 0-300-06056-4
  • Kruglov, Arkadii The History of the Soviet Atomic Industry (Taylor and Francis, 2002)
  • Maddrell, Paul "Spying on Science: Western Intelligence in Divided Germany 1945–1961" (Oxford, 2006) ISBN 0-19-926750-2
  • Mehra, Jagdish, and Helmut Rechenberg The Historical Development of Quantum Theory. Volume 1 Part 1 The Quantum Theory of Planck, Einstein, Bohr and Sommerfeld 1900–1925: Its Foundation and the Rise of Its Difficulties. (Springer, 2001) ISBN 0-387-95174-1
  • Naimark, Norman M. The Russians in Germany: A History of the Soviet Zone of Occupation, 1945–1949 (Belknap, 1995)
  • Oleynikov, Pavel V. 2000. German Scientists in the Soviet Atomic Project. The Nonproliferation Review Volume 7, Number 2, 1 – 30 The author has been a group leader at the Institute of Technical Physics of the Russian Federal Nuclear Center in Snezhinsk (Chelyabinsk-70).

External links

  •   Media related to Gustav Hertz at Wikimedia Commons
  • Gustav Hertz on Nobelprize.org  
  • – Sukhumi Institute of Physics and Technology, on the website are published the photographs of the German nuclear physicists who had been working for the Soviet nuclear program

gustav, ludwig, hertz, german, ˈɡʊs, ˈluːt, vɪç, hɛʁt, listen, july, 1887, october, 1975, german, experimental, physicist, nobel, prize, winner, work, inelastic, electron, collisions, gases, nephew, heinrich, rudolf, hertz, hertz, 1925born, 1887, july, 1887fre. Gustav Ludwig Hertz German ˈɡʊs taf ˈluːt vɪc hɛʁt s listen 22 July 1887 30 October 1975 3 was a German experimental physicist and Nobel Prize winner for his work on inelastic electron collisions in gases and a nephew of Heinrich Rudolf Hertz Gustav Ludwig HertzHertz in 1925Born 1887 07 22 22 July 1887Free Hanseatic city of Hamburg German EmpireDied30 October 1975 1975 10 30 aged 88 East Berlin East GermanyAlma materHumboldt University of BerlinKnown forFranck Hertz experimentAwardsNobel Prize in Physics 1925 Max Planck Medal 1951 Scientific careerFieldsPhysicsInstitutionsHalle UniversityTechnical University of BerlinUniversity of LeipzigDoctoral advisorHeinrich Rubens Max PlanckDoctoral studentsHeinz PoseNotesFather of Carl Hellmuth Hertz co inventor of echocardiography 1 Grandfather of Hans Hertz inventor of the metal jet anode microfocus X ray tube 2 Contents 1 Biography 1 1 Career 1 2 In the Soviet Union 1 2 1 Pact to defect 1 2 2 Participation in Soviet Nuclear Project 1 2 3 Research at Sukhumi 1 2 4 Return to the GDR 1 3 Personal life 2 Scientific memberships 3 Publications 4 See also 5 References 6 Further reading 7 External linksBiography EditHertz was born in Hamburg the son of Auguste nee Arning and a lawyer Gustav Theodor Hertz 1858 1904 3 Heinrich Rudolf Hertz brother He attended the Gelehrtenschule des Johanneums before studying at the Georg August University of Gottingen 1906 1907 the Ludwig Maximilian University of Munich 1907 1908 and the Humboldt University of Berlin 1908 1911 He received his doctorate in 1911 under Heinrich Leopold Rubens 4 5 From 1911 to 1914 Hertz was an assistant to Rubens at the University of Berlin It was during this time that Hertz and James Franck performed experiments on inelastic electron collisions in gases 6 known as the Franck Hertz experiments and for which they received the Nobel Prize in Physics in 1925 7 During World War I Hertz served in the military from 1914 In 1915 he joined Fritz Haber s unit that would introduce poisonous chlorine gas as a weapon 8 He was seriously wounded in 1915 In 1917 he returned to the University of Berlin as a Privatdozent In 1920 he took a job as a research physicist at the Philips Incandescent Lamp Factory in Eindhoven which he held until 1925 3 Career Edit In 1925 Hertz became ordinarius professor and director of the Physics Institute of the Martin Luther University of Halle Wittenberg In 1928 he became ordinarius professor of experimental physics and director of the Physics Institute of the Technische Hochschule Berlin THB now Technical University of Berlin While there he developed an isotope separation technique via gaseous diffusion Since Hertz was an officer during World War I he was temporarily protected from National Socialist policies and the Law for the Restoration of the Professional Civil Service but eventually the policies and laws became more stringent and at the end of 1934 he was forced to resign his position at THB as he was classified as a second degree part Jew his paternal grandfather Gustav Ferdinand Hertz originally named David Gustav Hertz 1827 1914 had been Jewish as a child before his whole family had converted to Lutheranism in 1834 9 He then took a position at Siemens as director of Research Laboratory II While there he continued his work on atomic physics and ultrasound but he eventually discontinued his work on isotope separation He held this position until he departed for the Soviet Union in 1945 5 3 10 In the Soviet Union Edit Pact to defect Edit Hertz was concerned for his safety and like his fellow Nobel laureate James Franck was looking to move to the USA or any other place outside Germany So he made a pact with three colleagues Manfred von Ardenne director of his private laboratory Forschungslaboratorium fur Elektronenphysik Peter Adolf Thiessen ordinarius professor at the Humboldt University of Berlin and director of the Kaiser Wilhelm Institut fur physikalische Chemie und Elektrochemie KWIPC in Berlin Dahlem and Max Volmer ordinarius professor and director of the Physical Chemistry Institute at the THB 11 The pact was a pledge that whoever first made contact with the Soviets would speak for the rest The objectives of their pact were threefold 1 Prevent plunder of their institutes 2 Continue their work with minimal interruption and 3 Protect themselves from prosecution for any political acts of the past 12 Before the end of World War II Thiessen a member of the Nazi Party had Communist contacts 13 Participation in Soviet Nuclear Project Edit On 27 April 1945 Thiessen arrived at von Ardenne s institute in an armored vehicle with a major of the Soviet Army who was also a leading Soviet chemist 14 All four of the pact members were taken to the Soviet Union Hertz was made head of Institute G in Agudseri Agudzery about 10 km southeast of Sukhumi and a suburb of Gul rips Gulrip shi 14 15 Topics assigned to Gustav Hertz s Institute G included 1 Separation of isotopes by diffusion in a flow of inert gases for which Gustav Hertz was the leader 2 Development of a condensation pump for which Justus Muhlenpfordt was the leader 3 Design and build a mass spectrometer for determining the isotopic composition of uranium for which Werner Schutze was the leader 4 Development of frameless ceramic diffusion partitions for filters for which Reinhold Reichmann was the leader and 5 Development of a theory of stability and control of a diffusion cascade for which Heinz Barwich was the leader 14 16 Barwich had been deputy to Hertz at Siemens 17 Other members of Institute G were Werner Hartmann and Karl Franz Zuhlke 18 Manfred von Ardenne was made head of Institute A Goals of von Ardenne s Institute A included 1 Electromagnetic separation of isotopes for which von Ardenne was the leader 2 Techniques for manufacturing porous barriers for isotope separation for which Peter Adolf Thiessen was the leader and 3 Molecular techniques for separation of uranium isotopes for which Max Steenbeck was the leader In his first meeting with Lavrentij Beria von Ardenne was asked to participate in building the bomb but von Ardenne quickly realized that participation would prohibit his repatriation to Germany so he suggested isotope enrichment as an objective which was agreed to Research at Sukhumi Edit By the end of the 1940s nearly 300 Germans were working at the institute and they were not the total work force Institute A was used as the basis for the Sukhumi Physical Technical Institute in Sinop a suburb of Sukhumi 14 15 Volmer went to the Scientific Research Institute No 9 NII 9 19 in Moscow he was given a design bureau to work on the production of heavy water In Institute A Thiessen became leader for developing techniques for manufacturing porous barriers for isotope separation 14 In 1949 six German scientists including Hertz Thiessen and Barwich were called in for consultation at Sverdlovsk 44 which was responsible for uranium enrichment The plant smaller than the American Oak Ridge gaseous diffusion plant was getting only a little over half of the expected 90 or higher enrichment 20 After 1950 Hertz moved to Moscow In 1951 Hertz was awarded a Stalin Prize second class with Barwich 14 In that year James Franck and Hertz were jointly awarded the Max Planck Medal by the Deutsche Physikalische Gesellschaft Hertz remained in the Soviet Union until 1955 5 Return to the GDR Edit Upon return from the Soviet Union Hertz became ordinarius professor at the University of Leipzig From 1955 to 1967 he was also the chairman of the Physical Society of the Deutsche Demokratische Republik GDR he was honorary chairman from 1967 to 1975 7 Personal life Edit Gustav Hertz was a nephew of Heinrich Rudolf Hertz and a cousin of Mathilde Carmen Hertz In 1919 Hertz married Ellen nee Dihlmann who died in 1941 They had two sons Carl Helmut Hertz and Johannes Heinrich Hertz both became physicists 3 He died on 30 October 1975 in East Berlin at the age 88 Scientific memberships EditHertz was a Member of the German Academy of Sciences in Berlin Corresponding Member of the Gottingen Academy of Sciences an Honorary Member of the Hungarian Academy of Sciences a Member of the Czechoslovakian Academy of Sciences and a Foreign Member of the USSR Academy of Sciences 3 Publications EditFranck J Hertz G 1914 Uber Zusammenstosse zwischen Elektronen und Molekulen des Quecksilberdampfes und die Ionisierungsspannung desselben Verh Dtsch Phys Ges 16 457 467 Gustav Hertz Uber das ultrarote Adsorptionsspektrum der Kohlensaure in seiner Abhangigkeit von Druck und Partialdruck Dissertation Vieweg Braunschweig 1911 Gustav Hertz editor Lehrbuch der Kernphysik I III Teubner 1961 1966 Gustav Hertz editor Grundlagen und Arbeitsmethoden der Kernphysik Akademie Verlag 1957 Gustav Hertz Gustav Hertz in der Entwicklung der modernen Physik Akademie Verlag 1967 See also EditElectron diffraction Electric glow discharge Franck Hertz experiment Plasma window Vacuum tube Scattering Russian AlsosReferences Edit Singh S Goyal A 2007 The origin of echocardiography a tribute to Inge Edler Tex Heart Inst J 34 4 431 8 PMC 2170493 PMID 18172524 1 Wallenberg Foundation X ray research that raises hopes with portrait photograph of Dr Hans Hertz and photographs of the Doctor in his laboratories a b c d e f Hertz Nobel Biography Gustav Hertz Uber das ultrarote Adsorptionsspektrum der Kohlensaure in seiner Abhangigkeit von Druck und Partialdruck Dissertation Vieweg Braunschweig 1911 a b c Mehra and Rechenberg 2001 197 Franck J Hertz G 1914 Uber Zusammenstosse zwischen Elektronen und Molekulen des Quecksilberdampfes und die Ionisierungsspannung desselben Verh Dtsch Phys Ges 16 457 467 a b Hentschel 1996 Appendix F see entry for Hertz Van der Kloot W 2004 April 1918 Five Future Nobel prize winners inaugurate weapons of mass destruction and the academic industrial military complex Notes Rec R Soc Lond 58 2 149 160 doi 10 1098 rsnr 2004 0053 S2CID 145243958 Wolff Stefan L 4 January 2008 Juden wider Willen Wie es den Nachkommen des Physikers Heinrich Hertz im NS Wissenschaftsbetrieb erging Judische Allgemeine Hentschel 1996 23 and Appendix F see entry for Hertz sachen de Archived 25 March 2008 at the Wayback Machine Zur Ehrung von Manfred von Ardenne Heinemann Gruder 2002 44 Hentschel 1996 Appendix F see the entry for Thiessen a b c d e f Oleynikov 2000 pp 5 10 13 18 21 a b Naimark 1995 213 Kruglov 2002 131 Naimark 1995 209 Maddrell 2006 179 180 Today NII 9 is the Bochvar All Russian Scientific Research Institute of Inorganic Materials Bochvar VNIINM See Oleynikov 2000 4 Holloway 1994 191 192 Further reading EditAlbrecht Ulrich Andreas Heinemann Gruder and Arend Wellmann Die Spezialisten Deutsche Naturwissenschaftler und Techniker in der Sowjetunion nach 1945 Dietz 1992 2001 ISBN 3 320 01788 8 Barwich Heinz and Elfi Barwich Das rote Atom Fischer TB Vlg 1984 Beneke Klaus Die Kolloidwissenschaftler Peter Adolf Thiessen Gerhart Jander Robert Havemann Hans Witzmann und ihre Zeit Knof 2000 Heinemann Gruder Andreas Die sowjetische Atombombe Westfaelisches Dampfboot 1992 Heinemann Gruder Andreas Keinerlei Untergang German Armaments Engineers during the Second World War and in the Service of the Victorious Powers in Monika Renneberg and Mark Walker editors Science Technology and National Socialism 30 50 Cambridge 2002 paperback edition ISBN 0 521 52860 7 Hentschel Klaus editor and Ann M Hentschel editorial assistant and translator Physics and National Socialism An Anthology of Primary Sources Birkhauser 1996 ISBN 0 8176 5312 0 Holloway David Stalin and the Bomb The Soviet Union and Atomic Energy 1939 1956 Yale 1994 ISBN 0 300 06056 4 Kruglov Arkadii The History of the Soviet Atomic Industry Taylor and Francis 2002 Maddrell Paul Spying on Science Western Intelligence in Divided Germany 1945 1961 Oxford 2006 ISBN 0 19 926750 2 Mehra Jagdish and Helmut Rechenberg The Historical Development of Quantum Theory Volume 1 Part 1 The Quantum Theory of Planck Einstein Bohr and Sommerfeld 1900 1925 Its Foundation and the Rise of Its Difficulties Springer 2001 ISBN 0 387 95174 1 Naimark Norman M The Russians in Germany A History of the Soviet Zone of Occupation 1945 1949 Belknap 1995 Oleynikov Pavel V 2000 German Scientists in the Soviet Atomic Project The Nonproliferation Review Volume 7 Number 2 1 30 The author has been a group leader at the Institute of Technical Physics of the Russian Federal Nuclear Center in Snezhinsk Chelyabinsk 70 External links Edit Media related to Gustav Hertz at Wikimedia Commons Gustav Hertz on Nobelprize org SIPT Sukhumi Institute of Physics and Technology on the website are published the photographs of the German nuclear physicists who had been working for the Soviet nuclear program Retrieved from https en wikipedia org w index php title Gustav Ludwig Hertz amp oldid 1133110323, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.