fbpx
Wikipedia

Finite difference coefficient

In mathematics, to approximate a derivative to an arbitrary order of accuracy, it is possible to use the finite difference. A finite difference can be central, forward or backward.

Central finite difference

This table contains the coefficients of the central differences, for several orders of accuracy and with uniform grid spacing:[1]

Derivative Accuracy −5 −4 −3 −2 −1 0 1 2 3 4 5
1 2 −1/2 0 1/2
4 1/12 −2/3 0 2/3 −1/12
6 −1/60 3/20 −3/4 0 3/4 −3/20 1/60
8 1/280 −4/105 1/5 −4/5 0 4/5 −1/5 4/105 −1/280
2 2 1 −2 1
4 −1/12 4/3 −5/2 4/3 −1/12
6 1/90 −3/20 3/2 −49/18 3/2 −3/20 1/90
8 −1/560 8/315 −1/5 8/5 −205/72 8/5 −1/5 8/315 −1/560
3 2 −1/2 1 0 −1 1/2
4 1/8 −1 13/8 0 −13/8 1 −1/8
6 −7/240 3/10 −169/120 61/30 0 −61/30 169/120 −3/10 7/240
4 2 1 −4 6 −4 1
4 −1/6 2 −13/2 28/3 −13/2 2 −1/6
6 7/240 −2/5 169/60 −122/15 91/8 −122/15 169/60 −2/5 7/240
5 2 −1/2 2 −5/2 0 5/2 −2 1/2
4 1/6 −3/2 13/3 −29/6 0 29/6 −13/3 3/2 −1/6
6 −13/288 19/36 −87/32 13/2 −323/48 0 323/48 −13/2 87/32 −19/36 13/288
6 2 1 −6 15 −20 15 −6 1
4 −1/4 3 −13 29 −75/2 29 −13 3 −1/4
6 13/240 −19/24 87/16 −39/2 323/8 −1023/20 323/8 −39/2 87/16 −19/24 13/240

For example, the third derivative with a second-order accuracy is

 

where   represents a uniform grid spacing between each finite difference interval, and  .

For the  -th derivative with accuracy  , there are   central coefficients  . These are given by the solution of the linear equation system

 

where the only non-zero value on the right hand side is in the  -th row.

An open source implementation for calculating finite difference coefficients of arbitrary derivates and accuracy order in one dimension is available.[2]

Forward finite difference

This table contains the coefficients of the forward differences, for several orders of accuracy and with uniform grid spacing:[1]

Derivative Accuracy 0 1 2 3 4 5 6 7 8
1 1 −1 1              
2 −3/2 2 −1/2            
3 −11/6 3 −3/2 1/3          
4 −25/12 4 −3 4/3 −1/4        
5 −137/60 5 −5 10/3 −5/4 1/5      
6 −49/20 6 −15/2 20/3 −15/4 6/5 −1/6    
2 1 1 −2 1            
2 2 −5 4 −1          
3 35/12 −26/3 19/2 −14/3 11/12        
4 15/4 −77/6 107/6 −13 61/12 −5/6      
5 203/45 −87/5 117/4 −254/9 33/2 −27/5 137/180    
6 469/90 −223/10 879/20 −949/18 41 −201/10 1019/180 −7/10  
3 1 −1 3 −3 1          
2 −5/2 9 −12 7 −3/2        
3 −17/4 71/4 −59/2 49/2 −41/4 7/4      
4 −49/8 29 −461/8 62 −307/8 13 −15/8    
5 −967/120 638/15 −3929/40 389/3 −2545/24 268/5 −1849/120 29/15  
6 −801/80 349/6 −18353/120 2391/10 −1457/6 4891/30 −561/8 527/30 −469/240
4 1 1 −4 6 −4 1        
2 3 −14 26 −24 11 −2      
3 35/6 −31 137/2 −242/3 107/2 −19 17/6    
4 28/3 −111/2 142 −1219/6 176 −185/2 82/3 −7/2  
5 1069/80 −1316/15 15289/60 −2144/5 10993/24 −4772/15 2803/20 −536/15 967/240

For example, the first derivative with a third-order accuracy and the second derivative with a second-order accuracy are

 
 

while the corresponding backward approximations are given by

 
 

Backward finite difference

To get the coefficients of the backward approximations from those of the forward ones, give all odd derivatives listed in the table in the previous section the opposite sign, whereas for even derivatives the signs stay the same. The following table illustrates this:[3]

Derivative Accuracy −8 −7 −6 −5 −4 −3 −2 −1 0
1 1               −1 1
2             1/2 −2 3/2
3           −1/3 3/2 −3 11/6
2 1             1 −2 1
2           −1 4 −5 2
3 1           −1 3 −3 1
2         3/2 −7 12 −9 5/2
4 1         1 −4 6 −4 1
2       −2 11 −24 26 −14 3

Arbitrary stencil points

For a given arbitrary stencil points   of length   with the order of derivatives  , the finite difference coefficients can be obtained by solving the linear equations [4]

 

where   is the Kronecker delta, equal to one if  , and zero otherwise.

Example, for  , order of differentiation  :

 

The order of accuracy of the approximation takes the usual form  [citation needed].

See also

References

  1. ^ a b Fornberg, Bengt (1988), "Generation of Finite Difference Formulas on Arbitrarily Spaced Grids", Mathematics of Computation, 51 (184): 699–706, doi:10.1090/S0025-5718-1988-0935077-0, ISSN 0025-5718.
  2. ^ "A Python package for finite difference numerical derivatives in arbitrary number of dimensions". GitHub. 14 October 2021.
  3. ^ Taylor, Cameron (12 December 2019). "Finite Difference Coefficients Calculator". MIT.
  4. ^ "Finite Difference Coefficients Calculator".

finite, difference, coefficient, mathematics, approximate, derivative, arbitrary, order, accuracy, possible, finite, difference, finite, difference, central, forward, backward, contents, central, finite, difference, forward, finite, difference, backward, finit. In mathematics to approximate a derivative to an arbitrary order of accuracy it is possible to use the finite difference A finite difference can be central forward or backward Contents 1 Central finite difference 2 Forward finite difference 3 Backward finite difference 4 Arbitrary stencil points 5 See also 6 ReferencesCentral finite difference EditThis table contains the coefficients of the central differences for several orders of accuracy and with uniform grid spacing 1 Derivative Accuracy 5 4 3 2 1 0 1 2 3 4 51 2 1 2 0 1 24 1 12 2 3 0 2 3 1 126 1 60 3 20 3 4 0 3 4 3 20 1 608 1 280 4 105 1 5 4 5 0 4 5 1 5 4 105 1 2802 2 1 2 14 1 12 4 3 5 2 4 3 1 126 1 90 3 20 3 2 49 18 3 2 3 20 1 908 1 560 8 315 1 5 8 5 205 72 8 5 1 5 8 315 1 5603 2 1 2 1 0 1 1 24 1 8 1 13 8 0 13 8 1 1 86 7 240 3 10 169 120 61 30 0 61 30 169 120 3 10 7 2404 2 1 4 6 4 14 1 6 2 13 2 28 3 13 2 2 1 66 7 240 2 5 169 60 122 15 91 8 122 15 169 60 2 5 7 2405 2 1 2 2 5 2 0 5 2 2 1 24 1 6 3 2 13 3 29 6 0 29 6 13 3 3 2 1 66 13 288 19 36 87 32 13 2 323 48 0 323 48 13 2 87 32 19 36 13 2886 2 1 6 15 20 15 6 14 1 4 3 13 29 75 2 29 13 3 1 46 13 240 19 24 87 16 39 2 323 8 1023 20 323 8 39 2 87 16 19 24 13 240For example the third derivative with a second order accuracy is f x 0 1 2 f x 2 f x 1 f x 1 1 2 f x 2 h x 3 O h x 2 displaystyle f x 0 approx frac frac 1 2 f x 2 f x 1 f x 1 frac 1 2 f x 2 h x 3 O left h x 2 right where h x displaystyle h x represents a uniform grid spacing between each finite difference interval and x n x 0 n h x displaystyle x n x 0 nh x For the m displaystyle m th derivative with accuracy n displaystyle n there are 2 p 1 2 m 1 2 1 n displaystyle 2p 1 2 left lfloor frac m 1 2 right rfloor 1 n central coefficients a p a p 1 a p 1 a p displaystyle a p a p 1 a p 1 a p These are given by the solution of the linear equation system 1 1 1 1 p p 1 p 1 p p 2 p 1 2 p 1 2 p 2 p 2 p p 1 2 p p 1 2 p p 2 p a p a p 1 a p 2 a p 0 0 0 m 0 displaystyle begin pmatrix 1 amp 1 amp amp 1 amp 1 p amp p 1 amp amp p 1 amp p p 2 amp p 1 2 amp amp p 1 2 amp p 2 amp amp amp amp amp amp amp amp amp amp amp amp p 2p amp p 1 2p amp amp p 1 2p amp p 2p end pmatrix begin pmatrix a p a p 1 a p 2 a p end pmatrix begin pmatrix 0 0 0 m 0 end pmatrix where the only non zero value on the right hand side is in the m 1 displaystyle m 1 th row An open source implementation for calculating finite difference coefficients of arbitrary derivates and accuracy order in one dimension is available 2 Forward finite difference EditThis table contains the coefficients of the forward differences for several orders of accuracy and with uniform grid spacing 1 Derivative Accuracy 0 1 2 3 4 5 6 7 81 1 1 1 2 3 2 2 1 2 3 11 6 3 3 2 1 3 4 25 12 4 3 4 3 1 4 5 137 60 5 5 10 3 5 4 1 5 6 49 20 6 15 2 20 3 15 4 6 5 1 6 2 1 1 2 1 2 2 5 4 1 3 35 12 26 3 19 2 14 3 11 12 4 15 4 77 6 107 6 13 61 12 5 6 5 203 45 87 5 117 4 254 9 33 2 27 5 137 180 6 469 90 223 10 879 20 949 18 41 201 10 1019 180 7 10 3 1 1 3 3 1 2 5 2 9 12 7 3 2 3 17 4 71 4 59 2 49 2 41 4 7 4 4 49 8 29 461 8 62 307 8 13 15 8 5 967 120 638 15 3929 40 389 3 2545 24 268 5 1849 120 29 15 6 801 80 349 6 18353 120 2391 10 1457 6 4891 30 561 8 527 30 469 2404 1 1 4 6 4 1 2 3 14 26 24 11 2 3 35 6 31 137 2 242 3 107 2 19 17 6 4 28 3 111 2 142 1219 6 176 185 2 82 3 7 2 5 1069 80 1316 15 15289 60 2144 5 10993 24 4772 15 2803 20 536 15 967 240For example the first derivative with a third order accuracy and the second derivative with a second order accuracy are f x 0 11 6 f x 0 3 f x 1 3 2 f x 2 1 3 f x 3 h x O h x 3 displaystyle displaystyle f x 0 approx displaystyle frac frac 11 6 f x 0 3f x 1 frac 3 2 f x 2 frac 1 3 f x 3 h x O left h x 3 right f x 0 2 f x 0 5 f x 1 4 f x 2 f x 3 h x 2 O h x 2 displaystyle displaystyle f x 0 approx displaystyle frac 2f x 0 5f x 1 4f x 2 f x 3 h x 2 O left h x 2 right while the corresponding backward approximations are given by f x 0 11 6 f x 0 3 f x 1 3 2 f x 2 1 3 f x 3 h x O h x 3 displaystyle displaystyle f x 0 approx displaystyle frac frac 11 6 f x 0 3f x 1 frac 3 2 f x 2 frac 1 3 f x 3 h x O left h x 3 right f x 0 2 f x 0 5 f x 1 4 f x 2 f x 3 h x 2 O h x 2 displaystyle displaystyle f x 0 approx displaystyle frac 2f x 0 5f x 1 4f x 2 f x 3 h x 2 O left h x 2 right Backward finite difference EditTo get the coefficients of the backward approximations from those of the forward ones give all odd derivatives listed in the table in the previous section the opposite sign whereas for even derivatives the signs stay the same The following table illustrates this 3 Derivative Accuracy 8 7 6 5 4 3 2 1 01 1 1 12 1 2 2 3 23 1 3 3 2 3 11 62 1 1 2 12 1 4 5 23 1 1 3 3 12 3 2 7 12 9 5 24 1 1 4 6 4 12 2 11 24 26 14 3Arbitrary stencil points EditFor a given arbitrary stencil points s displaystyle displaystyle s of length N displaystyle displaystyle N with the order of derivatives d lt N displaystyle displaystyle d lt N the finite difference coefficients can be obtained by solving the linear equations 4 s 1 0 s N 0 s 1 N 1 s N N 1 a 1 a N d d 0 d d i d d N 1 d displaystyle begin pmatrix s 1 0 amp cdots amp s N 0 vdots amp ddots amp vdots s 1 N 1 amp cdots amp s N N 1 end pmatrix begin pmatrix a 1 vdots a N end pmatrix d begin pmatrix delta 0 d vdots delta i d vdots delta N 1 d end pmatrix where d i j displaystyle delta i j is the Kronecker delta equal to one if i j displaystyle i j and zero otherwise Example for s 3 2 1 0 1 displaystyle s 3 2 1 0 1 order of differentiation d 4 displaystyle d 4 a 1 a 2 a 3 a 4 a 5 1 1 1 1 1 3 2 1 0 1 9 4 1 0 1 27 8 1 0 1 81 16 1 0 1 1 0 0 0 0 24 1 4 6 4 1 displaystyle begin pmatrix a 1 a 2 a 3 a 4 a 5 end pmatrix begin pmatrix 1 amp 1 amp 1 amp 1 amp 1 3 amp 2 amp 1 amp 0 amp 1 9 amp 4 amp 1 amp 0 amp 1 27 amp 8 amp 1 amp 0 amp 1 81 amp 16 amp 1 amp 0 amp 1 end pmatrix 1 begin pmatrix 0 0 0 0 24 end pmatrix begin pmatrix 1 4 6 4 1 end pmatrix The order of accuracy of the approximation takes the usual form O h x N d displaystyle O left h x N d right citation needed See also EditFinite difference method Finite difference Five point stencil Numerical differentiationReferences Edit a b Fornberg Bengt 1988 Generation of Finite Difference Formulas on Arbitrarily Spaced Grids Mathematics of Computation 51 184 699 706 doi 10 1090 S0025 5718 1988 0935077 0 ISSN 0025 5718 A Python package for finite difference numerical derivatives in arbitrary number of dimensions GitHub 14 October 2021 Taylor Cameron 12 December 2019 Finite Difference Coefficients Calculator MIT Finite Difference Coefficients Calculator Retrieved from https en wikipedia org w index php title Finite difference coefficient amp oldid 1134067370, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.