fbpx
Wikipedia

Fatty liver disease

Fatty liver disease (FLD), also known as hepatic steatosis and steatotic liver disease (SLD), is a condition where excess fat builds up in the liver.[1] Often there are no or few symptoms.[1][2] Occasionally there may be tiredness or pain in the upper right side of the abdomen.[1] Complications may include cirrhosis, liver cancer, and esophageal varices.[1][3]

Fatty liver
Other namesHepatic steatosis
Micrograph showing a fatty liver (macrovesicular steatosis), as seen in non-alcoholic fatty liver disease. Trichrome stain.
SpecialtyGastroenterology
SymptomsNone, tiredness, pain in the upper right side of the abdomen[1][2]
ComplicationsCirrhosis, liver cancer, esophageal varices[1][3]
TypesNon-alcoholic fatty liver disease (NAFLD), alcoholic liver disease[1]
CausesAlcohol, diabetes, obesity[3][1]
Diagnostic methodBased on the medical history supported by blood tests, medical imaging, liver biopsy[1]
Differential diagnosisViral hepatitis, Wilson disease, primary sclerosing cholangitis[3]
TreatmentAvoiding alcohol, weight loss[3][1]
PrognosisGood if treated early[3]
FrequencyNAFLD: 30% (Western countries)[2]
ALD: >90% of heavy drinkers[4]

The main subtypes of fatty liver disease are metabolic dysfunction–associated steatotic liver disease (MASLD, formerly "non-alcoholic fatty liver disease" (NAFLD)) and alcohol-associated liver disease (ALD), with the category "metabolic and alcohol associated liver disease" (metALD) describing an overlap of the two.[5]

The primary risks include alcohol, type 2 diabetes, and obesity.[1][3] Other risk factors include certain medications such as glucocorticoids, and hepatitis C.[1] It is unclear why some people with NAFLD develop simple fatty liver and others develop NASH.[1] Diagnosis is based on the medical history supported by blood tests, medical imaging, and occasionally liver biopsy.[1]

Treatment of NAFLD is generally by dietary changes and exercise to bring about weight loss.[1] In those who are severely affected, liver transplantation may be an option.[1] More than 90% of heavy drinkers develop fatty liver while about 25% develop the more severe alcoholic hepatitis.[4] NAFLD affects about 30% of people in Western countries and 10% of people in Asia.[2] NAFLD affects about 10% of children in the United States.[1] It occurs more often in older people and males.[3][6]

Classification edit

Fatty liver disease was classified into:

In 2023, a new nomenclature was chosen,[5][7] with the classifications including:

Signs and symptoms edit

Often there are no or few symptoms.[1] Occasionally there may be tiredness or pain in the upper right side of the abdomen.[1]

Complications edit

Fatty liver can develop into hepatic fibrosis, cirrhosis or liver cancer.[8] For people affected by NAFLD, the 10-year survival rate was about 80%. The rate of progression of fibrosis is estimated to be one per 7 years in NASH and one per 14 years in NAFLD, with an increasing speed.[9][10] There is a strong relationship between these pathologies and metabolic illnesses (diabetes type II, metabolic syndrome). These pathologies can also affect non-obese people, who are then at a higher risk.[8]

Less than 10% of people with cirrhotic alcoholic FLD will develop hepatocellular carcinoma,[11] the most common type of primary liver cancer in adults, but up to 45% people with NASH without cirrhosis can develop hepatocellular carcinoma.[12]

The condition is also associated with other diseases that influence fat metabolism.[13]

Causes edit

 
Different stages of liver damage

Fatty liver (FL) is commonly associated with metabolic syndrome (diabetes, hypertension, obesity, and dyslipidemia), but can also be due to any one of many causes:[14][15]

Alcohol
Alcohol use disorder is one of the causes of fatty liver due to production of toxic metabolites like aldehydes during metabolism of alcohol in the liver. This phenomenon most commonly occurs with chronic alcohol use disorder.
Metabolic
abetalipoproteinemia, glycogen storage diseases, Weber–Christian disease, acute fatty liver of pregnancy, lipodystrophy
Nutritional
obesity, malnutrition, total parenteral nutrition, severe weight loss, refeeding syndrome, jejunoileal bypass, gastric bypass, jejunal diverticulosis with bacterial overgrowth
Drugs and toxins
amiodarone, methotrexate, diltiazem, expired tetracycline, highly active antiretroviral therapy, glucocorticoids, tamoxifen,[16] environmental hepatotoxins (e.g., phosphorus, mushroom poisoning)
Other
celiac disease,[17] inflammatory bowel disease, HIV, hepatitis C (especially genotype 3), and alpha 1-antitrypsin deficiency[18]

Pathology edit

 
Micrograph of periportal hepatic steatosis, as may be seen due to steroid use, trichrome stain

The fatty change represents the intracytoplasmatic accumulation of triglycerides (neutral fats). At the beginning, the hepatocytes present small fat vacuoles (liposomes) around the nucleus (microvesicular fatty change). In this stage, liver cells are filled with multiple fat droplets that do not displace the centrally located nucleus. In the late stages, the size of the vacuoles increases, pushing the nucleus to the periphery of the cell, giving a characteristic signet ring appearance (macrovesicular fatty change). These vesicles are well-delineated and optically "empty" because fats dissolve during tissue processing. Large vacuoles may coalesce and produce fatty cysts, which are irreversible lesions. Macrovesicular steatosis is the most common form and is typically associated with alcohol, diabetes, obesity, and corticosteroids. Acute fatty liver of pregnancy and Reye's syndrome are examples of severe liver disease caused by microvesicular fatty change.[19] The diagnosis of steatosis is made when fat in the liver exceeds 5–10% by weight.[13][20][21]

 
Mechanism leading to hepatic steatosis

Defects in fatty acid metabolism are responsible for pathogenesis of FLD, which may be due to imbalance in energy consumption and its combustion, resulting in lipid storage, or can be a consequence of peripheral resistance to insulin, whereby the transport of fatty acids from adipose tissue to the liver is increased.[13][22] Impairment or inhibition of receptor molecules (PPAR-α, PPAR-γ and SREBP1) that control the enzymes responsible for the oxidation and synthesis of fatty acids appears to contribute to fat accumulation. In addition, alcohol use disorder is known to damage mitochondria and other cellular structures, further impairing cellular energy mechanism. On the other hand, non-alcoholic FLD may begin as excess of unmetabolised energy in liver cells. Hepatic steatosis is considered reversible and to some extent nonprogressive if the underlying cause is reduced or removed.

 
Micrograph of inflamed fatty liver (steatohepatitis)

Severe fatty liver is sometimes accompanied by inflammation, a situation referred to as steatohepatitis. Progression to alcoholic steatohepatitis (ASH) or non-alcoholic steatohepatitis (NASH) depends on the persistence or severity of the inciting cause. Pathological lesions in both conditions are similar. However, the extent of inflammatory response varies widely and does not always correlate with degree of fat accumulation. Steatosis (retention of lipid) and onset of steatohepatitis may represent successive stages in FLD progression.[23]

Liver disease with extensive inflammation and a high degree of steatosis often progresses to more severe forms of the disease.[24] Hepatocyte ballooning and necrosis of varying degrees are often present at this stage. Liver cell death and inflammatory responses lead to the activation of hepatic stellate cells, which play a pivotal role in hepatic fibrosis. The extent of fibrosis varies widely. Perisinusoidal fibrosis is most common, especially in adults, and predominates in zone 3 around the terminal hepatic veins.[25]

The progression to cirrhosis may be influenced by the amount of fat and degree of steatohepatitis and by a variety of other sensitizing factors. In alcoholic FLD, the transition to cirrhosis related to continued alcohol consumption is well-documented, but the process involved in non-alcoholic FLD is less clear.

Diagnosis edit

 
Liver steatosis (fatty liver disease) as seen on CT
 
Ultrasound showing diffuse increased echogenicity of the liver
Flow chart for diagnosis[15]
Elevated liver enzyme
Serology to exclude viral hepatitis
Imaging study showing
fatty infiltrate
Alcohol intake
Less than two drinks per day‡More than two drinks per day‡
Nonalcoholic fatty liver disease likelyAlcoholic liver disease likely
Criteria for nonalcoholic fatty liver disease:
consumption of ethanol less than 20 g/day for women and 30 g/day for men[26]

Most individuals are asymptomatic and are usually discovered incidentally because of abnormal liver function tests or hepatomegaly noted in unrelated medical conditions. Elevated liver enzymes are found in as many as 50% of patients with simple steatosis.[27]: 1794  The serum alanine transaminase (ALT) level usually is greater than the aspartate transaminase (AST) level in the nonalcoholic variant and the opposite in alcoholic FLD (AST:ALT more than 2:1). Simple blood tests may help to determine the magnitude of the disease by assessing the degree of liver fibrosis.[28] For example, AST-to-platelets ratio index (APRI score) and several other scores, calculated from the results of blood tests, can detect the degree of liver fibrosis and predict the future formation of liver cancer.[29]

Imaging studies are often obtained during the evaluation process. Ultrasonography reveals a "bright" liver with increased echogenicity. Pocket-sized ultrasound devices might be used as point-of-care screening tools to diagnose liver steatosis.[30][31] Medical imaging can aid in diagnosis of fatty liver; fatty livers have lower density than spleens on computed tomography (CT), and fat appears bright in T1-weighted magnetic resonance images (MRIs). Magnetic resonance elastography, a variant of magnetic resonance imaging, is investigated as a non-invasive method to diagnose fibrosis progression.[32] Histological diagnosis by liver biopsy is the most accurate measure of fibrosis and liver fat progression as of 2018.[8] Conventional imaging methods, such as ultrasound, CT and MRI, are not specific enough to detect fatty liver disease unless fat occupies at least 30% of the liver volume.[33]

Treatment edit

Decreasing caloric intake by at least 30% or by approximately 750–1,000 kcal/day results in improvement in hepatic steatosis.[8] For people with NAFLD or NASH, weight loss via a combination of diet and exercise was shown to improve or resolve the disease.[8] In more serious cases, medications that decrease insulin resistance, hyperlipidemia, and those that induce weight loss such as bariatric surgery as well as vitamin E have been shown to improve or resolve liver function.[8][15]

Bariatric surgery, while not recommended in 2017 as a treatment for FLD alone, has been shown to revert FLD, NAFLD, NASH and advanced steatohepatitis in over 90% of people who have undergone this surgery for the treatment of obesity.[8][34]

In the case of long-term total-parenteral-nutrition-induced fatty liver disease, choline has been shown to alleviate symptoms.[35][36][37] This may be due to a deficiency in the methionine cycle.[38]

Epidemiology edit

NAFLD affects about 30% of people in Western countries and 10% of people in Asia.[2] In the United States rates are around 35% with about 7% having the severe form NASH.[1] NAFLD affects about 10% of children in the United States.[1] Recently the term Metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed to replace NAFLD. MAFLD is a more inclusionary diagnostic name as it is based on the detection of fatty liver by histology (biopsy),medical imaging or blood biomarkers but should be accompanied by either overweight/obesity, type 2 diabetes mellitus, or metabolic dysregulation.[39] The new definition no longer excludes alcohol consumption or coexistence of other liver diseases such as viral hepatitis. Using this more inclusive definition, the global prevalence of MAFLD is an astonishingly high 50.7%.[39] Indeed, also using the old NAFLD definition, the disease is observed in up to 80% of obese people, 35% of whom progress to NASH,[40] and in up to 20% of normal weight people,[10] despite no evidence of excessive alcohol consumption. FLD is the most common cause of abnormal liver function tests in the United States.[14] Fatty liver is more prevalent in Hispanic people than white, with black people having the lowest prevalence.[10]

In the study Children of the 90s, 2.5% born in 1991 and 1992 were found by ultrasound at the age of 18 to have non-alcoholic fatty liver disease; five years later transient elastography found over 20% to have the fatty deposits on the liver, indicating non-alcoholic fatty liver disease; half of those were classified as severe. The scans also found that 2.4% had a degree of liver fibrosis, which can lead to cirrhosis.[41][42]

After the lockdown of the COVID-19 pandemic, a study demonstrated that 48% of patients with liver steatosis gained weight, while 16% had a worsened steatosis grade. Weight gain was associated with poor adherence to the suggested diet, reduced levels of physical activity, and increased prevalence of homozygosity for the PNPLA3 rs738409 single nucleotide polymorphism.[43] PNPLA3 rs738409 is already a known risk factor for NAFLD.[44][45]

In animals edit

Fatty liver disease can occur in pets such as reptiles (particularly turtles[46]) and birds[47] as well as mammals like cats and dogs.[48][49] The most common cause is overnutrition. A distinct sign in birds is a misshapen beak. Fatty livers can be induced via gavage in geese or ducks to produce foie gras. Fatty liver can also be induced in ruminants such as sheep by a high-caloric diet.[50][51]

References edit

  1. ^ a b c d e f g h i j k l m n o p q r s t u v w "Nonalcoholic Fatty Liver Disease & NASH". National Institute of Diabetes and Digestive and Kidney Diseases. November 2016. Retrieved 7 November 2018.
  2. ^ a b c d e Singh S, Osna NA, Kharbanda KK (28 September 2017). "Treatment options for alcoholic and non-alcoholic fatty liver disease: A review". World Journal of Gastroenterology. 23 (36): 6549–6570. doi:10.3748/wjg.v23.i36.6549. PMC 5643281. PMID 29085205.
  3. ^ a b c d e f g h Antunes C, Azadfard M, Hoilat GJ, Gupta M (2022). "Fatty Liver". StatPearls. StatPearls Publishing. PMID 28723021.
  4. ^ a b Basra S (2011). "Definition, epidemiology and magnitude of alcoholic hepatitis". World Journal of Hepatology. 3 (5): 108–113. doi:10.4254/wjh.v3.i5.108. PMC 3124876. PMID 21731902.
  5. ^ a b Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, Romero D, Abdelmalek MF, Anstee QM, Arab JP, Arrese M, Bataller R, Beuers U, Boursier J, Bugianesi E (2023). "A multi-society Delphi consensus statement on new fatty liver disease nomenclature". Hepatology. 78 (6): 1966–1986. doi:10.1097/HEP.0000000000000520. hdl:10807/245116. ISSN 0270-9139. PMC 10653297. PMID 37363821. S2CID 259260747.
  6. ^ a b Iser D, Ryan M (July 2013). "Fatty liver disease—a practical guide for GPs". Australian Family Physician. 42 (7): 444–7. PMID 23826593.
  7. ^ "A Liver Disease Gets a New Name, Diagnostic Criteria". Medscape. Retrieved 2023-09-04.
  8. ^ a b c d e f g Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ (January 2018). "The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases". Hepatology. 67 (1): 328–357. doi:10.1002/hep.29367. hdl:1805/14037. PMID 28714183.
  9. ^ Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R (April 2015). "Fibrosis Progression in Nonalcoholic Fatty Liver vs Nonalcoholic Steatohepatitis: A Systematic Review and Meta-analysis of Paired-Biopsy Studies". Clinical Gastroenterology and Hepatology. 13 (4): 643–654.e9. doi:10.1016/j.cgh.2014.04.014. PMC 4208976. PMID 24768810.
  10. ^ a b c Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E (20 September 2017). "Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention". Nature Reviews Gastroenterology & Hepatology. 15 (1): 11–20. doi:10.1038/nrgastro.2017.109. hdl:2318/1659230. PMID 28930295. S2CID 31345431.
  11. ^ Qian Y, Fan JG (May 2005). "Obesity, fatty liver and liver cancer". Hepatobiliary & Pancreatic Diseases International. 4 (2): 173–7. PMID 15908310.
  12. ^ Bellentani S (January 2017). "The epidemiology of non-alcoholic fatty liver disease". Liver International. 37: 81–84. doi:10.1111/liv.13299. PMID 28052624.
  13. ^ a b c Reddy JK, Rao MS (May 2006). "Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation". American Journal of Physiology. Gastrointestinal and Liver Physiology. 290 (5): G852-8. doi:10.1152/ajpgi.00521.2005. PMID 16603729.
  14. ^ a b Angulo P (18 April 2002). "Nonalcoholic Fatty Liver Disease". New England Journal of Medicine. 346 (16): 1221–1231. doi:10.1056/NEJMra011775. PMID 11961152.
  15. ^ a b c Bayard M, Holt J, Boroughs E (June 2006). "Nonalcoholic fatty liver disease". American Family Physician. 73 (11): 1961–8. PMID 16770927.
  16. ^ Osman KA, Osman MM, Ahmed MH (January 2007). "Tamoxifen-induced non-alcoholic steatohepatitis: where are we now and where are we going?". Expert Opinion on Drug Safety. 6 (1): 1–4. doi:10.1517/14740338.6.1.1. PMID 17181445. S2CID 33505288.
  17. ^ Marciano F, Savoia M, Vajro P (February 2016). "Celiac disease-related hepatic injury: Insights into associated conditions and underlying pathomechanisms". Digestive and Liver Disease. 48 (2): 112–9. doi:10.1016/j.dld.2015.11.013. PMID 26711682.
  18. ^ Valenti L, Dongiovanni P, Piperno A, Fracanzani AL, Maggioni M, Rametta R, Loria P, Casiraghi MA, Suigo E, Ceriani R, Remondini E, Trombini P, Fargion S (October 2006). "Alpha 1-antitrypsin mutations in NAFLD: high prevalence and association with altered iron metabolism but not with liver damage". Hepatology. 44 (4): 857–64. doi:10.1002/hep.21329. PMID 17006922. S2CID 26068505.
  19. ^ Goldman L (2003). Cecil Textbook of Medicine – 2-Volume Set, Text with Continually Updated Online Reference. Philadelphia: W.B. Saunders Company. ISBN 978-0-7216-4563-6.[page needed]
  20. ^ Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, Angulo P (July 2005). "The natural history of nonalcoholic fatty liver disease: a population-based cohort study". Gastroenterology. 129 (1): 113–21. doi:10.1053/j.gastro.2005.04.014. PMID 16012941.
  21. ^ Crabb DW, Galli A, Fischer M, You M (August 2004). "Molecular mechanisms of alcoholic fatty liver: role of peroxisome proliferator-activated receptor alpha". Alcohol. 34 (1): 35–8. doi:10.1016/j.alcohol.2004.07.005. PMID 15670663.
  22. ^ Medina J, Fernández-Salazar LI, García-Buey L, Moreno-Otero R (August 2004). "Approach to the pathogenesis and treatment of nonalcoholic steatohepatitis". Diabetes Care. 27 (8): 2057–66. doi:10.2337/diacare.27.8.2057. PMID 15277442.
  23. ^ Day CP, James OF (April 1998). "Steatohepatitis: a tale of two "hits"?". Gastroenterology. 114 (4): 842–5. doi:10.1016/S0016-5085(98)70599-2. PMID 9547102.
  24. ^ Gramlich T, Kleiner DE, McCullough AJ, Matteoni CA, Boparai N, Younossi ZM (February 2004). "Pathologic features associated with fibrosis in nonalcoholic fatty liver disease". Human Pathology. 35 (2): 196–9. doi:10.1016/j.humpath.2003.09.018. PMID 14991537.
  25. ^ Zafrani ES (January 2004). "Non-alcoholic fatty liver disease: an emerging pathological spectrum". Virchows Archiv. 444 (1): 3–12. doi:10.1007/s00428-003-0943-7. PMID 14685853. S2CID 7708476.
  26. ^ Adams LA, Angulo P, Lindor KD (29 March 2005). "Nonalcoholic fatty liver disease". Canadian Medical Association Journal. 172 (7): 899–905. doi:10.1503/cmaj.045232. PMC 554876. PMID 15795412.
  27. ^ Reid AE (2006). "Chapter 82: Nonalcoholic Fatty Liver Disease". In Feldman M, Friedman LS, Brandt LJ (eds.). Sleisenger and Fordtran's Gastrointestinal and Liver Disease (8th ed.). Philadelphia: W.B. Saunders Company. ISBN 978-1-4160-0245-1. Retrieved 4 July 2023 – via Internet Archive.
  28. ^ Peleg N, Issachar A, Sneh-Arbib O, Shlomai A (October 2017). "AST to Platelet Ratio Index and fibrosis 4 calculator scores for non-invasive assessment of hepatic fibrosis in patients with non-alcoholic fatty liver disease". Digestive and Liver Disease. 49 (10): 1133–1138. doi:10.1016/j.dld.2017.05.002. PMID 28572039.
  29. ^ Peleg N, Sneh Arbib O, Issachar A, Cohen-Naftaly M, Braun M, Shlomai A (14 August 2018). "Noninvasive scoring systems predict hepatic and extra-hepatic cancers in patients with nonalcoholic fatty liver disease". PLOS ONE. 13 (8): e0202393. Bibcode:2018PLoSO..1302393P. doi:10.1371/journal.pone.0202393. PMC 6091950. PMID 30106985.
  30. ^ Miles DA, Levi CS, Uhanova J, Cuvelier S, Hawkins K, Minuk GY. Pocket-Sized Versus Conventional Ultrasound for Detecting Fatty Infiltration of the Liver. Dig Dis Sci. 2020 Jan;65(1):82-85. doi: 10.1007/s10620-019-05752-x. Epub 2019 Aug 2. PMID 31376083.
  31. ^ Costantino A, Piagnani A, Caccia R, Sorge A, Maggioni M, Perbellini R, Donato F, D'Ambrosio R, Sed NPO, Valenti L, Prati D, Vecchi M, Lampertico P, Fraquelli M. Reproducibility and accuracy of a pocket-size ultrasound device in assessing liver steatosis. Dig Liver Dis. 2023 Nov 27:S1590-8658(23)01032-0. doi: 10.1016/j.dld.2023.11.014. Epub ahead of print. PMID 38016894.
  32. ^ Singh S, Venkatesh SK, Loomba R, Wang Z, Sirlin C, Chen J, Yin M, Miller FH, Low RN, Hassanein T, Godfrey EM, Asbach P, Murad MH, Lomas DJ, Talwalkar JA, Ehman RL (28 August 2015). "Magnetic resonance elastography for staging liver fibrosis in non-alcoholic fatty liver disease: a diagnostic accuracy systematic review and individual participant data pooled analysis". European Radiology. 26 (5): 1431–1440. doi:10.1007/s00330-015-3949-z. PMC 5051267. PMID 26314479.
  33. ^ Benedict M, Zhang X (June 2017). "Non-alcoholic fatty liver disease: An expanded review". World Journal of Hepatology. 9 (16): 715–732. doi:10.4254/wjh.v9.i16.715. PMC 5468341. PMID 28652891.
  34. ^ Fatty Liver at eMedicine
  35. ^ Buchman AL, Dubin MD, Moukarzel AA, Jenden DJ, Roch M, Rice KM, Gornbein J, Ament ME (November 1995). "Choline deficiency: a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation". Hepatology. 22 (5): 1399–403. doi:10.1002/hep.1840220510. PMID 7590654. S2CID 20227016.
  36. ^ Buchman AL, Dubin M, Jenden D, Moukarzel A, Roch MH, Rice K, Gornbein J, Ament ME, Eckhert CD (April 1992). "Lecithin increases plasma free choline and decreases hepatic steatosis in long-term total parenteral nutrition patients". Gastroenterology. 102 (4 Pt 1): 1363–70. doi:10.1016/0016-5085(92)70034-9. PMID 1551541.
  37. ^ Buchman AL, Ament ME, Sohel M, Dubin M, Jenden DJ, Roch M, Pownall H, Farley W, Awal M, Ahn C (2016). "Choline deficiency causes reversible hepatic abnormalities in patients receiving parenteral nutrition: proof of a human choline requirement: a placebo-controlled trial". Journal of Parenteral and Enteral Nutrition. 25 (5): 260–8. doi:10.1177/0148607101025005260. PMID 11531217.
  38. ^ Hollenbeck CB (August 2010). "The importance of being choline". Journal of the American Dietetic Association. 110 (8): 1162–5. doi:10.1016/j.jada.2010.05.012. PMID 20656090.
  39. ^ a b Liu J, Ayada I, Zhang X, Wang L, Li Y, Wen T, Ma Z, Bruno MJ, de Knegt RJ, Cao W, Peppelenbosch MP, Ghanbari M, Li Z, Pan Q (February 2021). "Estimating Global Prevalence of Metabolic Dysfunction-Associated Fatty Liver Disease in Overweight or Obese Adults". Clinical Gastroenterology and Hepatology. 20 (3): e573–e582. doi:10.1016/j.cgh.2021.02.030. PMID 33618024. S2CID 232018678.
  40. ^ Hamaguchi M, Kojima T, Takeda N, Nakagawa T, Taniguchi H, Fujii K, Omatsu T, Nakajima T, Sarui H, Shimazaki M, Kato T, Okuda J, Ida K (15 November 2005). "The Metabolic Syndrome as a Predictor of Nonalcoholic Fatty Liver Disease". Annals of Internal Medicine. 143 (10): 722–728. doi:10.7326/0003-4819-143-10-200511150-00009. PMID 16287793. S2CID 22475943.
  41. ^ Sarah Boseley (12 April 2019). "Experts warn of fatty liver disease 'epidemic' in young people". The Guardian. Retrieved 4 July 2023.
  42. ^ SPINK HEALTH (11 April 2019). "Nonalcoholic fatty liver disease found in large numbers of teenagers and young adults". EurekAlert! (Press release). American Association for the Advancement of Science. Retrieved 4 July 2023.
  43. ^ Cinque F, Cespiati A, Lombardi R, Costantino A, Maffi G, Alletto F, Colavolpe L, Francione P, Oberti G, Fatta E, Bertelli C, Sigon G, Dongiovanni P, Vecchi M, Fargion S, Fracanzani AL (January 2022). "Interaction between Lifestyle Changes and PNPLA3 Genotype in NAFLD Patients during the COVID-19 Lockdown". Nutrients. 14 (3): 556. doi:10.3390/nu14030556. ISSN 2072-6643. PMC 8838646. PMID 35276911.   Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  44. ^ Liu, Y.L.; Patman, G.L.; Leathart, J.B.; Piguet, A.C.; Burt, A.D.; Dufour, J.F.; Day, C.P.; Daly, A.K.; Reeves, H.L.; Anstee, Q.M. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J. Hepatol. 2014, 61, 75–81.
  45. ^ Eslam, M.; Valenti, L.; Romeo, S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. J. Hepatol. 2018, 68, 268–279.
  46. ^ Lock B (8 August 2017). "Hepatic Lipidosis (Fatty Liver Disease) in Reptiles". Vin.com. Retrieved 29 December 2020.
  47. ^ "Fatty Liver Disease in Birds". Animal House of Chicago. Retrieved 29 December 2020.
  48. ^ "Fatty Liver Disease in Lizards". Wag!. Retrieved 29 December 2020.
  49. ^ "Fatty Liver Disease in Cats". PetMD. Retrieved 29 December 2020.
  50. ^ Kalyesubula M, Mopuri R, Rosov A, Alon T, Edery N, Moallem U, Dvir H (December 2020). "Hyperglycemia-stimulating diet induces liver steatosis in sheep". Scientific Reports. 10 (1): 12189. Bibcode:2020NatSR..1012189K. doi:10.1038/s41598-020-68909-z. PMC 7376193. PMID 32699301.
  51. ^ Kalyesubula M, Mopuri R, Asiku J, Rosov A, Yosefi S, Edery N, Bocobza S, Moallem U, Dvir H (1 March 2021). "High-dose vitamin B1 therapy prevents the development of experimental fatty liver driven by overnutrition". Disease Models & Mechanisms. 14 (3): dmm048355. doi:10.1242/dmm.048355. PMC 7988776. PMID 33608323.

External links edit

  • Photo at Atlas of Pathology
  • Healthdirect

fatty, liver, disease, parts, this, article, those, related, 2023, nomenclature, need, updated, please, help, update, this, article, reflect, recent, events, newly, available, information, november, 2023, also, known, hepatic, steatosis, steatotic, liver, dise. Parts of this article those related to the use of the new 2023 nomenclature need to be updated Please help update this article to reflect recent events or newly available information November 2023 Fatty liver disease FLD also known as hepatic steatosis and steatotic liver disease SLD is a condition where excess fat builds up in the liver 1 Often there are no or few symptoms 1 2 Occasionally there may be tiredness or pain in the upper right side of the abdomen 1 Complications may include cirrhosis liver cancer and esophageal varices 1 3 Fatty liverOther namesHepatic steatosisMicrograph showing a fatty liver macrovesicular steatosis as seen in non alcoholic fatty liver disease Trichrome stain SpecialtyGastroenterologySymptomsNone tiredness pain in the upper right side of the abdomen 1 2 ComplicationsCirrhosis liver cancer esophageal varices 1 3 TypesNon alcoholic fatty liver disease NAFLD alcoholic liver disease 1 CausesAlcohol diabetes obesity 3 1 Diagnostic methodBased on the medical history supported by blood tests medical imaging liver biopsy 1 Differential diagnosisViral hepatitis Wilson disease primary sclerosing cholangitis 3 TreatmentAvoiding alcohol weight loss 3 1 PrognosisGood if treated early 3 FrequencyNAFLD 30 Western countries 2 ALD gt 90 of heavy drinkers 4 The main subtypes of fatty liver disease are metabolic dysfunction associated steatotic liver disease MASLD formerly non alcoholic fatty liver disease NAFLD and alcohol associated liver disease ALD with the category metabolic and alcohol associated liver disease metALD describing an overlap of the two 5 The primary risks include alcohol type 2 diabetes and obesity 1 3 Other risk factors include certain medications such as glucocorticoids and hepatitis C 1 It is unclear why some people with NAFLD develop simple fatty liver and others develop NASH 1 Diagnosis is based on the medical history supported by blood tests medical imaging and occasionally liver biopsy 1 Treatment of NAFLD is generally by dietary changes and exercise to bring about weight loss 1 In those who are severely affected liver transplantation may be an option 1 More than 90 of heavy drinkers develop fatty liver while about 25 develop the more severe alcoholic hepatitis 4 NAFLD affects about 30 of people in Western countries and 10 of people in Asia 2 NAFLD affects about 10 of children in the United States 1 It occurs more often in older people and males 3 6 Contents 1 Classification 2 Signs and symptoms 2 1 Complications 3 Causes 4 Pathology 5 Diagnosis 6 Treatment 7 Epidemiology 8 In animals 9 References 10 External linksClassification editFatty liver disease was classified into Non alcoholic fatty liver disease NAFLD made up of 6 1 Non alcoholic fatty liver NAFL or simple fatty liver Non alcoholic steatohepatitis NASH Alcoholic liver disease ALD 1 In 2023 a new nomenclature was chosen 5 7 with the classifications including Metabolic dysfunction associated steatotic liver disease MASLD including Metabolic dysfunction associated steatohepatitis MASH Metabolic and alcohol associated liver disease metALD Describes those with MASLD who consume greater amounts of alcohol per week but not enough to be categorized as ALD Alcohol associated liver disease ALD Specific aetiology SLD including drug induced monogenic diseases and others Signs and symptoms editOften there are no or few symptoms 1 Occasionally there may be tiredness or pain in the upper right side of the abdomen 1 Complications edit Fatty liver can develop into hepatic fibrosis cirrhosis or liver cancer 8 For people affected by NAFLD the 10 year survival rate was about 80 The rate of progression of fibrosis is estimated to be one per 7 years in NASH and one per 14 years in NAFLD with an increasing speed 9 10 There is a strong relationship between these pathologies and metabolic illnesses diabetes type II metabolic syndrome These pathologies can also affect non obese people who are then at a higher risk 8 Less than 10 of people with cirrhotic alcoholic FLD will develop hepatocellular carcinoma 11 the most common type of primary liver cancer in adults but up to 45 people with NASH without cirrhosis can develop hepatocellular carcinoma 12 The condition is also associated with other diseases that influence fat metabolism 13 Causes edit nbsp Different stages of liver damageFatty liver FL is commonly associated with metabolic syndrome diabetes hypertension obesity and dyslipidemia but can also be due to any one of many causes 14 15 Alcohol Alcohol use disorder is one of the causes of fatty liver due to production of toxic metabolites like aldehydes during metabolism of alcohol in the liver This phenomenon most commonly occurs with chronic alcohol use disorder Metabolic abetalipoproteinemia glycogen storage diseases Weber Christian disease acute fatty liver of pregnancy lipodystrophy Nutritional obesity malnutrition total parenteral nutrition severe weight loss refeeding syndrome jejunoileal bypass gastric bypass jejunal diverticulosis with bacterial overgrowth Drugs and toxins amiodarone methotrexate diltiazem expired tetracycline highly active antiretroviral therapy glucocorticoids tamoxifen 16 environmental hepatotoxins e g phosphorus mushroom poisoning Other celiac disease 17 inflammatory bowel disease HIV hepatitis C especially genotype 3 and alpha 1 antitrypsin deficiency 18 Pathology edit nbsp Micrograph of periportal hepatic steatosis as may be seen due to steroid use trichrome stainThe fatty change represents the intracytoplasmatic accumulation of triglycerides neutral fats At the beginning the hepatocytes present small fat vacuoles liposomes around the nucleus microvesicular fatty change In this stage liver cells are filled with multiple fat droplets that do not displace the centrally located nucleus In the late stages the size of the vacuoles increases pushing the nucleus to the periphery of the cell giving a characteristic signet ring appearance macrovesicular fatty change These vesicles are well delineated and optically empty because fats dissolve during tissue processing Large vacuoles may coalesce and produce fatty cysts which are irreversible lesions Macrovesicular steatosis is the most common form and is typically associated with alcohol diabetes obesity and corticosteroids Acute fatty liver of pregnancy and Reye s syndrome are examples of severe liver disease caused by microvesicular fatty change 19 The diagnosis of steatosis is made when fat in the liver exceeds 5 10 by weight 13 20 21 nbsp Mechanism leading to hepatic steatosisDefects in fatty acid metabolism are responsible for pathogenesis of FLD which may be due to imbalance in energy consumption and its combustion resulting in lipid storage or can be a consequence of peripheral resistance to insulin whereby the transport of fatty acids from adipose tissue to the liver is increased 13 22 Impairment or inhibition of receptor molecules PPAR a PPAR g and SREBP1 that control the enzymes responsible for the oxidation and synthesis of fatty acids appears to contribute to fat accumulation In addition alcohol use disorder is known to damage mitochondria and other cellular structures further impairing cellular energy mechanism On the other hand non alcoholic FLD may begin as excess of unmetabolised energy in liver cells Hepatic steatosis is considered reversible and to some extent nonprogressive if the underlying cause is reduced or removed nbsp Micrograph of inflamed fatty liver steatohepatitis Severe fatty liver is sometimes accompanied by inflammation a situation referred to as steatohepatitis Progression to alcoholic steatohepatitis ASH or non alcoholic steatohepatitis NASH depends on the persistence or severity of the inciting cause Pathological lesions in both conditions are similar However the extent of inflammatory response varies widely and does not always correlate with degree of fat accumulation Steatosis retention of lipid and onset of steatohepatitis may represent successive stages in FLD progression 23 Liver disease with extensive inflammation and a high degree of steatosis often progresses to more severe forms of the disease 24 Hepatocyte ballooning and necrosis of varying degrees are often present at this stage Liver cell death and inflammatory responses lead to the activation of hepatic stellate cells which play a pivotal role in hepatic fibrosis The extent of fibrosis varies widely Perisinusoidal fibrosis is most common especially in adults and predominates in zone 3 around the terminal hepatic veins 25 The progression to cirrhosis may be influenced by the amount of fat and degree of steatohepatitis and by a variety of other sensitizing factors In alcoholic FLD the transition to cirrhosis related to continued alcohol consumption is well documented but the process involved in non alcoholic FLD is less clear Diagnosis edit nbsp Liver steatosis fatty liver disease as seen on CT nbsp Ultrasound showing diffuse increased echogenicity of the liverFlow chart for diagnosis 15 Elevated liver enzymeSerology to exclude viral hepatitisImaging study showingfatty infiltrateAlcohol intakeLess than two drinks per day More than two drinks per day Nonalcoholic fatty liver disease likelyAlcoholic liver disease likely Criteria for nonalcoholic fatty liver disease consumption of ethanol less than 20 g day for women and 30 g day for men 26 Most individuals are asymptomatic and are usually discovered incidentally because of abnormal liver function tests or hepatomegaly noted in unrelated medical conditions Elevated liver enzymes are found in as many as 50 of patients with simple steatosis 27 1794 The serum alanine transaminase ALT level usually is greater than the aspartate transaminase AST level in the nonalcoholic variant and the opposite in alcoholic FLD AST ALT more than 2 1 Simple blood tests may help to determine the magnitude of the disease by assessing the degree of liver fibrosis 28 For example AST to platelets ratio index APRI score and several other scores calculated from the results of blood tests can detect the degree of liver fibrosis and predict the future formation of liver cancer 29 Imaging studies are often obtained during the evaluation process Ultrasonography reveals a bright liver with increased echogenicity Pocket sized ultrasound devices might be used as point of care screening tools to diagnose liver steatosis 30 31 Medical imaging can aid in diagnosis of fatty liver fatty livers have lower density than spleens on computed tomography CT and fat appears bright in T1 weighted magnetic resonance images MRIs Magnetic resonance elastography a variant of magnetic resonance imaging is investigated as a non invasive method to diagnose fibrosis progression 32 Histological diagnosis by liver biopsy is the most accurate measure of fibrosis and liver fat progression as of 2018 8 Conventional imaging methods such as ultrasound CT and MRI are not specific enough to detect fatty liver disease unless fat occupies at least 30 of the liver volume 33 Treatment editDecreasing caloric intake by at least 30 or by approximately 750 1 000 kcal day results in improvement in hepatic steatosis 8 For people with NAFLD or NASH weight loss via a combination of diet and exercise was shown to improve or resolve the disease 8 In more serious cases medications that decrease insulin resistance hyperlipidemia and those that induce weight loss such as bariatric surgery as well as vitamin E have been shown to improve or resolve liver function 8 15 Bariatric surgery while not recommended in 2017 as a treatment for FLD alone has been shown to revert FLD NAFLD NASH and advanced steatohepatitis in over 90 of people who have undergone this surgery for the treatment of obesity 8 34 In the case of long term total parenteral nutrition induced fatty liver disease choline has been shown to alleviate symptoms 35 36 37 This may be due to a deficiency in the methionine cycle 38 Epidemiology editNAFLD affects about 30 of people in Western countries and 10 of people in Asia 2 In the United States rates are around 35 with about 7 having the severe form NASH 1 NAFLD affects about 10 of children in the United States 1 Recently the term Metabolic dysfunction associated fatty liver disease MAFLD has been proposed to replace NAFLD MAFLD is a more inclusionary diagnostic name as it is based on the detection of fatty liver by histology biopsy medical imaging or blood biomarkers but should be accompanied by either overweight obesity type 2 diabetes mellitus or metabolic dysregulation 39 The new definition no longer excludes alcohol consumption or coexistence of other liver diseases such as viral hepatitis Using this more inclusive definition the global prevalence of MAFLD is an astonishingly high 50 7 39 Indeed also using the old NAFLD definition the disease is observed in up to 80 of obese people 35 of whom progress to NASH 40 and in up to 20 of normal weight people 10 despite no evidence of excessive alcohol consumption FLD is the most common cause of abnormal liver function tests in the United States 14 Fatty liver is more prevalent in Hispanic people than white with black people having the lowest prevalence 10 In the study Children of the 90s 2 5 born in 1991 and 1992 were found by ultrasound at the age of 18 to have non alcoholic fatty liver disease five years later transient elastography found over 20 to have the fatty deposits on the liver indicating non alcoholic fatty liver disease half of those were classified as severe The scans also found that 2 4 had a degree of liver fibrosis which can lead to cirrhosis 41 42 After the lockdown of the COVID 19 pandemic a study demonstrated that 48 of patients with liver steatosis gained weight while 16 had a worsened steatosis grade Weight gain was associated with poor adherence to the suggested diet reduced levels of physical activity and increased prevalence of homozygosity for the PNPLA3 rs738409 single nucleotide polymorphism 43 PNPLA3 rs738409 is already a known risk factor for NAFLD 44 45 In animals editFatty liver disease can occur in pets such as reptiles particularly turtles 46 and birds 47 as well as mammals like cats and dogs 48 49 The most common cause is overnutrition A distinct sign in birds is a misshapen beak Fatty livers can be induced via gavage in geese or ducks to produce foie gras Fatty liver can also be induced in ruminants such as sheep by a high caloric diet 50 51 References edit a b c d e f g h i j k l m n o p q r s t u v w Nonalcoholic Fatty Liver Disease amp NASH National Institute of Diabetes and Digestive and Kidney Diseases November 2016 Retrieved 7 November 2018 a b c d e Singh S Osna NA Kharbanda KK 28 September 2017 Treatment options for alcoholic and non alcoholic fatty liver disease A review World Journal of Gastroenterology 23 36 6549 6570 doi 10 3748 wjg v23 i36 6549 PMC 5643281 PMID 29085205 a b c d e f g h Antunes C Azadfard M Hoilat GJ Gupta M 2022 Fatty Liver StatPearls StatPearls Publishing PMID 28723021 a b Basra S 2011 Definition epidemiology and magnitude of alcoholic hepatitis World Journal of Hepatology 3 5 108 113 doi 10 4254 wjh v3 i5 108 PMC 3124876 PMID 21731902 a b Rinella ME Lazarus JV Ratziu V Francque SM Sanyal AJ Kanwal F Romero D Abdelmalek MF Anstee QM Arab JP Arrese M Bataller R Beuers U Boursier J Bugianesi E 2023 A multi society Delphi consensus statement on new fatty liver disease nomenclature Hepatology 78 6 1966 1986 doi 10 1097 HEP 0000000000000520 hdl 10807 245116 ISSN 0270 9139 PMC 10653297 PMID 37363821 S2CID 259260747 a b Iser D Ryan M July 2013 Fatty liver disease a practical guide for GPs Australian Family Physician 42 7 444 7 PMID 23826593 A Liver Disease Gets a New Name Diagnostic Criteria Medscape Retrieved 2023 09 04 a b c d e f g Chalasani N Younossi Z Lavine JE Charlton M Cusi K Rinella M Harrison SA Brunt EM Sanyal AJ January 2018 The diagnosis and management of nonalcoholic fatty liver disease Practice guidance from the American Association for the Study of Liver Diseases Hepatology 67 1 328 357 doi 10 1002 hep 29367 hdl 1805 14037 PMID 28714183 Singh S Allen AM Wang Z Prokop LJ Murad MH Loomba R April 2015 Fibrosis Progression in Nonalcoholic Fatty Liver vs Nonalcoholic Steatohepatitis A Systematic Review and Meta analysis of Paired Biopsy Studies Clinical Gastroenterology and Hepatology 13 4 643 654 e9 doi 10 1016 j cgh 2014 04 014 PMC 4208976 PMID 24768810 a b c Younossi Z Anstee QM Marietti M Hardy T Henry L Eslam M George J Bugianesi E 20 September 2017 Global burden of NAFLD and NASH trends predictions risk factors and prevention Nature Reviews Gastroenterology amp Hepatology 15 1 11 20 doi 10 1038 nrgastro 2017 109 hdl 2318 1659230 PMID 28930295 S2CID 31345431 Qian Y Fan JG May 2005 Obesity fatty liver and liver cancer Hepatobiliary amp Pancreatic Diseases International 4 2 173 7 PMID 15908310 Bellentani S January 2017 The epidemiology of non alcoholic fatty liver disease Liver International 37 81 84 doi 10 1111 liv 13299 PMID 28052624 a b c Reddy JK Rao MS May 2006 Lipid metabolism and liver inflammation II Fatty liver disease and fatty acid oxidation American Journal of Physiology Gastrointestinal and Liver Physiology 290 5 G852 8 doi 10 1152 ajpgi 00521 2005 PMID 16603729 a b Angulo P 18 April 2002 Nonalcoholic Fatty Liver Disease New England Journal of Medicine 346 16 1221 1231 doi 10 1056 NEJMra011775 PMID 11961152 a b c Bayard M Holt J Boroughs E June 2006 Nonalcoholic fatty liver disease American Family Physician 73 11 1961 8 PMID 16770927 Osman KA Osman MM Ahmed MH January 2007 Tamoxifen induced non alcoholic steatohepatitis where are we now and where are we going Expert Opinion on Drug Safety 6 1 1 4 doi 10 1517 14740338 6 1 1 PMID 17181445 S2CID 33505288 Marciano F Savoia M Vajro P February 2016 Celiac disease related hepatic injury Insights into associated conditions and underlying pathomechanisms Digestive and Liver Disease 48 2 112 9 doi 10 1016 j dld 2015 11 013 PMID 26711682 Valenti L Dongiovanni P Piperno A Fracanzani AL Maggioni M Rametta R Loria P Casiraghi MA Suigo E Ceriani R Remondini E Trombini P Fargion S October 2006 Alpha 1 antitrypsin mutations in NAFLD high prevalence and association with altered iron metabolism but not with liver damage Hepatology 44 4 857 64 doi 10 1002 hep 21329 PMID 17006922 S2CID 26068505 Goldman L 2003 Cecil Textbook of Medicine 2 Volume Set Text with Continually Updated Online Reference Philadelphia W B Saunders Company ISBN 978 0 7216 4563 6 page needed Adams LA Lymp JF St Sauver J Sanderson SO Lindor KD Feldstein A Angulo P July 2005 The natural history of nonalcoholic fatty liver disease a population based cohort study Gastroenterology 129 1 113 21 doi 10 1053 j gastro 2005 04 014 PMID 16012941 Crabb DW Galli A Fischer M You M August 2004 Molecular mechanisms of alcoholic fatty liver role of peroxisome proliferator activated receptor alpha Alcohol 34 1 35 8 doi 10 1016 j alcohol 2004 07 005 PMID 15670663 Medina J Fernandez Salazar LI Garcia Buey L Moreno Otero R August 2004 Approach to the pathogenesis and treatment of nonalcoholic steatohepatitis Diabetes Care 27 8 2057 66 doi 10 2337 diacare 27 8 2057 PMID 15277442 Day CP James OF April 1998 Steatohepatitis a tale of two hits Gastroenterology 114 4 842 5 doi 10 1016 S0016 5085 98 70599 2 PMID 9547102 Gramlich T Kleiner DE McCullough AJ Matteoni CA Boparai N Younossi ZM February 2004 Pathologic features associated with fibrosis in nonalcoholic fatty liver disease Human Pathology 35 2 196 9 doi 10 1016 j humpath 2003 09 018 PMID 14991537 Zafrani ES January 2004 Non alcoholic fatty liver disease an emerging pathological spectrum Virchows Archiv 444 1 3 12 doi 10 1007 s00428 003 0943 7 PMID 14685853 S2CID 7708476 Adams LA Angulo P Lindor KD 29 March 2005 Nonalcoholic fatty liver disease Canadian Medical Association Journal 172 7 899 905 doi 10 1503 cmaj 045232 PMC 554876 PMID 15795412 Reid AE 2006 Chapter 82 Nonalcoholic Fatty Liver Disease In Feldman M Friedman LS Brandt LJ eds Sleisenger and Fordtran s Gastrointestinal and Liver Disease 8th ed Philadelphia W B Saunders Company ISBN 978 1 4160 0245 1 Retrieved 4 July 2023 via Internet Archive Peleg N Issachar A Sneh Arbib O Shlomai A October 2017 AST to Platelet Ratio Index and fibrosis 4 calculator scores for non invasive assessment of hepatic fibrosis in patients with non alcoholic fatty liver disease Digestive and Liver Disease 49 10 1133 1138 doi 10 1016 j dld 2017 05 002 PMID 28572039 Peleg N Sneh Arbib O Issachar A Cohen Naftaly M Braun M Shlomai A 14 August 2018 Noninvasive scoring systems predict hepatic and extra hepatic cancers in patients with nonalcoholic fatty liver disease PLOS ONE 13 8 e0202393 Bibcode 2018PLoSO 1302393P doi 10 1371 journal pone 0202393 PMC 6091950 PMID 30106985 Miles DA Levi CS Uhanova J Cuvelier S Hawkins K Minuk GY Pocket Sized Versus Conventional Ultrasound for Detecting Fatty Infiltration of the Liver Dig Dis Sci 2020 Jan 65 1 82 85 doi 10 1007 s10620 019 05752 x Epub 2019 Aug 2 PMID 31376083 Costantino A Piagnani A Caccia R Sorge A Maggioni M Perbellini R Donato F D Ambrosio R Sed NPO Valenti L Prati D Vecchi M Lampertico P Fraquelli M Reproducibility and accuracy of a pocket size ultrasound device in assessing liver steatosis Dig Liver Dis 2023 Nov 27 S1590 8658 23 01032 0 doi 10 1016 j dld 2023 11 014 Epub ahead of print PMID 38016894 Singh S Venkatesh SK Loomba R Wang Z Sirlin C Chen J Yin M Miller FH Low RN Hassanein T Godfrey EM Asbach P Murad MH Lomas DJ Talwalkar JA Ehman RL 28 August 2015 Magnetic resonance elastography for staging liver fibrosis in non alcoholic fatty liver disease a diagnostic accuracy systematic review and individual participant data pooled analysis European Radiology 26 5 1431 1440 doi 10 1007 s00330 015 3949 z PMC 5051267 PMID 26314479 Benedict M Zhang X June 2017 Non alcoholic fatty liver disease An expanded review World Journal of Hepatology 9 16 715 732 doi 10 4254 wjh v9 i16 715 PMC 5468341 PMID 28652891 Fatty Liver at eMedicine Buchman AL Dubin MD Moukarzel AA Jenden DJ Roch M Rice KM Gornbein J Ament ME November 1995 Choline deficiency a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation Hepatology 22 5 1399 403 doi 10 1002 hep 1840220510 PMID 7590654 S2CID 20227016 Buchman AL Dubin M Jenden D Moukarzel A Roch MH Rice K Gornbein J Ament ME Eckhert CD April 1992 Lecithin increases plasma free choline and decreases hepatic steatosis in long term total parenteral nutrition patients Gastroenterology 102 4 Pt 1 1363 70 doi 10 1016 0016 5085 92 70034 9 PMID 1551541 Buchman AL Ament ME Sohel M Dubin M Jenden DJ Roch M Pownall H Farley W Awal M Ahn C 2016 Choline deficiency causes reversible hepatic abnormalities in patients receiving parenteral nutrition proof of a human choline requirement a placebo controlled trial Journal of Parenteral and Enteral Nutrition 25 5 260 8 doi 10 1177 0148607101025005260 PMID 11531217 Hollenbeck CB August 2010 The importance of being choline Journal of the American Dietetic Association 110 8 1162 5 doi 10 1016 j jada 2010 05 012 PMID 20656090 a b Liu J Ayada I Zhang X Wang L Li Y Wen T Ma Z Bruno MJ de Knegt RJ Cao W Peppelenbosch MP Ghanbari M Li Z Pan Q February 2021 Estimating Global Prevalence of Metabolic Dysfunction Associated Fatty Liver Disease in Overweight or Obese Adults Clinical Gastroenterology and Hepatology 20 3 e573 e582 doi 10 1016 j cgh 2021 02 030 PMID 33618024 S2CID 232018678 Hamaguchi M Kojima T Takeda N Nakagawa T Taniguchi H Fujii K Omatsu T Nakajima T Sarui H Shimazaki M Kato T Okuda J Ida K 15 November 2005 The Metabolic Syndrome as a Predictor of Nonalcoholic Fatty Liver Disease Annals of Internal Medicine 143 10 722 728 doi 10 7326 0003 4819 143 10 200511150 00009 PMID 16287793 S2CID 22475943 Sarah Boseley 12 April 2019 Experts warn of fatty liver disease epidemic in young people The Guardian Retrieved 4 July 2023 SPINK HEALTH 11 April 2019 Nonalcoholic fatty liver disease found in large numbers of teenagers and young adults EurekAlert Press release American Association for the Advancement of Science Retrieved 4 July 2023 Cinque F Cespiati A Lombardi R Costantino A Maffi G Alletto F Colavolpe L Francione P Oberti G Fatta E Bertelli C Sigon G Dongiovanni P Vecchi M Fargion S Fracanzani AL January 2022 Interaction between Lifestyle Changes and PNPLA3 Genotype in NAFLD Patients during the COVID 19 Lockdown Nutrients 14 3 556 doi 10 3390 nu14030556 ISSN 2072 6643 PMC 8838646 PMID 35276911 nbsp Text was copied from this source which is available under a Creative Commons Attribution 4 0 International License Liu Y L Patman G L Leathart J B Piguet A C Burt A D Dufour J F Day C P Daly A K Reeves H L Anstee Q M Carriage of the PNPLA3 rs738409 C gt G polymorphism confers an increased risk of non alcoholic fatty liver disease associated hepatocellular carcinoma J Hepatol 2014 61 75 81 Eslam M Valenti L Romeo S Genetics and epigenetics of NAFLD and NASH Clinical impact J Hepatol 2018 68 268 279 Lock B 8 August 2017 Hepatic Lipidosis Fatty Liver Disease in Reptiles Vin com Retrieved 29 December 2020 Fatty Liver Disease in Birds Animal House of Chicago Retrieved 29 December 2020 Fatty Liver Disease in Lizards Wag Retrieved 29 December 2020 Fatty Liver Disease in Cats PetMD Retrieved 29 December 2020 Kalyesubula M Mopuri R Rosov A Alon T Edery N Moallem U Dvir H December 2020 Hyperglycemia stimulating diet induces liver steatosis in sheep Scientific Reports 10 1 12189 Bibcode 2020NatSR 1012189K doi 10 1038 s41598 020 68909 z PMC 7376193 PMID 32699301 Kalyesubula M Mopuri R Asiku J Rosov A Yosefi S Edery N Bocobza S Moallem U Dvir H 1 March 2021 High dose vitamin B1 therapy prevents the development of experimental fatty liver driven by overnutrition Disease Models amp Mechanisms 14 3 dmm048355 doi 10 1242 dmm 048355 PMC 7988776 PMID 33608323 External links edit00474 at CHORUSPhoto at Atlas of Pathology Healthdirect Retrieved from https en wikipedia org w index php title Fatty liver disease amp oldid 1206299916, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.