fbpx
Wikipedia

GLI1

Zinc finger protein GLI1 also known as glioma-associated oncogene is a protein that in humans is encoded by the GLI1 gene. It was originally isolated from human glioblastoma cells.[5]

GLI1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesGLI1, GLI, GLI family zinc finger 1, PAPA8, PPD1
External IDsOMIM: 165220 MGI: 95727 HomoloGene: 3859 GeneCards: GLI1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001160045
NM_001167609
NM_005269

NM_010296

RefSeq (protein)

NP_001153517
NP_001161081
NP_005260

NP_034426

Location (UCSC)Chr 12: 57.46 – 57.47 MbChr 10: 127.17 – 127.18 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function

The Gli proteins are the effectors of Hedgehog (Hh) signaling and have been shown to be involved in cell fate determination, proliferation and patterning in many cell types and most organs during embryo development.[6] In the developing spinal cord the target genes of Gli proteins, that are themselves transcription factors, are arranged into a complex gene regulatory network that translates the extracellular concentration gradient of Sonic hedgehog into different cell fates along the dorsoventral axis.[7]

The Gli transcription factors activate/inhibit transcription by binding to Gli responsive genes and by interacting with the transcription complex. The Gli transcription factors have DNA binding zinc finger domains which bind to consensus sequences on their target genes to initiate or suppress transcription.[8] Yoon[9] showed that mutating the Gli zinc finger domain inhibited the proteins effect proving its role as a transcription factor. Gli proteins have an 18-amino acid region highly similar to the α-helical herpes simplex viral protein 16 activation domain. This domain contains a consensus recognition element for the human TFIID TATA box-binding protein associated factor TAFII31.[9] Other proteins such as Missing in Metastasis (MIM/BEG4) have been shown to potentiate the effects of the Gli transcription factors on target gene transcription. Gli and MIM have been shown to act synergistically to induce epidermal growth and MIM + Gli1 overexpressing grafts show similar growth patterns to Shh grafts.[10]

Gli family

There are three members of the family; Gli1, Gli2 and Gli3 which are all transcription factors mediating the Hh pathway. The GLI1, GLI2, and GLI3 genes encode transcription factors which all contain conserved tandem C2-H2 zinc finger domains and a consensus histidine/cysteine linker sequence between zinc fingers. This Gli motif is related to those of Kruppel which is a Drosophila segmentation gene of the gap class.[11] In transgenic mice, mutant Gli1 lacking the zinc fingers does not induce Sonic Hedgehog (Shh) targets.[12] The conserved stretch of 9 amino acids connects the C-terminal histidine of one finger to the N-terminal cysteine of the next. The GLI consensus finger amino acid sequence is [Y/F]JXCX3GCX3[F/Y]X5LX2HX4H[T/S]GEKP.[11] The Gli1 and Gli2 protein zinc finger DNA binding domain have been shown to bind to the DNA consensus GLI binding site GACCACCCA. [13]

Gli Proteins transcriptional regulation is tissue specific for many targets. For example, Gli1 in primary keratinocytes upregulates FOXM1[14] whereas in mesenchymal C3H10T1/2 cells it has been shown to upregulate platelet-derived growth factor receptor PDGFRa.[15]

Human Gli1 encodes a transcription activator involved in development that is a known oncogene.[9][16] It has been found that N-terminal regions of Gli1 recruit histone deacetylase complexes via SuFu, which are involved in DNA folding in chromosomes.[17] This may negatively regulate transcription indicating Gli1 could act as transcriptional inhibitor as well as an activator.[18] The human GLI1 promoter region is regulated by a 1.4 kb 5’ region including a 5’ flanking sequence, an untranslated exon and 425bp of the first intron. Numerous proteins such as Sp1, USF1, USF2, and Twist are also involved in Gli1 promoter regulation.[19][20][21] During mouse embryo development Gli1 expression can be detected in the gut mesoderm, ventral neural tube, ependymal layer of the spinal cord, forebrain, midbrain, cerebellum, and in sites of endochondral bone formation.[22][23][24] Some of the downstream gene targets of human Gli1 include regulators of the cell cycle and apoptosis such as cyclin D2 and plakoglobin respectively.[25] Gli1 also upregulates FoxM1 in BCC.[14] Gli1 expression can also mimic Shh expression in certain cell types.[26]

Isolation

GLI1 was originally isolated from a glioma tumour and has been found to be up regulated in many tumors including muscle, brain and skin tumors such as Basal cell carcinoma (BCC).[27] DNA copy-number alterations that contribute to increased conversion of the oncogenes Gli1–3 into transcriptional activators by the Hedgehog signaling pathway are included in a genome-wide pattern, which was found to be correlated with an astrocytoma patient’s outcome.[28] Shh and the Gli genes are normally expressed in hair follicles, and skin tumours expressing Gli1 may arise from hair follicles. The level of Gli1 expression correlates with the tumor grade in bone and soft tissue sarcomas.[29] Transgenic mice and frogs overexpressing Gli1 develop BCC like tumours as well as other hair follicle-derived neoplasias, such as trichoepitheliomas, cylindromas, and trichoblastomas.[26][30] Expression of Gli1 in the embryonic frog epidermis results in the development of tumours that express endogenous Gli1. This suggests that overexpressed Gli1 alone is probably sufficient for tumour development[30][31] Mutations leading to the expression of Gli1 in basal cells are thus predicted to induce BCC formation.[26]

Interactions

GLI1 has been shown to interact with:

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000111087 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000025407 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O'Brien SJ, Wong AJ, Vogelstein B (April 1987). "Identification of an amplified, highly expressed gene in a human glioma". Science. 236 (4797): 70–3. Bibcode:1987Sci...236...70K. doi:10.1126/science.3563490. PMID 3563490.
  6. ^ Ruiz i Altaba A (June 1999). "Gli proteins encode context-dependent positive and negative functions: implications for development and disease". Development. 126 (14): 3205–16. doi:10.1242/dev.126.14.3205. PMID 10375510.
  7. ^ Lovrics A, Gao Y, Juhász B, Bock I, Byrne HM, Dinnyés A, Kovács KA (November 2014). "Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord". PLOS ONE. 9 (11): 11430. Bibcode:2014PLoSO...9k1430L. doi:10.1371/journal.pone.0111430. PMC 4232242. PMID 25398016.
  8. ^ Sasaki H, Hui C, Nakafuku M, Kondoh H (April 1997). "A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro". Development. 124 (7): 1313–22. doi:10.1242/dev.124.7.1313. PMID 9118802.
  9. ^ a b c Liu CZ, Yang JT, Yoon JW, Villavicencio E, Pfendler K, Walterhouse D, Iannaccone P (March 1998). "Characterization of the promoter region and genomic organization of GLI, a member of the Sonic hedgehog-Patched signaling pathway". Gene. 209 (1–2): 1–11. doi:10.1016/S0378-1119(97)00668-9. PMID 9524201.
  10. ^ Callahan CA, Ofstad T, Horng L, Wang JK, Zhen HH, Coulombe PA, Oro AE (November 2004). "MIM/BEG4, a Sonic hedgehog-responsive gene that potentiates Gli-dependent transcription". Genes Dev. 18 (22): 2724–9. doi:10.1101/gad.1221804. PMC 528890. PMID 15545630.
  11. ^ a b Ruppert JM, Kinzler KW, Wong AJ, Bigner SH, Kao FT, Law ML, Seuanez HN, O'Brien SJ, Vogelstein B (August 1988). "The GLI-Kruppel family of human genes". Mol Cell Biol. 8 (8): 3104–13. doi:10.1128/mcb.8.8.3104. PMC 363537. PMID 2850480.
  12. ^ Park HL, Bai C, Platt KA, Matise MP, Beeghly A, Hui CC, Nakashima M, Joyner AL (April 2000). "Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation". Development. 127 (8): 1593–605. doi:10.1242/dev.127.8.1593. PMID 10725236.
  13. ^ Kinzler KW, Vogelstein B (February 1990). "The GLI gene encodes a nuclear protein which binds specific sequences in the human genome". Mol Cell Biol. 10 (2): 634–42. doi:10.1128/mcb.10.2.634. PMC 360861. PMID 2105456.
  14. ^ a b Teh MT, Wong ST, Neill GW, Ghali LR, Philpott MP, Quinn AG (August 2002). "FOXM1 is a downstream target of Gli1 in basal cell carcinomas". Cancer Res. 62 (16): 4773–80. PMID 12183437.
  15. ^ Xie J, Aszterbaum M, Zhang X, Bonifas JM, Zachary C, Epstein E, McCormick F (July 2001). "A role of PDGFRalpha in basal cell carcinoma proliferation". Proc Natl Acad Sci U S A. 98 (16): 9255–9. Bibcode:2001PNAS...98.9255X. doi:10.1073/pnas.151173398. PMC 55407. PMID 11481486.
  16. ^ Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O'Brien SJ, Wong AJ, Vogelstein B (April 1987). "Identification of an amplified, highly expressed gene in a human glioma". Science. 236 (4797): 70–3. Bibcode:1987Sci...236...70K. doi:10.1126/science.3563490. PMID 3563490.
  17. ^ Cheng SY, Bishop JM (April 2002). "Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex". Proc Natl Acad Sci U S A. 99 (8): 5442–7. Bibcode:2002PNAS...99.5442C. doi:10.1073/pnas.082096999. PMC 122788. PMID 11960000.
  18. ^ Jacob J, Briscoe J (August 2003). "Gli proteins and the control of spinal-cord patterning". EMBO Rep. 4 (8): 761–5. doi:10.1038/sj.embor.embor896. PMC 1326336. PMID 12897799.
  19. ^ Villavicencio EH, Yoon JW, Frank DJ, Füchtbauer EM, Walterhouse DO, Iannaccone PM (April 2002). "Cooperative E-box regulation of human GLI1 by TWIST and USF". Genesis. 32 (4): 247–58. doi:10.1002/gene.10078. PMID 11948912. S2CID 12132097.
  20. ^ Gitelman I (September 1997). "Twist protein in mouse embryogenesis". Dev. Biol. 189 (2): 205–14. doi:10.1006/dbio.1997.8614. PMID 9299114.
  21. ^ Hebrok M, Füchtbauer A, Füchtbauer EM (May 1997). "Repression of muscle-specific gene activation by the murine Twist protein". Exp. Cell Res. 232 (2): 295–303. doi:10.1006/excr.1997.3541. PMID 9168805.
  22. ^ Hui CC, Slusarski D, Platt KA, Holmgren R, Joyner AL (1994). "Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-2, and Gli-3, in ectoderm- and mesoderm-derived tissues suggests multiple roles during postimplantation development". Dev. Biol. 162 (2): 402–13. doi:10.1006/dbio.1994.1097. PMID 8150204.
  23. ^ Walterhouse D, Ahmed M, Slusarski D, Kalamaras J, Boucher D, Holmgren R, Iannaccone P (1993). "gli, a zinc finger transcription factor and oncogene, is expressed during normal mouse development". Dev. Dyn. 196 (2): 91–102. doi:10.1002/aja.1001960203. PMID 8364225. S2CID 8951322.
  24. ^ Wallace VA (1999). "Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum". Curr. Biol. 9 (8): 445–8. doi:10.1016/s0960-9822(99)80195-x. PMID 10226030. S2CID 12373898.
  25. ^ Yoon JW, Kita Y, Frank DJ, Majewski RR, Konicek BA, Nobrega MA, Jacob H, Walterhouse D, Iannaccone P (February 2002). "Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation". J. Biol. Chem. 277 (7): 5548–55. doi:10.1074/jbc.M105708200. PMID 11719506.
  26. ^ a b c Dahmane N, Lee J, Robins P, Heller P, Ruiz i Altaba A (1997). "Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours". Nature. 389 (6653): 876–81. Bibcode:1997Natur.389..876D. doi:10.1038/39918. PMID 9349822. S2CID 4424572.
  27. ^ Ruiz i Altaba A (2011). "Hedgehog signaling and the Gli code in stem cells, cancer, and metastases". Sci Signal. 4 (200): pt9. doi:10.1126/scisignal.2002540. PMID 22114144.
  28. ^ Aiello KA, Alter O (October 2016). "Platform-Independent Genome-Wide Pattern of DNA Copy-Number Alterations Predicting Astrocytoma Survival and Response to Treatment Revealed by the GSVD Formulated as a Comparative Spectral Decomposition". PLOS ONE. 11 (10): e0164546. Bibcode:2016PLoSO..1164546A. doi:10.1371/journal.pone.0164546. PMC 5087864. PMID 27798635.
  29. ^ Dahmane N, Lee J, Robins P, Heller P, Ruiz i Altaba A (October 1997). "Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours". Nature. 389 (6653): 876–81. Bibcode:1997Natur.389..876D. doi:10.1038/39918. PMID 9349822. S2CID 4424572. Erratum in: Nature 1997 December 4;390(6659):536.
  30. ^ a b Nilsson M, Undèn AB, Krause D, Malmqwist U, Raza K, Zaphiropoulos PG, Toftgård R (2000). "Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1". Proc. Natl. Acad. Sci. U.S.A. 97 (7): 3438–43. doi:10.1073/pnas.050467397. PMC 16258. PMID 10725363.
  31. ^ Tripathi K, Mani C, Barnett R, Nalluri S, Bachaboina L, Rocconi RP, Athar M, Owen LB, Palle K (2014). "Gli1 Regulates S-phase Checkpoint in Tumor Cells via Bid and its Inhibition Sensitizes to DNA Topoisomerase 1 Inhibitors". Journal of Biological Chemistry. 289 (45): 31513–25. doi:10.1074/jbc.M114.606483. PMC 4223349. PMID 25253693.
  32. ^ Cheng SY, Bishop JM (April 2002). "Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex". Proc. Natl. Acad. Sci. U.S.A. 99 (8): 5442–7. Bibcode:2002PNAS...99.5442C. doi:10.1073/pnas.082096999. PMC 122788. PMID 11960000.
  33. ^ Murone M, Luoh SM, Stone D, Li W, Gurney A, Armanini M, Grey C, Rosenthal A, de Sauvage FJ (May 2000). "Gli regulation by the opposing activities of fused and suppressor of fused". Nat. Cell Biol. 2 (5): 310–2. doi:10.1038/35010610. PMID 10806483. S2CID 31424234.
  34. ^ Stone DM, Murone M, Luoh S, Ye W, Armanini MP, Gurney A, Phillips H, Brush J, Goddard A, de Sauvage FJ, Rosenthal A (December 1999). "Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli". J. Cell Sci. 112 (23): 4437–48. doi:10.1242/jcs.112.23.4437. PMID 10564661.
  35. ^ Kogerman P, Grimm T, Kogerman L, Krause D, Undén AB, Sandstedt B, Toftgård R, Zaphiropoulos PG (September 1999). "Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1". Nat. Cell Biol. 1 (5): 312–9. doi:10.1038/13031. PMID 10559945. S2CID 6907964.
  36. ^ Dunaeva M, Michelson P, Kogerman P, Toftgard R (February 2003). "Characterization of the physical interaction of Gli proteins with SUFU proteins". J. Biol. Chem. 278 (7): 5116–22. doi:10.1074/jbc.M209492200. PMID 12426310.
  37. ^ Koyabu Y, Nakata K, Mizugishi K, Aruga J, Mikoshiba K (March 2001). "Physical and functional interactions between Zic and Gli proteins". J. Biol. Chem. 276 (10): 6889–92. doi:10.1074/jbc.C000773200. PMID 11238441.

External links

gli1, zinc, finger, protein, also, known, glioma, associated, oncogene, protein, that, humans, encoded, gene, originally, isolated, from, human, glioblastoma, cells, available, structurespdbortholog, search, pdbe, rcsblist, codes2gli, 4blb, 4kmdidentifiersalia. Zinc finger protein GLI1 also known as glioma associated oncogene is a protein that in humans is encoded by the GLI1 gene It was originally isolated from human glioblastoma cells 5 GLI1Available structuresPDBOrtholog search PDBe RCSBList of PDB id codes2GLI 4BLB 4KMDIdentifiersAliasesGLI1 GLI GLI family zinc finger 1 PAPA8 PPD1External IDsOMIM 165220 MGI 95727 HomoloGene 3859 GeneCards GLI1Gene location Human Chr Chromosome 12 human 1 Band12q13 3Start57 459 785 bp 1 End57 472 268 bp 1 Gene location Mouse Chr Chromosome 10 mouse 2 Band10 D3 10 74 5 cMStart127 165 751 bp 2 End127 177 843 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed intibial nervesural nervegastric mucosacanal of the cervixrectumbloodstromal cell of endometriumsmooth muscle tissuegallbladderspinal gangliaTop expressed inspermatogoniummolarlipdermispalateSertoli cellfourth toeurethradermal bonemandibleMore reference expression dataBioGPSMore reference expression dataGene ontologyMolecular functionDNA binding sequence specific DNA binding RNA polymerase II transcription regulatory region sequence specific DNA binding microtubule binding chromatin binding metal ion binding RNA polymerase II cis regulatory region sequence specific DNA binding protein binding nucleic acid binding transcription factor activity RNA polymerase II distal enhancer sequence specific binding DNA binding transcription factor activity RNA polymerase II specificCellular componentcytoplasm cytosol cilium nucleoplasm ciliary base ciliary tip axoneme nucleusBiological processepidermal cell differentiation proximal distal pattern formation cell differentiation pituitary gland development regulation of transcription DNA templated positive regulation of smoothened signaling pathway lung development positive regulation of cell migration smoothened signaling pathway involved in regulation of cerebellar granule cell precursor cell proliferation notochord regression transcription DNA templated positive regulation of transcription DNA templated positive regulation of DNA replication ventral midline development multicellular organism development regulation of smoothened signaling pathway liver regeneration response to wounding regulation of osteoblast differentiation osteoblast differentiation spermatogenesis positive regulation of cell population proliferation cerebellar cortex morphogenesis regulation of hepatocyte proliferation canonical Wnt signaling pathway smoothened signaling pathway dorsal ventral pattern formation negative regulation of canonical Wnt signaling pathway positive regulation of transcription by RNA polymerase II digestive tract morphogenesis prostate gland development positive regulation of cardiac muscle cell proliferation positive regulation of cell cycle G1 S phase transitionSources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez273514632EnsemblENSG00000111087ENSMUSG00000025407UniProtP08151P47806RefSeq mRNA NM 001160045NM 001167609NM 005269NM 010296RefSeq protein NP 001153517NP 001161081NP 005260NP 034426Location UCSC Chr 12 57 46 57 47 MbChr 10 127 17 127 18 MbPubMed search 3 4 WikidataView Edit HumanView Edit Mouse Contents 1 Function 2 Gli family 3 Isolation 4 Interactions 5 References 6 External linksFunction EditThe Gli proteins are the effectors of Hedgehog Hh signaling and have been shown to be involved in cell fate determination proliferation and patterning in many cell types and most organs during embryo development 6 In the developing spinal cord the target genes of Gli proteins that are themselves transcription factors are arranged into a complex gene regulatory network that translates the extracellular concentration gradient of Sonic hedgehog into different cell fates along the dorsoventral axis 7 The Gli transcription factors activate inhibit transcription by binding to Gli responsive genes and by interacting with the transcription complex The Gli transcription factors have DNA binding zinc finger domains which bind to consensus sequences on their target genes to initiate or suppress transcription 8 Yoon 9 showed that mutating the Gli zinc finger domain inhibited the proteins effect proving its role as a transcription factor Gli proteins have an 18 amino acid region highly similar to the a helical herpes simplex viral protein 16 activation domain This domain contains a consensus recognition element for the human TFIID TATA box binding protein associated factor TAFII31 9 Other proteins such as Missing in Metastasis MIM BEG4 have been shown to potentiate the effects of the Gli transcription factors on target gene transcription Gli and MIM have been shown to act synergistically to induce epidermal growth and MIM Gli1 overexpressing grafts show similar growth patterns to Shh grafts 10 Gli family EditThere are three members of the family Gli1 Gli2 and Gli3 which are all transcription factors mediating the Hh pathway The GLI1 GLI2 and GLI3 genes encode transcription factors which all contain conserved tandem C2 H2 zinc finger domains and a consensus histidine cysteine linker sequence between zinc fingers This Gli motif is related to those of Kruppel which is a Drosophila segmentation gene of the gap class 11 In transgenic mice mutant Gli1 lacking the zinc fingers does not induce Sonic Hedgehog Shh targets 12 The conserved stretch of 9 amino acids connects the C terminal histidine of one finger to the N terminal cysteine of the next The GLI consensus finger amino acid sequence is Y F JXCX3GCX3 F Y X5LX2HX4H T S GEKP 11 The Gli1 and Gli2 protein zinc finger DNA binding domain have been shown to bind to the DNA consensus GLI binding site GACCACCCA 13 Gli Proteins transcriptional regulation is tissue specific for many targets For example Gli1 in primary keratinocytes upregulates FOXM1 14 whereas in mesenchymal C3H10T1 2 cells it has been shown to upregulate platelet derived growth factor receptor PDGFRa 15 Human Gli1 encodes a transcription activator involved in development that is a known oncogene 9 16 It has been found that N terminal regions of Gli1 recruit histone deacetylase complexes via SuFu which are involved in DNA folding in chromosomes 17 This may negatively regulate transcription indicating Gli1 could act as transcriptional inhibitor as well as an activator 18 The human GLI1 promoter region is regulated by a 1 4 kb 5 region including a 5 flanking sequence an untranslated exon and 425bp of the first intron Numerous proteins such as Sp1 USF1 USF2 and Twist are also involved in Gli1 promoter regulation 19 20 21 During mouse embryo development Gli1 expression can be detected in the gut mesoderm ventral neural tube ependymal layer of the spinal cord forebrain midbrain cerebellum and in sites of endochondral bone formation 22 23 24 Some of the downstream gene targets of human Gli1 include regulators of the cell cycle and apoptosis such as cyclin D2 and plakoglobin respectively 25 Gli1 also upregulates FoxM1 in BCC 14 Gli1 expression can also mimic Shh expression in certain cell types 26 Isolation EditGLI1 was originally isolated from a glioma tumour and has been found to be up regulated in many tumors including muscle brain and skin tumors such as Basal cell carcinoma BCC 27 DNA copy number alterations that contribute to increased conversion of the oncogenes Gli1 3 into transcriptional activators by the Hedgehog signaling pathway are included in a genome wide pattern which was found to be correlated with an astrocytoma patient s outcome 28 Shh and the Gli genes are normally expressed in hair follicles and skin tumours expressing Gli1 may arise from hair follicles The level of Gli1 expression correlates with the tumor grade in bone and soft tissue sarcomas 29 Transgenic mice and frogs overexpressing Gli1 develop BCC like tumours as well as other hair follicle derived neoplasias such as trichoepitheliomas cylindromas and trichoblastomas 26 30 Expression of Gli1 in the embryonic frog epidermis results in the development of tumours that express endogenous Gli1 This suggests that overexpressed Gli1 alone is probably sufficient for tumour development 30 31 Mutations leading to the expression of Gli1 in basal cells are thus predicted to induce BCC formation 26 Interactions EditGLI1 has been shown to interact with SAP18 32 STK36 33 SUFU 34 35 36 and ZIC1 37 References Edit a b c GRCh38 Ensembl release 89 ENSG00000111087 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000025407 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Kinzler KW Bigner SH Bigner DD Trent JM Law ML O Brien SJ Wong AJ Vogelstein B April 1987 Identification of an amplified highly expressed gene in a human glioma Science 236 4797 70 3 Bibcode 1987Sci 236 70K doi 10 1126 science 3563490 PMID 3563490 Ruiz i Altaba A June 1999 Gli proteins encode context dependent positive and negative functions implications for development and disease Development 126 14 3205 16 doi 10 1242 dev 126 14 3205 PMID 10375510 Lovrics A Gao Y Juhasz B Bock I Byrne HM Dinnyes A Kovacs KA November 2014 Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord PLOS ONE 9 11 11430 Bibcode 2014PLoSO 9k1430L doi 10 1371 journal pone 0111430 PMC 4232242 PMID 25398016 Sasaki H Hui C Nakafuku M Kondoh H April 1997 A binding site for Gli proteins is essential for HNF 3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro Development 124 7 1313 22 doi 10 1242 dev 124 7 1313 PMID 9118802 a b c Liu CZ Yang JT Yoon JW Villavicencio E Pfendler K Walterhouse D Iannaccone P March 1998 Characterization of the promoter region and genomic organization of GLI a member of the Sonic hedgehog Patched signaling pathway Gene 209 1 2 1 11 doi 10 1016 S0378 1119 97 00668 9 PMID 9524201 Callahan CA Ofstad T Horng L Wang JK Zhen HH Coulombe PA Oro AE November 2004 MIM BEG4 a Sonic hedgehog responsive gene that potentiates Gli dependent transcription Genes Dev 18 22 2724 9 doi 10 1101 gad 1221804 PMC 528890 PMID 15545630 a b Ruppert JM Kinzler KW Wong AJ Bigner SH Kao FT Law ML Seuanez HN O Brien SJ Vogelstein B August 1988 The GLI Kruppel family of human genes Mol Cell Biol 8 8 3104 13 doi 10 1128 mcb 8 8 3104 PMC 363537 PMID 2850480 Park HL Bai C Platt KA Matise MP Beeghly A Hui CC Nakashima M Joyner AL April 2000 Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation Development 127 8 1593 605 doi 10 1242 dev 127 8 1593 PMID 10725236 Kinzler KW Vogelstein B February 1990 The GLI gene encodes a nuclear protein which binds specific sequences in the human genome Mol Cell Biol 10 2 634 42 doi 10 1128 mcb 10 2 634 PMC 360861 PMID 2105456 a b Teh MT Wong ST Neill GW Ghali LR Philpott MP Quinn AG August 2002 FOXM1 is a downstream target of Gli1 in basal cell carcinomas Cancer Res 62 16 4773 80 PMID 12183437 Xie J Aszterbaum M Zhang X Bonifas JM Zachary C Epstein E McCormick F July 2001 A role of PDGFRalpha in basal cell carcinoma proliferation Proc Natl Acad Sci U S A 98 16 9255 9 Bibcode 2001PNAS 98 9255X doi 10 1073 pnas 151173398 PMC 55407 PMID 11481486 Kinzler KW Bigner SH Bigner DD Trent JM Law ML O Brien SJ Wong AJ Vogelstein B April 1987 Identification of an amplified highly expressed gene in a human glioma Science 236 4797 70 3 Bibcode 1987Sci 236 70K doi 10 1126 science 3563490 PMID 3563490 Cheng SY Bishop JM April 2002 Suppressor of Fused represses Gli mediated transcription by recruiting the SAP18 mSin3 corepressor complex Proc Natl Acad Sci U S A 99 8 5442 7 Bibcode 2002PNAS 99 5442C doi 10 1073 pnas 082096999 PMC 122788 PMID 11960000 Jacob J Briscoe J August 2003 Gli proteins and the control of spinal cord patterning EMBO Rep 4 8 761 5 doi 10 1038 sj embor embor896 PMC 1326336 PMID 12897799 Villavicencio EH Yoon JW Frank DJ Fuchtbauer EM Walterhouse DO Iannaccone PM April 2002 Cooperative E box regulation of human GLI1 by TWIST and USF Genesis 32 4 247 58 doi 10 1002 gene 10078 PMID 11948912 S2CID 12132097 Gitelman I September 1997 Twist protein in mouse embryogenesis Dev Biol 189 2 205 14 doi 10 1006 dbio 1997 8614 PMID 9299114 Hebrok M Fuchtbauer A Fuchtbauer EM May 1997 Repression of muscle specific gene activation by the murine Twist protein Exp Cell Res 232 2 295 303 doi 10 1006 excr 1997 3541 PMID 9168805 Hui CC Slusarski D Platt KA Holmgren R Joyner AL 1994 Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus Gli Gli 2 and Gli 3 in ectoderm and mesoderm derived tissues suggests multiple roles during postimplantation development Dev Biol 162 2 402 13 doi 10 1006 dbio 1994 1097 PMID 8150204 Walterhouse D Ahmed M Slusarski D Kalamaras J Boucher D Holmgren R Iannaccone P 1993 gli a zinc finger transcription factor and oncogene is expressed during normal mouse development Dev Dyn 196 2 91 102 doi 10 1002 aja 1001960203 PMID 8364225 S2CID 8951322 Wallace VA 1999 Purkinje cell derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum Curr Biol 9 8 445 8 doi 10 1016 s0960 9822 99 80195 x PMID 10226030 S2CID 12373898 Yoon JW Kita Y Frank DJ Majewski RR Konicek BA Nobrega MA Jacob H Walterhouse D Iannaccone P February 2002 Gene expression profiling leads to identification of GLI1 binding elements in target genes and a role for multiple downstream pathways in GLI1 induced cell transformation J Biol Chem 277 7 5548 55 doi 10 1074 jbc M105708200 PMID 11719506 a b c Dahmane N Lee J Robins P Heller P Ruiz i Altaba A 1997 Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours Nature 389 6653 876 81 Bibcode 1997Natur 389 876D doi 10 1038 39918 PMID 9349822 S2CID 4424572 Ruiz i Altaba A 2011 Hedgehog signaling and the Gli code in stem cells cancer and metastases Sci Signal 4 200 pt9 doi 10 1126 scisignal 2002540 PMID 22114144 Aiello KA Alter O October 2016 Platform Independent Genome Wide Pattern of DNA Copy Number Alterations Predicting Astrocytoma Survival and Response to Treatment Revealed by the GSVD Formulated as a Comparative Spectral Decomposition PLOS ONE 11 10 e0164546 Bibcode 2016PLoSO 1164546A doi 10 1371 journal pone 0164546 PMC 5087864 PMID 27798635 Dahmane N Lee J Robins P Heller P Ruiz i Altaba A October 1997 Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours Nature 389 6653 876 81 Bibcode 1997Natur 389 876D doi 10 1038 39918 PMID 9349822 S2CID 4424572 Erratum in Nature 1997 December 4 390 6659 536 a b Nilsson M Unden AB Krause D Malmqwist U Raza K Zaphiropoulos PG Toftgard R 2000 Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI 1 Proc Natl Acad Sci U S A 97 7 3438 43 doi 10 1073 pnas 050467397 PMC 16258 PMID 10725363 Tripathi K Mani C Barnett R Nalluri S Bachaboina L Rocconi RP Athar M Owen LB Palle K 2014 Gli1 Regulates S phase Checkpoint in Tumor Cells via Bid and its Inhibition Sensitizes to DNA Topoisomerase 1 Inhibitors Journal of Biological Chemistry 289 45 31513 25 doi 10 1074 jbc M114 606483 PMC 4223349 PMID 25253693 Cheng SY Bishop JM April 2002 Suppressor of Fused represses Gli mediated transcription by recruiting the SAP18 mSin3 corepressor complex Proc Natl Acad Sci U S A 99 8 5442 7 Bibcode 2002PNAS 99 5442C doi 10 1073 pnas 082096999 PMC 122788 PMID 11960000 Murone M Luoh SM Stone D Li W Gurney A Armanini M Grey C Rosenthal A de Sauvage FJ May 2000 Gli regulation by the opposing activities of fused and suppressor of fused Nat Cell Biol 2 5 310 2 doi 10 1038 35010610 PMID 10806483 S2CID 31424234 Stone DM Murone M Luoh S Ye W Armanini MP Gurney A Phillips H Brush J Goddard A de Sauvage FJ Rosenthal A December 1999 Characterization of the human suppressor of fused a negative regulator of the zinc finger transcription factor Gli J Cell Sci 112 23 4437 48 doi 10 1242 jcs 112 23 4437 PMID 10564661 Kogerman P Grimm T Kogerman L Krause D Unden AB Sandstedt B Toftgard R Zaphiropoulos PG September 1999 Mammalian suppressor of fused modulates nuclear cytoplasmic shuttling of Gli 1 Nat Cell Biol 1 5 312 9 doi 10 1038 13031 PMID 10559945 S2CID 6907964 Dunaeva M Michelson P Kogerman P Toftgard R February 2003 Characterization of the physical interaction of Gli proteins with SUFU proteins J Biol Chem 278 7 5116 22 doi 10 1074 jbc M209492200 PMID 12426310 Koyabu Y Nakata K Mizugishi K Aruga J Mikoshiba K March 2001 Physical and functional interactions between Zic and Gli proteins J Biol Chem 276 10 6889 92 doi 10 1074 jbc C000773200 PMID 11238441 External links EditGli1 protein at the US National Library of Medicine Medical Subject Headings MeSH Retrieved from https en wikipedia org w index php title GLI1 amp oldid 1079488739, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.