fbpx
Wikipedia

Splitting field

In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial splits, i.e., decomposes into linear factors.

Definition edit

A splitting field of a polynomial p(X) over a field K is a field extension L of K over which p factors into linear factors

 

where   and for each   we have   with ai not necessarily distinct and such that the roots ai generate L over K. The extension L is then an extension of minimal degree over K in which p splits. It can be shown that such splitting fields exist and are unique up to isomorphism. The amount of freedom in that isomorphism is known as the Galois group of p (if we assume it is separable).

Properties edit

An extension L which is a splitting field for a set of polynomials p(X) over K is called a normal extension of K.

Given an algebraically closed field A containing K, there is a unique splitting field L of p between K and A, generated by the roots of p. If K is a subfield of the complex numbers, the existence is immediate. On the other hand, the existence of algebraic closures in general is often proved by 'passing to the limit' from the splitting field result, which therefore requires an independent proof to avoid circular reasoning.

Given a separable extension K′ of K, a Galois closure L of K′ is a type of splitting field, and also a Galois extension of K containing K′ that is minimal, in an obvious sense. Such a Galois closure should contain a splitting field for all the polynomials p over K that are minimal polynomials over K of elements a of K′.

Constructing splitting fields edit

Motivation edit

Finding roots of polynomials has been an important problem since the time of the ancient Greeks. Some polynomials, however, such as x2 + 1 over R, the real numbers, have no roots. By constructing the splitting field for such a polynomial one can find the roots of the polynomial in the new field.

The construction edit

Let F be a field and p(X) be a polynomial in the polynomial ring F[X] of degree n. The general process for constructing K, the splitting field of p(X) over F, is to construct a chain of fields   such that Ki is an extension of Ki −1 containing a new root of p(X). Since p(X) has at most n roots the construction will require at most n extensions. The steps for constructing Ki are given as follows:

  • Factorize p(X) over Ki into irreducible factors  .
  • Choose any nonlinear irreducible factor f(X) = fi(X).
  • Construct the field extension Ki +1 of Ki as the quotient ring Ki +1 = Ki[X] / (f(X)) where (f(X)) denotes the ideal in Ki[X] generated by f(X).
  • Repeat the process for Ki +1 until p(X) completely factors.

The irreducible factor fi(X) used in the quotient construction may be chosen arbitrarily. Although different choices of factors may lead to different subfield sequences, the resulting splitting fields will be isomorphic.

Since f(X) is irreducible, (f(X)) is a maximal ideal of Ki[X] and Ki[X] / (f(X)) is, in fact, a field. Moreover, if we let   be the natural projection of the ring onto its quotient then

 

so π(X) is a root of f(X) and of p(X).

The degree of a single extension   is equal to the degree of the irreducible factor f(X). The degree of the extension [K : F] is given by   and is at most n!.

The field Ki[X]/(f(X)) edit

As mentioned above, the quotient ring Ki +1 = Ki[X]/(f(X)) is a field when f(X) is irreducible. Its elements are of the form

 

where the cj are in Ki and α = π(X). (If one considers Ki +1 as a vector space over Ki then the powers αj for 0 ≤ jn−1 form a basis.)

The elements of Ki +1 can be considered as polynomials in α of degree less than n. Addition in Ki +1 is given by the rules for polynomial addition and multiplication is given by polynomial multiplication modulo f(X). That is, for g(α) and h(α) in Ki +1 their product is g(α)h(α) = r(α) where r(X) is the remainder of g(X)h(X) when divided by f(X) in Ki[X].

The remainder r(X) can be computed through long division of polynomials, however there is also a straightforward reduction rule that can be used to compute r(α) = g(α)h(α) directly. First let

 

The polynomial is over a field so one can take f(X) to be monic without loss of generality. Now α is a root of f(X), so

 

If the product g(α)h(α) has a term αm with mn it can be reduced as follows:

 .

As an example of the reduction rule, take Ki = Q[X], the ring of polynomials with rational coefficients, and take f(X) = X 7 − 2. Let   and h(α) = α 3 +1 be two elements of Q[X]/(X 7 − 2). The reduction rule given by f(X) is α7 = 2 so

 

Examples edit

The complex numbers edit

Consider the polynomial ring R[x], and the irreducible polynomial x2 + 1. The quotient ring R[x] / (x2 + 1) is given by the congruence x2 ≡ −1. As a result, the elements (or equivalence classes) of R[x] / (x2 + 1) are of the form a + bx where a and b belong to R. To see this, note that since x2 ≡ −1 it follows that x3 ≡ −x, x4 ≡ 1, x5x, etc.; and so, for example p + qx + rx2 + sx3p + qx + r(−1) + s(−x) = (pr) + (qs)x.

The addition and multiplication operations are given by firstly using ordinary polynomial addition and multiplication, but then reducing modulo x2 + 1, i.e. using the fact that x2 ≡ −1, x3 ≡ −x, x4 ≡ 1, x5x, etc. Thus:

 
 

If we identify a + bx with (a,b) then we see that addition and multiplication are given by

 
 

We claim that, as a field, the quotient ring R[x] / (x2 + 1) is isomorphic to the complex numbers, C. A general complex number is of the form a + bi, where a and b are real numbers and i2 = −1. Addition and multiplication are given by

 
 

If we identify a + bi with (a, b) then we see that addition and multiplication are given by

 
 

The previous calculations show that addition and multiplication behave the same way in R[x] / (x2 + 1) and C. In fact, we see that the map between R[x] / (x2 + 1) and C given by a + bxa + bi is a homomorphism with respect to addition and multiplication. It is also obvious that the map a + bxa + bi is both injective and surjective; meaning that a + bxa + bi is a bijective homomorphism, i.e., an isomorphism. It follows that, as claimed: R[x] / (x2 + 1) ≅ C.

In 1847, Cauchy used this approach to define the complex numbers.[1]

Cubic example edit

Let K be the rational number field Q and p(x) = x3 − 2. Each root of p equals 32 times a cube root of unity. Therefore, if we denote the cube roots of unity by

 
 
 

any field containing two distinct roots of p will contain the quotient between two distinct cube roots of unity. Such a quotient is a primitive cube root of unity—either   or  . It follows that a splitting field L of p will contain ω2, as well as the real cube root of 2; conversely, any extension of Q containing these elements contains all the roots of p. Thus

 

Note that applying the construction process outlined in the previous section to this example, one begins with   and constructs the field  . This field is not the splitting field, but contains one (any) root. However, the polynomial   is not irreducible over   and in fact:

 

Note that   is not an indeterminate, and is in fact an element of  . Now, continuing the process, we obtain   which is indeed the splitting field and is spanned by the  -basis  . Notice that if we compare this with   from above we can identify   and  .

Other examples edit

  • The splitting field of xqx over Fp is the unique finite field Fq for q = pn.[2] Sometimes this field is denoted by GF(q).
  • The splitting field of x2 + 1 over F7 is F49; the polynomial has no roots in F7, i.e., −1 is not a square there, because 7 is not congruent to 1 modulo 4.[3]
  • The splitting field of x2 − 1 over F7 is F7 since x2 − 1 = (x + 1)(x − 1) already splits into linear factors.
  • We calculate the splitting field of f(x) = x3 + x + 1 over F2. It is easy to verify that f(x) has no roots in F2, hence f(x) is irreducible in F2[x]. Put r = x + (f(x)) in F2[x]/(f(x)) so F2(r ) is a field and x3 + x + 1 = (x + r)(x2 + ax + b) in F2(r )[x]. Note that we can write + for − since the characteristic is two. Comparing coefficients shows that a = r and b = 1 + r 2. The elements of F2(r ) can be listed as c + dr + er 2, where c, d, e are in F2. There are eight elements: 0, 1, r, 1 + r, r 2, 1 + r 2, r + r 2 and 1 + r + r 2. Substituting these in x2 + rx + 1 + r 2 we reach (r 2)2 + r(r 2) + 1 + r 2 = r 4 + r 3 + 1 + r 2 = 0, therefore x3 + x + 1 = (x + r)(x + r 2)(x + (r + r 2)) for r in F2[x]/(f(x)); E = F2(r ) is a splitting field of x3 + x + 1 over F2.

Notes edit

  1. ^ Cauchy, Augustin-Louis (1847), "Mémoire sur la théorie des équivalences algébriques, substituée à la théorie des imaginaires", Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences (in French), 24: 1120–1130
  2. ^ Serre. A Course in Arithmetic.
  3. ^ Instead of applying this characterization of odd prime moduli for which −1 is a square, one could just check that the set of squares in F7 is the set of classes of 0, 1, 4, and 2, which does not include the class of −1 ≡ 6.

References edit

splitting, field, this, article, about, splitting, field, polynomial, splitting, field, central, simple, algebra, abstract, algebra, splitting, field, polynomial, with, coefficients, field, smallest, field, extension, that, field, over, which, polynomial, spli. This article is about the splitting field of a polynomial For the splitting field of a CSA see central simple algebra In abstract algebra a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial splits i e decomposes into linear factors Contents 1 Definition 2 Properties 3 Constructing splitting fields 3 1 Motivation 3 2 The construction 3 3 The field Ki X f X 4 Examples 4 1 The complex numbers 4 2 Cubic example 4 3 Other examples 5 Notes 6 ReferencesDefinition editA splitting field of a polynomial p X over a field K is a field extension L of K over which p factors into linear factors p X c i 1 deg p X a i displaystyle p X c prod i 1 deg p X a i nbsp where c K displaystyle c in K nbsp and for each i displaystyle i nbsp we have X a i L X displaystyle X a i in L X nbsp with ai not necessarily distinct and such that the roots ai generate L over K The extension L is then an extension of minimal degree over K in which p splits It can be shown that such splitting fields exist and are unique up to isomorphism The amount of freedom in that isomorphism is known as the Galois group of p if we assume it is separable Properties editAn extension L which is a splitting field for a set of polynomials p X over K is called a normal extension of K Given an algebraically closed field A containing K there is a unique splitting field L of p between K and A generated by the roots of p If K is a subfield of the complex numbers the existence is immediate On the other hand the existence of algebraic closures in general is often proved by passing to the limit from the splitting field result which therefore requires an independent proof to avoid circular reasoning Given a separable extension K of K a Galois closure L of K is a type of splitting field and also a Galois extension of K containing K that is minimal in an obvious sense Such a Galois closure should contain a splitting field for all the polynomials p over K that are minimal polynomials over K of elements a of K Constructing splitting fields editMotivation edit Finding roots of polynomials has been an important problem since the time of the ancient Greeks Some polynomials however such as x2 1 over R the real numbers have no roots By constructing the splitting field for such a polynomial one can find the roots of the polynomial in the new field The construction edit Let F be a field and p X be a polynomial in the polynomial ring F X of degree n The general process for constructing K the splitting field of p X over F is to construct a chain of fields F K 0 K 1 K r 1 K r K displaystyle F K 0 subset K 1 subset cdots subset K r 1 subset K r K nbsp such that Ki is an extension of Ki 1 containing a new root of p X Since p X has at most n roots the construction will require at most n extensions The steps for constructing Ki are given as follows Factorize p X over Ki into irreducible factors f 1 X f 2 X f k X displaystyle f 1 X f 2 X cdots f k X nbsp Choose any nonlinear irreducible factor f X fi X Construct the field extension Ki 1 of Ki as the quotient ring Ki 1 Ki X f X where f X denotes the ideal in Ki X generated by f X Repeat the process for Ki 1 until p X completely factors The irreducible factor fi X used in the quotient construction may be chosen arbitrarily Although different choices of factors may lead to different subfield sequences the resulting splitting fields will be isomorphic Since f X is irreducible f X is a maximal ideal of Ki X and Ki X f X is in fact a field Moreover if we let p K i X K i X f X displaystyle pi K i X to K i X f X nbsp be the natural projection of the ring onto its quotient then f p X p f X f X mod f X 0 displaystyle f pi X pi f X f X bmod f X 0 nbsp so p X is a root of f X and of p X The degree of a single extension K i 1 K i displaystyle K i 1 K i nbsp is equal to the degree of the irreducible factor f X The degree of the extension K F is given by K r K r 1 K 2 K 1 K 1 F displaystyle K r K r 1 cdots K 2 K 1 K 1 F nbsp and is at most n The field Ki X f X edit As mentioned above the quotient ring Ki 1 Ki X f X is a field when f X is irreducible Its elements are of the form c n 1 a n 1 c n 2 a n 2 c 1 a c 0 displaystyle c n 1 alpha n 1 c n 2 alpha n 2 cdots c 1 alpha c 0 nbsp where the cj are in Ki and a p X If one considers Ki 1 as a vector space over Ki then the powers a j for 0 j n 1 form a basis The elements of Ki 1 can be considered as polynomials in a of degree less than n Addition in Ki 1 is given by the rules for polynomial addition and multiplication is given by polynomial multiplication modulo f X That is for g a and h a in Ki 1 their product is g a h a r a where r X is the remainder of g X h X when divided by f X in Ki X The remainder r X can be computed through long division of polynomials however there is also a straightforward reduction rule that can be used to compute r a g a h a directly First let f X X n b n 1 X n 1 b 1 X b 0 displaystyle f X X n b n 1 X n 1 cdots b 1 X b 0 nbsp The polynomial is over a field so one can take f X to be monic without loss of generality Now a is a root of f X so a n b n 1 a n 1 b 1 a b 0 displaystyle alpha n b n 1 alpha n 1 cdots b 1 alpha b 0 nbsp If the product g a h a has a term am with m n it can be reduced as follows a n a m n b n 1 a n 1 b 1 a b 0 a m n b n 1 a m 1 b 1 a m n 1 b 0 a m n displaystyle alpha n alpha m n b n 1 alpha n 1 cdots b 1 alpha b 0 alpha m n b n 1 alpha m 1 cdots b 1 alpha m n 1 b 0 alpha m n nbsp As an example of the reduction rule take Ki Q X the ring of polynomials with rational coefficients and take f X X 7 2 Let g a a 5 a 2 displaystyle g alpha alpha 5 alpha 2 nbsp and h a a 3 1 be two elements of Q X X 7 2 The reduction rule given by f X is a7 2 so g a h a a 5 a 2 a 3 1 a 8 2 a 5 a 2 a 7 a 2 a 5 a 2 2 a 5 a 2 2 a displaystyle g alpha h alpha alpha 5 alpha 2 alpha 3 1 alpha 8 2 alpha 5 alpha 2 alpha 7 alpha 2 alpha 5 alpha 2 2 alpha 5 alpha 2 2 alpha nbsp Examples editThe complex numbers edit Consider the polynomial ring R x and the irreducible polynomial x2 1 The quotient ring R x x2 1 is given by the congruence x2 1 As a result the elements or equivalence classes of R x x2 1 are of the form a bx where a and b belong to R To see this note that since x2 1 it follows that x3 x x4 1 x5 x etc and so for example p qx rx2 sx3 p qx r 1 s x p r q s x The addition and multiplication operations are given by firstly using ordinary polynomial addition and multiplication but then reducing modulo x2 1 i e using the fact that x2 1 x3 x x4 1 x5 x etc Thus a 1 b 1 x a 2 b 2 x a 1 a 2 b 1 b 2 x displaystyle a 1 b 1 x a 2 b 2 x a 1 a 2 b 1 b 2 x nbsp a 1 b 1 x a 2 b 2 x a 1 a 2 a 1 b 2 b 1 a 2 x b 1 b 2 x 2 a 1 a 2 b 1 b 2 a 1 b 2 b 1 a 2 x displaystyle a 1 b 1 x a 2 b 2 x a 1 a 2 a 1 b 2 b 1 a 2 x b 1 b 2 x 2 equiv a 1 a 2 b 1 b 2 a 1 b 2 b 1 a 2 x nbsp If we identify a bx with a b then we see that addition and multiplication are given by a 1 b 1 a 2 b 2 a 1 a 2 b 1 b 2 displaystyle a 1 b 1 a 2 b 2 a 1 a 2 b 1 b 2 nbsp a 1 b 1 a 2 b 2 a 1 a 2 b 1 b 2 a 1 b 2 b 1 a 2 displaystyle a 1 b 1 cdot a 2 b 2 a 1 a 2 b 1 b 2 a 1 b 2 b 1 a 2 nbsp We claim that as a field the quotient ring R x x2 1 is isomorphic to the complex numbers C A general complex number is of the form a bi where a and b are real numbers and i2 1 Addition and multiplication are given by a 1 b 1 i a 2 b 2 i a 1 a 2 i b 1 b 2 displaystyle a 1 b 1 i a 2 b 2 i a 1 a 2 i b 1 b 2 nbsp a 1 b 1 i a 2 b 2 i a 1 a 2 b 1 b 2 i a 1 b 2 a 2 b 1 displaystyle a 1 b 1 i cdot a 2 b 2 i a 1 a 2 b 1 b 2 i a 1 b 2 a 2 b 1 nbsp If we identify a bi with a b then we see that addition and multiplication are given by a 1 b 1 a 2 b 2 a 1 a 2 b 1 b 2 displaystyle a 1 b 1 a 2 b 2 a 1 a 2 b 1 b 2 nbsp a 1 b 1 a 2 b 2 a 1 a 2 b 1 b 2 a 1 b 2 b 1 a 2 displaystyle a 1 b 1 cdot a 2 b 2 a 1 a 2 b 1 b 2 a 1 b 2 b 1 a 2 nbsp The previous calculations show that addition and multiplication behave the same way in R x x2 1 and C In fact we see that the map between R x x2 1 and C given by a bx a bi is a homomorphism with respect to addition and multiplication It is also obvious that the map a bx a bi is both injective and surjective meaning that a bx a bi is a bijective homomorphism i e an isomorphism It follows that as claimed R x x2 1 C In 1847 Cauchy used this approach to define the complex numbers 1 Cubic example edit Let K be the rational number field Q and p x x3 2 Each root of p equals 3 2 times a cube root of unity Therefore if we denote the cube roots of unity by w 1 1 displaystyle omega 1 1 nbsp w 2 1 2 3 2 i displaystyle omega 2 frac 1 2 frac sqrt 3 2 i nbsp w 3 1 2 3 2 i displaystyle omega 3 frac 1 2 frac sqrt 3 2 i nbsp any field containing two distinct roots of p will contain the quotient between two distinct cube roots of unity Such a quotient is a primitive cube root of unity either w 2 displaystyle omega 2 nbsp or w 3 1 w 2 displaystyle omega 3 1 omega 2 nbsp It follows that a splitting field L of p will contain w2 as well as the real cube root of 2 conversely any extension of Q containing these elements contains all the roots of p Thus L Q 2 3 w 2 a b 2 3 c 2 3 2 d w 2 e 2 3 w 2 f 2 3 2 w 2 a b c d e f Q displaystyle L mathbf Q sqrt 3 2 omega 2 a b sqrt 3 2 c sqrt 3 2 2 d omega 2 e sqrt 3 2 omega 2 f sqrt 3 2 2 omega 2 mid a b c d e f in mathbf Q nbsp Note that applying the construction process outlined in the previous section to this example one begins with K 0 Q displaystyle K 0 mathbf Q nbsp and constructs the field K 1 Q X X 3 2 displaystyle K 1 mathbf Q X X 3 2 nbsp This field is not the splitting field but contains one any root However the polynomial Y 3 2 displaystyle Y 3 2 nbsp is not irreducible over K 1 displaystyle K 1 nbsp and in fact Y 3 2 Y X Y 2 X Y X 2 displaystyle Y 3 2 Y X Y 2 XY X 2 nbsp Note that X displaystyle X nbsp is not an indeterminate and is in fact an element of K 1 displaystyle K 1 nbsp Now continuing the process we obtain K 2 K 1 Y Y 2 X Y X 2 displaystyle K 2 K 1 Y Y 2 XY X 2 nbsp which is indeed the splitting field and is spanned by the Q displaystyle mathbf Q nbsp basis 1 X X 2 Y X Y X 2 Y displaystyle 1 X X 2 Y XY X 2 Y nbsp Notice that if we compare this with L displaystyle L nbsp from above we can identify X 2 3 displaystyle X sqrt 3 2 nbsp and Y w 2 displaystyle Y omega 2 nbsp Other examples edit The splitting field of xq x over Fp is the unique finite field Fq for q pn 2 Sometimes this field is denoted by GF q The splitting field of x2 1 over F7 is F49 the polynomial has no roots in F7 i e 1 is not a square there because 7 is not congruent to 1 modulo 4 3 The splitting field of x2 1 over F7 is F7 since x2 1 x 1 x 1 already splits into linear factors We calculate the splitting field of f x x3 x 1 over F2 It is easy to verify that f x has no roots in F2 hence f x is irreducible in F2 x Put r x f x in F2 x f x so F2 r is a field and x3 x 1 x r x2 ax b in F2 r x Note that we can write for since the characteristic is two Comparing coefficients shows that a r and b 1 r 2 The elements of F2 r can be listed as c dr er 2 where c d e are in F2 There are eight elements 0 1 r 1 r r 2 1 r 2 r r 2 and 1 r r 2 Substituting these in x2 rx 1 r 2 we reach r 2 2 r r 2 1 r 2 r 4 r 3 1 r 2 0 therefore x3 x 1 x r x r 2 x r r 2 for r in F2 x f x E F2 r is a splitting field of x3 x 1 over F2 Notes edit Cauchy Augustin Louis 1847 Memoire sur la theorie des equivalences algebriques substituee a la theorie des imaginaires Comptes Rendus Hebdomadaires des Seances de l Academie des Sciences in French 24 1120 1130 Serre A Course in Arithmetic Instead of applying this characterization of odd prime moduli for which 1 is a square one could just check that the set of squares in F7 is the set of classes of 0 1 4 and 2 which does not include the class of 1 6 References editDummit David S and Foote Richard M 1999 Abstract Algebra 2nd ed New York John Wiley amp Sons Inc ISBN 0 471 36857 1 Splitting field of a polynomial Encyclopedia of Mathematics EMS Press 2001 1994 Weisstein Eric W Splitting field MathWorld Retrieved from https en wikipedia org w index php title Splitting field amp oldid 1172256918 Properties, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.