fbpx
Wikipedia

Gemini Observatory

The Gemini Observatory comprises two 8.1-metre (26.6 ft) telescopes, Gemini North and Gemini South, situated in Hawaii and Chile, respectively. These twin telescopes offer extensive coverage of the northern and southern skies and rank among the most advanced optical/infrared telescopes available to astronomers. (See List of largest optical reflecting telescopes).

Gemini Observatory
Gemini North in Hawaii and Gemini South in Chile
Alternative namesInternational Gemini Observatory
Named afterGemini 
OrganizationGemini Consortium (NSF-US, NRC-Canada, CONICYT-Chile, MCTI-Brazil, MCTIP-Argentina, KASI-Korea) and AURA
LocationMauna Kea Access Rd, Hawaii, U.S.
Cerro Pachón, Chile
Coordinates19°49′26″N 155°28′11″W / 19.82396°N 155.46984°W / 19.82396; -155.46984 (Gemini North Observatory)
30°14′27″S 70°44′12″W / 30.24073°S 70.73659°W / -30.24073; -70.73659 (Gemini South Observatory)
Altitude4,213 m (13,822 ft)
2,722 m (8,930 ft)
Established2000
Websitewww.gemini.edu
Telescopes
Gemini North8.1 m Cassegrain reflector
Gemini South8.1 m Cassegrain reflector
  Related media on Commons

The observatory is owned and operated by the National Science Foundation (NSF) of the United States, the National Research Council of Canada, CONICYT of Chile, MCTI of Brazil, MCTIP of Argentina, and Korea Astronomy and Space Science Institute (KASI) of Republic of Korea. The NSF is the primary funding contributor, providing about 70% of the required resources. The Association of Universities for Research in Astronomy (AURA) manages the operations and maintenance of the observatory through a cooperative agreement with the NSF, acting as the Executive Agency on behalf of the international partners.

The Gemini telescopes are equipped with modern instruments and excel in optical and near-infrared performance. They utilize adaptive optics technology to counteract atmospheric blurring. Notably, Gemini leads in wide-field adaptive optics assisted infrared imaging and has recently commissioned the Gemini Planet Imager, enabling researchers to directly observe and study exoplanets with extreme faintness compared to their host stars. Gemini supports research across various domains of modern astronomy, including the Solar System, exoplanets, star formation and evolution, galaxy structure and dynamics, supermassive black holes, distant quasars, and the structure of the Universe on large scales.

Previously, Australia and the United Kingdom were also involved in the Gemini Observatory partnership. However, the UK withdrew its funding at the end of 2012. In response, the observatory has significantly reduced operating costs, streamlined operations, and implemented energy-saving measures at both sites. Additionally, both telescopes are now operated remotely from Base Facility Operations centers located in Hilo, Hawaii, and La Serena, Chile. In 2018, KASI has signed an agreement to become a full participant of the Gemini Observatory.[1]

Overview edit

The Gemini Observatory's international Headquarters and Northern Operations Center is located in Hilo, Hawaii at the University of Hawaii at Hilo University Park. The Southern Operations Center is located on the Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile.

  • The "Gemini North" telescope, officially called the Frederick C. Gillett Gemini Telescope[2] is located on Hawaii's Mauna Kea, along with many other telescopes. That location provides excellent viewing conditions due to the superb atmospheric conditions (stable, dry, and rarely cloudy) above the 4,200-metre-high (13,800 ft) dormant volcano. It saw first light in 1999 and began scientific operations in 2000.
 
Gemini North on the summit of Hawaii's Mauna Kea
  • The "Gemini South" telescope is located at over 2,700 metres (8,900 ft) elevation on a mountain in the Chilean Andes called Cerro Pachón. Very dry air and negligible cloud cover make this another prime telescope location (again shared by several other observatories, including the Southern Astrophysical Research Telescope (SOAR) and Cerro Tololo Inter-American Observatory). Gemini South saw first light in 2000.
 
Gemini South, on Cerro Pachón in the Chilean Andes

Together, the two telescopes cover almost all of the sky except for two areas near the celestial poles: Gemini North cannot point north of declination +89 degrees, and Gemini South cannot point south of declination −89 degrees.

Both Gemini telescopes employ a range of technologies to provide world-leading performance in optical and near-infrared astronomy, including laser guide stars, adaptive optics, multi conjugate adaptive optics, and multi-object spectroscopy. In addition, very high-quality infrared observations are possible due to the advanced protected silver coating applied to each telescope's mirrors, the small secondary mirrors in use (resulting in an f16 focal ratio), and the advanced ventilation systems installed at each site.

History edit

It is estimated that the two telescopes cost approximately US$187 million to construct, and a night on each Gemini telescope is worth tens of thousands of U.S. dollars.[3]

The two 8-meter mirror blanks, each weighing over 22 t (24 short tons), were fabricated from Corning's Ultra Low Expansion glass. Each blank was constructed by the fusing together of and subsequent sagging of a series of smaller hexagonal pieces. This work was performed at Corning's Canton Plant facility located in upstate New York. The blanks were then transported via ship to REOSC, located south of Paris for final grinding and polishing.

One decision made during design to save money was eliminating the two Nasmyth platforms. This makes instruments like high resolution spectrographs and adaptive optics systems much more difficult to construct, due to the size and mass requirement inherent with Cassegrain instruments. A further challenge in designing large instruments is the requirement to have a specific mass and center-of-mass position to maintain the overall balance of the telescope.

UK funding crisis edit

In November 2007 it was announced that the UK's Science and Technology Facilities Council (STFC) had proposed that, to save £4 million annually, it would aim to leave the telescope's operating consortium. At a consortium meeting in January 2008, the conclusion was made that the UK would officially withdraw from the Gemini Partnership and the Gemini Observatory Agreement effective February 28, 2007.[citation needed] This decision significantly disrupted observatory budgets, and resulted in the cancellation of at least one instrument in development at that time, the Precision Radial Velocity Spectrograph.

Since the reason for the UK breaking its part of the agreement seemed to be entirely financial, there was public outcry, including the "Save Astronomy" movement[4] which asked citizens to speak up against the astronomy budget cuts. The UK rethought their decision to withdraw from Gemini, and requested reinstatement into the agreement, and were officially welcomed back on February 27, 2008. However, in December 2009 it was announced that the UK would indeed leave the Gemini partnership in 2012, as well as terminating several other international science partnerships, due to continuing funding limitations.[5]

Directorship edit

The first director of Gemini was Matt Mountain, who after holding the post for eleven years left in September 2005 to become director of Space Telescope Science Institute (STScI). He was succeeded by Jean-René Roy, who served for nine months,[6] after which time Doug Simons held the directorship from June 2006 to May 2011. He in turn was succeeded by an interim appointment of the then-retired Fred Chaffee, former director of W. M. Keck Observatory. Chaffee was succeeded in August 2012 by Markus Kissler-Patig,[7] who held the post until June 2017. Laura Ferrarese[8] succeeded Dr. Kissler-Patig in July 2017 with an interim appointment. The current director is Jennifer Lotz since September 6, 2018.

Governance and oversight edit

The Observatory is governed by the Gemini Board, as defined by the Gemini International Agreement. The Board sets budgetary policy bounds for the Observatory and carries out broad oversight functions, with advice from a Science and Technology Advisory sub-Committee (the STAC) and a Finance sub-Committee. The U.S. holds six of the 13 voting seats on the Gemini Board. The U.S. members of the Board typically serve three year terms and are recruited and nominated by the National Science Foundation (NSF), which represents the US community in all aspects of Gemini operations and development. Gemini is currently managed by the Association of Universities for Research in Astronomy (AURA), Inc., on behalf of the partnership through an award from NSF. AURA has operated Gemini since its construction in the 1990s.

NSF serves as the Executive Agency and acts on behalf of the international participants. NSF has one seat on the Gemini Board; an additional NSF staff member serves as the Executive Secretary to the board. Programmatic management is the responsibility of an NSF Program Officer. The Program Officer monitors operations and development activities at the Observatory, nominates U.S. scientists to Gemini advisory committees, conducts reviews on behalf of the partnership, and approves funding actions, reports, and contracts.

Instrumentation edit

 
Gemini Planet Imager (GPI) image of a planet orbiting a distant star known as 51 Eridani. The bright central star has been mostly removed by a hardware and software mask to enable the detection of the exoplanet (labelled "b") that is one millionth as bright.

Adaptive optics edit

Both Gemini telescopes employ sophisticated state-of-the-art adaptive optics systems. Gemini-N routinely uses the ALTAIR system, built in Canada, which achieves a 30–45% Strehl ratio on a 22.5-arcsecond-square field and can feed NIRI, NIFS or GNIRS;[9] it can use natural or laser guide stars. In conjunction with NIRI it was responsible for the discovery of HR8799b.

At Gemini-S the Gemini Multi-Conjugate Adaptive Optics System (GeMS) may be used with the FLAMINGOS-2 near-infrared imager and spectrometry, or the Gemini South Adaptive Optics Imager (GSAOI), which provides uniform, diffraction-limited image quality to arcminute-scale fields of view. GeMS achieved first light on December 16, 2011.[10] Using a constellation of five laser guide stars, it achieved FWHM of 0.08 arc-seconds in H band over a field of 87 arc-seconds square.

An adaptive secondary mirror has been considered for Gemini,[11] which would provide reasonable adaptive-optics corrections (equivalent to natural seeing at the 20th-percentile level for 80% of the time) to all instruments on the telescope to which it is attached. However, as of 2017, there are no plans to implement such an upgrade to either telescope.

Instruments edit

 
Laser projects a laser guide star (LGS) on Gemini South, part of the adaptive optics system used to correct for distortions caused by turbulence in the atmosphere
 
Mosaic of a sample of disks found in new survey[12]
 
Under the Dome[13]

In recent years the Gemini Board has directed the observatory to support only four instruments at each telescope. Because Gemini-N and Gemini-S are essentially identical, the observatory is able to move instruments between the two sites, and does so on a regular basis. Two of the most popular instruments are the Gemini Multi-Object Spectrographs (GMOS) on each of the telescopes. Built in Edinburgh, Scotland by the UK Astronomy Technology Centre,[citation needed] these instruments provide multi-object spectroscopy, long-slit spectroscopy, imaging, and integral field spectroscopy at optical wavelengths. The detectors in each instrument have recently been upgraded with Hamamatsu Photonics devices, which significantly improve performance in the far red part of the optical spectrum (700–1,000 nm).[14]

Near-infrared imaging and spectroscopy are provided by the NIRI, NIFS, GNIRS, FLAMINGOS-2, and GSAOI instruments. The availability and detailed descriptions of these instruments is documented on the Gemini Observatory Web site.[15]

One of the most exciting new instruments at Gemini is GPI, the Gemini Planet Imager.[16] GPI was built by a consortium of US and Canadian institutions to fulfill the requirements of the ExAOC Extreme Adaptive Optics Coronagraph proposal. GPI is an extreme adaptive-optics imaging polarimeter/integral-field spectrometer, which provides diffraction-limited data between 0.9 and 2.4 microns. GPI is able to directly image planets around nearby stars that are one-millionth as bright as their host star.

Gemini also supports a vigorous visitor instrument program. Instruments may be brought to either telescope for short periods of time and used for specific observing programs by the instrument teams. In return for access to Gemini, the instruments are then made available to the entire Gemini community, so that they may be used for other science projects. Instruments that have made use of this program include the Differential Speckle Survey Instrument (DSSI), the Phoenix near-infrared echelle spectrometer, and the TEXES mid-infrared spectrometer. The ESPaDOnS spectrograph situated in the basement of the Canada–France–Hawaii Telescope (CFHT) is also being used as a "visitor instrument", even though it never moves from CFHT. The instrument is connected to Gemini-North via a 270 meter long optic fibre. Known as GRACES, this arrangement provides very high resolution optical spectroscopy on an 8-meter class telescope.

Gemini's silver coating and infrared optimization allow sensitive observations in the mid-infrared part of the spectrum (5–27 µm). Historically, mid-infrared observations have been obtained using T-ReCS at Gemini South and Michelle at Gemini North. Both instruments have imaging and spectroscopic capabilities, though neither is currently[when?] being used at Gemini.

Instrumentation development issues edit

The first phase of Gemini instrumentation development did not run smoothly; schedules slipped by several years, and budgets sometimes overran by as much as a factor of two. In 2003 the instrument-development process was re-analysed in the Aspen report;[17] for example, an incentive program was introduced where instrument developers were guaranteed substantial allocations of telescope time if they delivered the instrument on time and lose it as the instrument is delayed.

A wide-field multi-object spectrograph achieved substantial scientific support, but would have required major changes to the design of the telescope – effectively it would have required one of the telescopes to be devoted to that instrument. The project was terminated in 2009.[18]

Second-round instrumentation development edit

In January 2012, the Gemini Observatory started a new round of instrumentation development.[19] This process has since resulted in the development of a high-resolution optical spectrograph known as GHOST, with commissioning beginning in April 2022 and on-sky science commissioning planned for June 2022.[20]

Observing and community support edit

The Gemini Observatory's primary mission is to serve the general astronomical communities in all of the participant countries; indeed, the Observatory provides the bulk of general access to large optical/infrared telescopes for many of the participants, and represents the only public-access 8 meter class facility in the U.S. The observatory reaches out to its community through National Gemini Offices (NGOs), the U.S. office being located in Tucson at the National Optical Astronomy Observatory. The NGOs provide general support to the users, from proposal preparation through data acquisition, reduction, and analysis.

In any given year the two telescopes typically provided data for over 400 discrete science projects, over two-thirds of which are led by U.S. astronomers. About 50-70 percent of the top-ranked "Band 1" proposals reach 100 percent completion in any given year. Of order 90 percent of the available (clear weather) time is used for science, the rest being allocated to scheduled maintenance or lost to unforeseen technical faults.

Gemini has in recent years developed innovative new observing modes. These include the ‘Large and Long’ program to support requests for large amounts of telescope time and the ‘Fast Turnaround’ program to provide quick access to the telescope. These and other modes have been approved by the Gemini Board of Directors and are proving popular with the user community. In 2015 up to 20 percent of available telescope time was used for Large and Long programs, which in terms of hours of observing attracted five times more user demand than could be accommodated. In the same period approximately 10 percent of telescope time was assigned to the Fast Turnaround program, which in the second half of 2015 was over-subscribed by a factor of 1.6. In 2015 the remaining U.S. time allocation on Gemini was over-subscribed by a factor of approximately 2, consistent with recent years.

Prospects (2017 onwards) edit

In 2010, the U.S. National Research Council (NRC) conducted its sixth decadal survey in astronomy and astrophysics to recommend key science questions and new initiatives for the current decade. Since both the NRC recommendations and current programs could not be accommodated within subsequent budget projections, the National Science Foundation's Division of Astronomical Sciences, through the Advisory Committee of the Directorate for Mathematical and Physical Sciences (MPS), conducted a community-based portfolio review to make implementation recommendations that would best respond to the decadal survey science questions. The resulting report, Advancing Astronomy in the Coming Decade: Opportunities and Challenges,[21] was released in August 2012 and included recommendations related to all of the major telescope facilities funded by NSF. The Portfolio Review Committee report ranked Gemini Observatory as a critical component of the U.S.'s future astronomical research resources and recommended that the U.S. retain a majority share in the international partnership for at least the next several years. However, given the constraints that were considered, the Committee recommended that the U.S. contribution to Gemini operations be capped in 2017 and beyond.

NSF has since commissioned a National Research Council study, titled "A Strategy to Optimize the U.S. Optical/Infrared System in the Era of the Large Synoptic Survey Telescope".[22] The report made a recommendation that NSF work with its partners in Gemini to ensure that Gemini-South is well positioned for faint-object spectroscopy early in the era of the Large Synoptic Survey Telescope (LSST). Observatory support for the development of a next-generation medium-resolution spectrograph over the next 5–6 years addresses this recommendation directly.

With the signing of the new International Agreement in late 2015, support from the five signatories (the U.S., Canada, Argentina, Brazil, and Chile) is secured for the period 2016–2021. Australia withdrew from the Gemini Observatory partnership in 2015, and Korea has joined the partnership in 2018. The currently effective International Agreement signed in 2020 November has the six signatories (Argentina, Brazil, Canada, Chile, Korea, and the US), and the Agreement is effective till the end of 2026.

Observations and research edit

The Gemini was one of the telescopes that observed the turn-on of a nuclear transient, along with the Swift space telescope (aka Neil Gehrels Swift Observatory since 2018) and the Hiltner telescope (MDM observatory).[23] The transient event was called PS1-13cbe and was located in the Galaxy SDSS J222153.87+003054.2 [23]

Incidents edit

On 22 October 2022, the 8.1m primary mirror of the Gemini North telescope was damaged when it touched an earthquake restraint while on a wash cart, being moved for stripping the silver coating before recoating. Two chips were created, on the bottom edge and at the margin of the main mirror.[24] This has since been repaired after several months of downtime and was back observing the sky on 2 June 2023 with apparently no loss of performance or quality.[25]

 
Comparison of nominal sizes of apertures of the Gemini Observatory and some notable optical telescopes

See also edit

References edit

  1. ^ https://noirlab.edu/public/news/gemini1804/?nocache=true
  2. ^ "Gemini Telescope on Mauna Kea Named in Honor of Dr. Frederick C. Gillett | Gemini Observatory". Gemini.edu. 13 November 2002. Retrieved 2013-11-15.
  3. ^ "Ausgo Faq". Ausgo.aao.gov.au. Retrieved 2013-11-15.
  4. ^ "Study Astronomy Online". Saveastronomy.org.uk. Retrieved 2013-11-15.
  5. ^ "UK physics budget slashed". physicstoday.org. Archived from the original on December 22, 2009.
  6. ^ "AURA and Gemini Observatory Announce New Director | SpaceRef - Your Space Reference". SpaceRef. 2006-02-20. Retrieved 2013-11-15.
  7. ^ "AURA selects Kissler-Patig as new Gemini Observatory Director". 2012-03-23. Retrieved 2012-03-24.
  8. ^ "Dr. Laura Ferrarese Appointed Interim Director of Gemini Observatory". 2017-07-02. Retrieved 2012-03-24.
  9. ^ "Gemini Observatory : Adaptive Optics Instrumentation and Capabilities" (PDF). Noao.edu. Retrieved 2013-11-15.
  10. ^ "Revolutionary Instrument Propels Astronomical Imaging to New Extremes | Gemini Observatory". Gemini.edu. 6 January 2012. Retrieved 2013-11-15.
  11. ^ "Gemini Ground Layer Adaptive Optics Feasibility Study Report" (PDF). Gemini.edu. Retrieved 2013-11-15.
  12. ^ "Dusty Disks Imaged from NSF's NOIRLab". Retrieved 2023-03-29.
  13. ^ "Under the Dome". Retrieved 2023-05-24.
  14. ^ "GMOS | Gemini Observatory". Retrieved 2018-08-14.
  15. ^ "Gemini Observatory". Gemini Observatory.
  16. ^ "Gemini Planet Imager". Planetimager.org. Retrieved 2013-11-15.
  17. ^ "Managing Gemini Observatory's Future Instrumentation Program" (PDF). Lna.br. Retrieved 2013-11-15.
  18. ^ "Gemini Board WFMOS Resolution | Gemini Observatory". Gemini.edu. 2009-06-01. Retrieved 2013-11-15.
  19. ^ "Call for White Papers to define the Gemini InfraRed-Optical Spectrometer (GIROS) | Gemini Observatory". Gemini.edu. 13 January 2012. Retrieved 2013-11-15.
  20. ^ "GHOST Gemini High Resolution Optical SpecTrograph". 5 April 2020.
  21. ^ "US NSF - MPS - AST - Division Portfolio Review". www.nsf.gov.
  22. ^ . nationalacademies.org. Archived from the original on 2019-10-24.
  23. ^ a b "Rapid 'turn-on' of a nuclear transient observed by astronomers". phys.org. Retrieved 2019-10-14.
  24. ^ Gemini North Shutdown Extended Following Incident During Mirror Movement On Thursday 20 October 2022 the 8.1-meter primary mirror of Gemini North suffered damage to two areas on its outer and bottom edge, NOIRLab, National Science Foundation announcement, 2022-11-01
  25. ^ Gemini North returns to cosmic exploration “with a bang” following repair and refurbishment of its 8-meter primary mirror, NOIRLab, National Science Foundation announcement, 2023-06-07

External links edit

  • Official website
  • Gemini Observatory Image Gallery
  • UK Re-instated as Partner in Gemini
  • Save Astronomy
  • UK Update of Gemini Partnership
  • from A Gentle Rain of Starlight: The Story of Astronomy on Mauna Kea by Michael J. West. ISBN 0-931548-99-3.
  • "Science funding cuts to hit UK astronomers"[dead link] — The Daily Telegraph

gemini, observatory, comprises, metre, telescopes, gemini, north, gemini, south, situated, hawaii, chile, respectively, these, twin, telescopes, offer, extensive, coverage, northern, southern, skies, rank, among, most, advanced, optical, infrared, telescopes, . The Gemini Observatory comprises two 8 1 metre 26 6 ft telescopes Gemini North and Gemini South situated in Hawaii and Chile respectively These twin telescopes offer extensive coverage of the northern and southern skies and rank among the most advanced optical infrared telescopes available to astronomers See List of largest optical reflecting telescopes Gemini ObservatoryGemini North in Hawaii and Gemini South in ChileAlternative namesInternational Gemini ObservatoryNamed afterGemini OrganizationGemini Consortium NSF US NRC Canada CONICYT Chile MCTI Brazil MCTIP Argentina KASI Korea and AURALocationMauna Kea Access Rd Hawaii U S Cerro Pachon ChileCoordinates19 49 26 N 155 28 11 W 19 82396 N 155 46984 W 19 82396 155 46984 Gemini North Observatory 30 14 27 S 70 44 12 W 30 24073 S 70 73659 W 30 24073 70 73659 Gemini South Observatory Altitude4 213 m 13 822 ft 2 722 m 8 930 ft Established2000Websitewww wbr gemini wbr eduTelescopesGemini North8 1 m Cassegrain reflectorGemini South8 1 m Cassegrain reflector Related media on Commons edit on Wikidata The observatory is owned and operated by the National Science Foundation NSF of the United States the National Research Council of Canada CONICYT of Chile MCTI of Brazil MCTIP of Argentina and Korea Astronomy and Space Science Institute KASI of Republic of Korea The NSF is the primary funding contributor providing about 70 of the required resources The Association of Universities for Research in Astronomy AURA manages the operations and maintenance of the observatory through a cooperative agreement with the NSF acting as the Executive Agency on behalf of the international partners The Gemini telescopes are equipped with modern instruments and excel in optical and near infrared performance They utilize adaptive optics technology to counteract atmospheric blurring Notably Gemini leads in wide field adaptive optics assisted infrared imaging and has recently commissioned the Gemini Planet Imager enabling researchers to directly observe and study exoplanets with extreme faintness compared to their host stars Gemini supports research across various domains of modern astronomy including the Solar System exoplanets star formation and evolution galaxy structure and dynamics supermassive black holes distant quasars and the structure of the Universe on large scales Previously Australia and the United Kingdom were also involved in the Gemini Observatory partnership However the UK withdrew its funding at the end of 2012 In response the observatory has significantly reduced operating costs streamlined operations and implemented energy saving measures at both sites Additionally both telescopes are now operated remotely from Base Facility Operations centers located in Hilo Hawaii and La Serena Chile In 2018 KASI has signed an agreement to become a full participant of the Gemini Observatory 1 Contents 1 Overview 2 History 2 1 UK funding crisis 3 Directorship 4 Governance and oversight 5 Instrumentation 5 1 Adaptive optics 5 2 Instruments 5 3 Instrumentation development issues 5 4 Second round instrumentation development 6 Observing and community support 7 Prospects 2017 onwards 8 Observations and research 9 Incidents 10 See also 11 References 12 External linksOverview editThe Gemini Observatory s international Headquarters and Northern Operations Center is located in Hilo Hawaii at the University of Hawaii at Hilo University Park The Southern Operations Center is located on the Cerro Tololo Inter American Observatory CTIO campus near La Serena Chile The Gemini North telescope officially called the Frederick C Gillett Gemini Telescope 2 is located on Hawaii s Mauna Kea along with many other telescopes That location provides excellent viewing conditions due to the superb atmospheric conditions stable dry and rarely cloudy above the 4 200 metre high 13 800 ft dormant volcano It saw first light in 1999 and began scientific operations in 2000 nbsp Gemini North on the summit of Hawaii s Mauna KeaThe Gemini South telescope is located at over 2 700 metres 8 900 ft elevation on a mountain in the Chilean Andes called Cerro Pachon Very dry air and negligible cloud cover make this another prime telescope location again shared by several other observatories including the Southern Astrophysical Research Telescope SOAR and Cerro Tololo Inter American Observatory Gemini South saw first light in 2000 nbsp Gemini South on Cerro Pachon in the Chilean AndesTogether the two telescopes cover almost all of the sky except for two areas near the celestial poles Gemini North cannot point north of declination 89 degrees and Gemini South cannot point south of declination 89 degrees Both Gemini telescopes employ a range of technologies to provide world leading performance in optical and near infrared astronomy including laser guide stars adaptive optics multi conjugate adaptive optics and multi object spectroscopy In addition very high quality infrared observations are possible due to the advanced protected silver coating applied to each telescope s mirrors the small secondary mirrors in use resulting in an f16 focal ratio and the advanced ventilation systems installed at each site History editIt is estimated that the two telescopes cost approximately US 187 million to construct and a night on each Gemini telescope is worth tens of thousands of U S dollars 3 The two 8 meter mirror blanks each weighing over 22 t 24 short tons were fabricated from Corning s Ultra Low Expansion glass Each blank was constructed by the fusing together of and subsequent sagging of a series of smaller hexagonal pieces This work was performed at Corning s Canton Plant facility located in upstate New York The blanks were then transported via ship to REOSC located south of Paris for final grinding and polishing One decision made during design to save money was eliminating the two Nasmyth platforms This makes instruments like high resolution spectrographs and adaptive optics systems much more difficult to construct due to the size and mass requirement inherent with Cassegrain instruments A further challenge in designing large instruments is the requirement to have a specific mass and center of mass position to maintain the overall balance of the telescope UK funding crisis edit In November 2007 it was announced that the UK s Science and Technology Facilities Council STFC had proposed that to save 4 million annually it would aim to leave the telescope s operating consortium At a consortium meeting in January 2008 the conclusion was made that the UK would officially withdraw from the Gemini Partnership and the Gemini Observatory Agreement effective February 28 2007 citation needed This decision significantly disrupted observatory budgets and resulted in the cancellation of at least one instrument in development at that time the Precision Radial Velocity Spectrograph Since the reason for the UK breaking its part of the agreement seemed to be entirely financial there was public outcry including the Save Astronomy movement 4 which asked citizens to speak up against the astronomy budget cuts The UK rethought their decision to withdraw from Gemini and requested reinstatement into the agreement and were officially welcomed back on February 27 2008 However in December 2009 it was announced that the UK would indeed leave the Gemini partnership in 2012 as well as terminating several other international science partnerships due to continuing funding limitations 5 Directorship editThe first director of Gemini was Matt Mountain who after holding the post for eleven years left in September 2005 to become director of Space Telescope Science Institute STScI He was succeeded by Jean Rene Roy who served for nine months 6 after which time Doug Simons held the directorship from June 2006 to May 2011 He in turn was succeeded by an interim appointment of the then retired Fred Chaffee former director of W M Keck Observatory Chaffee was succeeded in August 2012 by Markus Kissler Patig 7 who held the post until June 2017 Laura Ferrarese 8 succeeded Dr Kissler Patig in July 2017 with an interim appointment The current director is Jennifer Lotz since September 6 2018 Governance and oversight editThe Observatory is governed by the Gemini Board as defined by the Gemini International Agreement The Board sets budgetary policy bounds for the Observatory and carries out broad oversight functions with advice from a Science and Technology Advisory sub Committee the STAC and a Finance sub Committee The U S holds six of the 13 voting seats on the Gemini Board The U S members of the Board typically serve three year terms and are recruited and nominated by the National Science Foundation NSF which represents the US community in all aspects of Gemini operations and development Gemini is currently managed by the Association of Universities for Research in Astronomy AURA Inc on behalf of the partnership through an award from NSF AURA has operated Gemini since its construction in the 1990s NSF serves as the Executive Agency and acts on behalf of the international participants NSF has one seat on the Gemini Board an additional NSF staff member serves as the Executive Secretary to the board Programmatic management is the responsibility of an NSF Program Officer The Program Officer monitors operations and development activities at the Observatory nominates U S scientists to Gemini advisory committees conducts reviews on behalf of the partnership and approves funding actions reports and contracts Instrumentation edit nbsp Gemini Planet Imager GPI image of a planet orbiting a distant star known as 51 Eridani The bright central star has been mostly removed by a hardware and software mask to enable the detection of the exoplanet labelled b that is one millionth as bright Adaptive optics edit Both Gemini telescopes employ sophisticated state of the art adaptive optics systems Gemini N routinely uses the ALTAIR system built in Canada which achieves a 30 45 Strehl ratio on a 22 5 arcsecond square field and can feed NIRI NIFS or GNIRS 9 it can use natural or laser guide stars In conjunction with NIRI it was responsible for the discovery of HR8799b At Gemini S the Gemini Multi Conjugate Adaptive Optics System GeMS may be used with the FLAMINGOS 2 near infrared imager and spectrometry or the Gemini South Adaptive Optics Imager GSAOI which provides uniform diffraction limited image quality to arcminute scale fields of view GeMS achieved first light on December 16 2011 10 Using a constellation of five laser guide stars it achieved FWHM of 0 08 arc seconds in H band over a field of 87 arc seconds square An adaptive secondary mirror has been considered for Gemini 11 which would provide reasonable adaptive optics corrections equivalent to natural seeing at the 20th percentile level for 80 of the time to all instruments on the telescope to which it is attached However as of 2017 update there are no plans to implement such an upgrade to either telescope Instruments edit nbsp Laser projects a laser guide star LGS on Gemini South part of the adaptive optics system used to correct for distortions caused by turbulence in the atmosphere nbsp Mosaic of a sample of disks found in new survey 12 nbsp Under the Dome 13 In recent years the Gemini Board has directed the observatory to support only four instruments at each telescope Because Gemini N and Gemini S are essentially identical the observatory is able to move instruments between the two sites and does so on a regular basis Two of the most popular instruments are the Gemini Multi Object Spectrographs GMOS on each of the telescopes Built in Edinburgh Scotland by the UK Astronomy Technology Centre citation needed these instruments provide multi object spectroscopy long slit spectroscopy imaging and integral field spectroscopy at optical wavelengths The detectors in each instrument have recently been upgraded with Hamamatsu Photonics devices which significantly improve performance in the far red part of the optical spectrum 700 1 000 nm 14 Near infrared imaging and spectroscopy are provided by the NIRI NIFS GNIRS FLAMINGOS 2 and GSAOI instruments The availability and detailed descriptions of these instruments is documented on the Gemini Observatory Web site 15 One of the most exciting new instruments at Gemini is GPI the Gemini Planet Imager 16 GPI was built by a consortium of US and Canadian institutions to fulfill the requirements of the ExAOC Extreme Adaptive Optics Coronagraph proposal GPI is an extreme adaptive optics imaging polarimeter integral field spectrometer which provides diffraction limited data between 0 9 and 2 4 microns GPI is able to directly image planets around nearby stars that are one millionth as bright as their host star Gemini also supports a vigorous visitor instrument program Instruments may be brought to either telescope for short periods of time and used for specific observing programs by the instrument teams In return for access to Gemini the instruments are then made available to the entire Gemini community so that they may be used for other science projects Instruments that have made use of this program include the Differential Speckle Survey Instrument DSSI the Phoenix near infrared echelle spectrometer and the TEXES mid infrared spectrometer The ESPaDOnS spectrograph situated in the basement of the Canada France Hawaii Telescope CFHT is also being used as a visitor instrument even though it never moves from CFHT The instrument is connected to Gemini North via a 270 meter long optic fibre Known as GRACES this arrangement provides very high resolution optical spectroscopy on an 8 meter class telescope Gemini s silver coating and infrared optimization allow sensitive observations in the mid infrared part of the spectrum 5 27 µm Historically mid infrared observations have been obtained using T ReCS at Gemini South and Michelle at Gemini North Both instruments have imaging and spectroscopic capabilities though neither is currently when being used at Gemini Instrumentation development issues edit The first phase of Gemini instrumentation development did not run smoothly schedules slipped by several years and budgets sometimes overran by as much as a factor of two In 2003 the instrument development process was re analysed in the Aspen report 17 for example an incentive program was introduced where instrument developers were guaranteed substantial allocations of telescope time if they delivered the instrument on time and lose it as the instrument is delayed A wide field multi object spectrograph achieved substantial scientific support but would have required major changes to the design of the telescope effectively it would have required one of the telescopes to be devoted to that instrument The project was terminated in 2009 18 Second round instrumentation development edit In January 2012 the Gemini Observatory started a new round of instrumentation development 19 This process has since resulted in the development of a high resolution optical spectrograph known as GHOST with commissioning beginning in April 2022 and on sky science commissioning planned for June 2022 20 Observing and community support editThe Gemini Observatory s primary mission is to serve the general astronomical communities in all of the participant countries indeed the Observatory provides the bulk of general access to large optical infrared telescopes for many of the participants and represents the only public access 8 meter class facility in the U S The observatory reaches out to its community through National Gemini Offices NGOs the U S office being located in Tucson at the National Optical Astronomy Observatory The NGOs provide general support to the users from proposal preparation through data acquisition reduction and analysis In any given year the two telescopes typically provided data for over 400 discrete science projects over two thirds of which are led by U S astronomers About 50 70 percent of the top ranked Band 1 proposals reach 100 percent completion in any given year Of order 90 percent of the available clear weather time is used for science the rest being allocated to scheduled maintenance or lost to unforeseen technical faults Gemini has in recent years developed innovative new observing modes These include the Large and Long program to support requests for large amounts of telescope time and the Fast Turnaround program to provide quick access to the telescope These and other modes have been approved by the Gemini Board of Directors and are proving popular with the user community In 2015 up to 20 percent of available telescope time was used for Large and Long programs which in terms of hours of observing attracted five times more user demand than could be accommodated In the same period approximately 10 percent of telescope time was assigned to the Fast Turnaround program which in the second half of 2015 was over subscribed by a factor of 1 6 In 2015 the remaining U S time allocation on Gemini was over subscribed by a factor of approximately 2 consistent with recent years Prospects 2017 onwards editIn 2010 the U S National Research Council NRC conducted its sixth decadal survey in astronomy and astrophysics to recommend key science questions and new initiatives for the current decade Since both the NRC recommendations and current programs could not be accommodated within subsequent budget projections the National Science Foundation s Division of Astronomical Sciences through the Advisory Committee of the Directorate for Mathematical and Physical Sciences MPS conducted a community based portfolio review to make implementation recommendations that would best respond to the decadal survey science questions The resulting report Advancing Astronomy in the Coming Decade Opportunities and Challenges 21 was released in August 2012 and included recommendations related to all of the major telescope facilities funded by NSF The Portfolio Review Committee report ranked Gemini Observatory as a critical component of the U S s future astronomical research resources and recommended that the U S retain a majority share in the international partnership for at least the next several years However given the constraints that were considered the Committee recommended that the U S contribution to Gemini operations be capped in 2017 and beyond NSF has since commissioned a National Research Council study titled A Strategy to Optimize the U S Optical Infrared System in the Era of the Large Synoptic Survey Telescope 22 The report made a recommendation that NSF work with its partners in Gemini to ensure that Gemini South is well positioned for faint object spectroscopy early in the era of the Large Synoptic Survey Telescope LSST Observatory support for the development of a next generation medium resolution spectrograph over the next 5 6 years addresses this recommendation directly With the signing of the new International Agreement in late 2015 support from the five signatories the U S Canada Argentina Brazil and Chile is secured for the period 2016 2021 Australia withdrew from the Gemini Observatory partnership in 2015 and Korea has joined the partnership in 2018 The currently effective International Agreement signed in 2020 November has the six signatories Argentina Brazil Canada Chile Korea and the US and the Agreement is effective till the end of 2026 Observations and research editThe Gemini was one of the telescopes that observed the turn on of a nuclear transient along with the Swift space telescope aka Neil Gehrels Swift Observatory since 2018 and the Hiltner telescope MDM observatory 23 The transient event was called PS1 13cbe and was located in the Galaxy SDSS J222153 87 003054 2 23 Incidents editOn 22 October 2022 the 8 1m primary mirror of the Gemini North telescope was damaged when it touched an earthquake restraint while on a wash cart being moved for stripping the silver coating before recoating Two chips were created on the bottom edge and at the margin of the main mirror 24 This has since been repaired after several months of downtime and was back observing the sky on 2 June 2023 with apparently no loss of performance or quality 25 nbsp Comparison of nominal sizes of apertures of the Gemini Observatory and some notable optical telescopesSee also editKronberger 61 List of largest optical reflecting telescopes Mauna Kea ObservatoriesReferences edit https noirlab edu public news gemini1804 nocache true Gemini Telescope on Mauna Kea Named in Honor of Dr Frederick C Gillett Gemini Observatory Gemini edu 13 November 2002 Retrieved 2013 11 15 Ausgo Faq Ausgo aao gov au Retrieved 2013 11 15 Study Astronomy Online Saveastronomy org uk Retrieved 2013 11 15 UK physics budget slashed physicstoday org Archived from the original on December 22 2009 AURA and Gemini Observatory Announce New Director SpaceRef Your Space Reference SpaceRef 2006 02 20 Retrieved 2013 11 15 AURA selects Kissler Patig as new Gemini Observatory Director 2012 03 23 Retrieved 2012 03 24 Dr Laura Ferrarese Appointed Interim Director of Gemini Observatory 2017 07 02 Retrieved 2012 03 24 Gemini Observatory Adaptive Optics Instrumentation and Capabilities PDF Noao edu Retrieved 2013 11 15 Revolutionary Instrument Propels Astronomical Imaging to New Extremes Gemini Observatory Gemini edu 6 January 2012 Retrieved 2013 11 15 Gemini Ground Layer Adaptive Optics Feasibility Study Report PDF Gemini edu Retrieved 2013 11 15 Dusty Disks Imaged from NSF s NOIRLab Retrieved 2023 03 29 Under the Dome Retrieved 2023 05 24 GMOS Gemini Observatory Retrieved 2018 08 14 Gemini Observatory Gemini Observatory Gemini Planet Imager Planetimager org Retrieved 2013 11 15 Managing Gemini Observatory s Future Instrumentation Program PDF Lna br Retrieved 2013 11 15 Gemini Board WFMOS Resolution Gemini Observatory Gemini edu 2009 06 01 Retrieved 2013 11 15 Call for White Papers to define the Gemini InfraRed Optical Spectrometer GIROS Gemini Observatory Gemini edu 13 January 2012 Retrieved 2013 11 15 GHOST Gemini High Resolution Optical SpecTrograph 5 April 2020 US NSF MPS AST Division Portfolio Review www nsf gov A Strategy to Optimize the U S Optical and Infrared System in the Era of the Large Synoptic Survey Telescope LSST nationalacademies org Archived from the original on 2019 10 24 a b Rapid turn on of a nuclear transient observed by astronomers phys org Retrieved 2019 10 14 Gemini North Shutdown Extended Following Incident During Mirror Movement On Thursday 20 October 2022 the 8 1 meter primary mirror of Gemini North suffered damage to two areas on its outer and bottom edge NOIRLab National Science Foundation announcement 2022 11 01 Gemini North returns to cosmic exploration with a bang following repair and refurbishment of its 8 meter primary mirror NOIRLab National Science Foundation announcement 2023 06 07External links edit nbsp Wikimedia Commons has media related to Gemini Observatory Official website Gemini Observatory Image Gallery UK Re instated as Partner in Gemini Save Astronomy UK Update of Gemini Partnership Resolution of UK Partnership Issue Photos of Gemini and other Mauna Kea observatories from A Gentle Rain of Starlight The Story of Astronomy on Mauna Kea by Michael J West ISBN 0 931548 99 3 Science funding cuts to hit UK astronomers dead link The Daily Telegraph Portals nbsp Hawaii nbsp Stars nbsp Spaceflight nbsp Solar System nbsp Science nbsp Technology Retrieved from https en wikipedia org w index php title Gemini Observatory amp oldid 1173995275, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.