fbpx
Wikipedia

Erwin Bünning

Erwin Bünning (23 January 1906 – 4 October 1990) was a German biologist. His most famous contributions were to the field of chronobiology, where he proposed a model for the endogenous circadian rhythms governing plant photoperiodism. From these contributions, Bünning is considered a co-founder of chronobiology along with Jürgen Aschoff and Colin Pittendrigh.[1]

Erwin Bünning
Born(1906-01-23)January 23, 1906
DiedOctober 4, 1990(1990-10-04) (aged 84)
Tübingen, Germany
NationalityGerman
Alma mater
Known for
SpouseEleanore Bünning
Children3
Parents
  • Heinrich Bünning
  • Hermine Winkler
Scientific career
Fields
Institutions

Life edit

Early life and education edit

Bünning was born on 23 January 1906 in Hamburg, Germany to Heinrich Bünning and Hermine Bünning (born Winkler). A teacher of German, English, mathematics, and biology, Bünning's father was the primary academic influence on Erwin's early life, passing on to Erwin a passion for botany. Bünning received his primary education in Hamburg from 1912-1925. Bünning then attended the University of Göttingen and the University of Berlin from October 1925-July 1928, where he studied biology, chemistry, physics, and philosophy. Bünning earned his Doctorate of Philosophy from the University of Berlin in May 1929. During this time, Bünning married his wife Eleanore; the two would later have three children.[2]

Academic career edit

In 1930, Bünning took an assistantship under Otto Renner at the University of Jena, then one of Germany's largest botanical institutes. During the rise of the Nazi Party in Germany in the early 1930s, Renner stood in open opposition to the Nazis, publicly defending Jewish scientists. Similarly, Bünning was considered a communist sympathizer, a stance likely influenced by Bünning's father, a Social Democrat opposed to the Nazis. Bünning's political beliefs created tension between him and some of his students. In response to this tension, Bünning left Jena for a lectureship at the East Prussian University of Königsberg.[2] In 1936, Bünning published his model for plant photoperiodism, wherein he proposed that endogenous (internal) circadian rhythms enable plants to measure day length. Bünning's model of photoperiodism would go largely unnoticed by the scientific community until 1960 when he chaired the 1960 Cold Spring Harbor Symposium on Biological Clocks. There, Colin Pittendrigh drew attention to Bünning's work and named his 1936 model on plant photoperiodism the Bünning hypothesis.[1][3][4]

 
Bünning spent most of his academic career at the University of Tübingen

In 1938, Bünning spent a year traveling through Java and Sumatra. His observations on the islands resulted in the book Tropische Regenwalder (Tropical Rainforests). Upon his return to Germany in 1939, Bünning was conscripted in the German military (World War II). Military authorities appointed Bünning as an associate professor at the University of Strasbourg. After the war, Bünning became a full professor at the University of Cologne in 1945 before moving to the University of Tübingen the next year (1946), where he stayed until his retirement in 1971.[2] At Tübingen, Bünning entered into the workspace of his role model Wilhelm Pfeffer, the man who postulated in 1875 that the orientation of plants in space changes with the time of day.[5] Bünning would later publish a biography on Pfeffer.[2]

Later life and legacy edit

Over his career, Bünning published over 260 papers in the fields of plant physiology and general biology, as well as a very popular textbook on plant physiology. Bünning suffered by drinking Alzheimer's and died on 4 October 1990 in Tübingen, Germany, after contracting pneumonia.[2] Following his death, the German newspaper Schwäbisches Tagblatt described Bünning as one of the greatest botanists of the 20th century.[1]

Key contributions edit

Historical context edit

Changes in the positioning of plant leaves over the course of the day were observed as early as the 4th century B.C. by Androsthenes, Alexander the Great’s historian. This phenomenon, however, was not researched further until 1729 when Jean-Jacques d'Ortous de Mairan provided experimental data that mimosa plants close their leaves at night, a movement that persists rhythmically in constant darkness.[5] In 1875, Wilhelm Pfeffer, Bünning’s role model, put forward that these movements might be controlled by an endogenous biological clock.[5] This theory formed the foundation for Bünning’s later work.[5]

Prior to Bünning’s work, the prevailing hypothesis on circadian rhythms was the "hourglass" hypothesis, which postulates that circadian rhythmicity within an organism is entirely driven by the external light-dark cycle and that an organism's "hourglass" is reset each day.[6] Bünning, however, proposed that biological clocks are endogenous and synchronize to daily stimuli. Unlike in the hourglass hypothesis, Bünning's hypothesis proposes that circadian rhythmicity derives from an interaction between light and a circadian pacemaker, not external stimuli alone.[6] The general premise of Bünning's hypothesis became a model for circadian time keeping across species off of which many chronobiologists, even into the present, base their models.[7]

Experiments edit

In the early-1930s, Bünning proposed that organisms rely on a circadian rhythm of sensitivity to light to measure photoperiod. He demonstrated that plants open and close their leaves and insects eclose according to circadian rhythms, even in continuous light or darkness.[8] His crossing experiments with bean plants of different periods in 1935 demonstrated that the next generation had periods of intermediate durations, supporting the suggestion that circadian rhythms are heritable.[9] Bünning also demonstrated that an artificial photoperiod can induce flowering at inappropriate times, supporting his model of endogenous oscillators entrained to external stimuli. To create artificial photoperiods, Bünning exposed plants to a light-dark cycle indicative of a specific season, such as the long days and short nights of summer. By entraining the plants to a spring or summer photoperiod, Bünning was able to induce flowering, even if the actual season were fall or winter.[8][10] From his results, Bünning proposed that biological clocks have sensors for both light and dark, and their relationship aids photoperiodic timekeeping.[11]

His published works provided key synthesis of existing evidence for biological clocks across species, including plants, flies, and fungi. His 1958 work, "The Physiological Clock", was hailed as a milestone in the field of chronobiology, and his later works on plant physiology helped apply his work on photoperiodism to practical uses.[12] In 1935 he demonstrated that plants with different inherent periods would become desynchronized in constant conditions.[13] This work provided evidence for the dismissal of the "Factor X" hypothesis, which held that circadian rhythms were not endogenous, and were instead reliant on an unknown external stimulus, some "Factor X."[14]

Bünning's model edit

Bünning was the pioneer of the "Bünning Hypothesis," later known as the External Coincidence model. This model proposed a circadian rhythm of photoperiodic photosensitivity in plants. As day length increases with the spring and summer seasons, for example, light hits a plant's photosensitive phase, triggering a physiological or behavioral response. The Bünning Hypothesis proposed that light has two functions for an organism:[15]

1. Light is the primary Zeitgeber for the synchronization of biological rhythms.[16]

2. Light triggers photoinductive responses during certain phases of the circadian cycle.[16]

Honors edit

Bünning received many honors in his life both in the field of chronobiology and botany. In 1960, he chaired in the 25th Cold Spring Harbor Symposium, "Biological Clocks". [4] The next year, Bünning was elected Corresponding Member of the Botanical Society of America.[17] During his life he was also elected honorary member of the Japanese Botanical Society, the German Botanical Society, the American Society of Plant Physiologists, and the Swiss Botanical Society.[12] He became an elected member of the American Philosophical Society, the Heidelberg Academy for Sciences and Humanities, the Bavarian Academy of Sciences and Humanities, and the German Academy of Scientists, Leopoldina. In addition, he was elected a Foreign Associate of the American National Academy of Sciences (1968),[12] Foreign Member of the Royal Society of London, and an Honorary Fellow of the Indian Academy of Sciences (1986).[2]

In 1973 Bünning won the Charles Reid Barnes Life Membership Award[18] for "meritorious work in plant biology."[19] The Universities of Glasgow (1974), Freiburg (1976), and Erlangen (1977) conferred honorary doctorates on him,[20] as did the University of Göttingen[2] Bünning is considered by many to be the father of the field of chronobiology.[2][20] His work on measuring the free-running period of plant rhythms and experiments with cross-breeding strains of plants with different periods aided in the development of that field.[2][20] Bünning was invited by M. K. Chandrashekaran to India in 1978, to conduct the Biological Oscillation workshop in Madurai Kamaraj University.[21]

Selected publications edit

  • Uber die Erblichkeit der Tagesperiodizitat bei den Phaseolus-Blattern (1932)
  • Die endogene Tagesperiodik als Grundlage der photoperiodischen Reaktion (1936)
  • Entwicklungs und Bewegungsphysiologie der Pflanze (1948)
  • In den Waldern Nordsumatras: Reisebuch eines Biologen (In the North Sumatran Forests : Travels of a Biologist, 1949)
  • Die physiologische Uhr ("The Physiological Clock", 1958)
  • Biological clocks; Chairman's Address; Cold Spring Harbor Symposium (1960)
  • Interference of Moonlight with the Photoperiodic Measurement of Time by Plants, and their Adaptive Reaction (1969, With Ilse Moser)
  • Wilhelm Pfeffer: Apotheker, Chemiker, Botaniker, Physiologe 1845–1920 (1975)
  • Pfeffer's views on rhythms (1975, With M K Chandrashekaran)
  • Fifty years of research in the wake of Wilhelm Pfeffer (1977)

See also edit

References edit

  1. ^ a b c Chandrashekaran, M (1998). "Biological rhythms research: A personal account" (PDF). Journal of Biosciences. 23 (5): 545–555. doi:10.1007/bf02709165. S2CID 28626642.
  2. ^ a b c d e f g h i Chandrashekaran, M K (April 2006). "Erwin Bünning(1906-1990): A centennial homage" (PDF). Journal of Biosciences. 31 (1): 5–12. doi:10.1007/BF02705230. PMID 16595870. S2CID 45901454. Retrieved 7 April 2015.
  3. ^ Saunders, D (2005). "Erwin Bünning and Tony Lees, two giants of chronobiology, and the problem of time measurement in insect photoperiodism". Journal of Insect Physiology. 51 (6): 599–608. doi:10.1016/j.jinsphys.2004.12.002. PMID 15993124.
  4. ^ a b Witkowski, Jan. "XXV: Biological Clocks 1960". CSHL Digital Photo Archives. Retrieved 7 April 2015.
  5. ^ a b c d Datta, Subhash Chandra (1994). Plant Physiology. New Delhi: New Age International (P) Ltd., Publishers. p. 450. ISBN 81-224-0517-7.
  6. ^ a b Pittendrigh, Colin (1964). "The Entrainment of Circadian Oscillations by Light and Their Role as Photoperiodic Clocks". The American Naturalist. 98 (902): 261–294. doi:10.1086/282327. JSTOR 2459454. S2CID 84898684.
  7. ^ Saunders, D.S. (May 2011). "Deciphering time measurement: The role of circadian 'clock' genes and formal experimentation in insect photoperiodism". Journal of Insect Physiology. 57 (5): 557–566. doi:10.1016/j.jinsphys.2011.01.013. PMID 21295039.
  8. ^ a b Went, F.W (1958). "The Mechanism of Photoperiodism in plants". Photobiology.
  9. ^ Moore-Ede, Martin (1984). The Clocks that Time Us. Harvard University Press. p. 11. ISBN 0674135814.
  10. ^ Saunders, D.S. (2002). Insect clocks. Elsevier. p. 340.
  11. ^ Johannson, Mikael (November 2014). "Time to flower: interplay between photoperiod and the circadian clock". Journal of Experimental Botany. 66 (3): 719–730. doi:10.1093/jxb/eru441. PMID 25371508.
  12. ^ a b c Bonner, James (June 1994). "Erwin Bünning (23 January 1906-4 October 1990)". Proceedings of the American Philosophical Society. 138 (2): 318–320. JSTOR 987126.
  13. ^ Kung, Shain-dow; Yang, Shang-Fa (1998). Discoveries in Plant Biology, Volume 1. Singapore: World Scientific. p. 297. ISBN 981-02-1313-1.
  14. ^ Pittendrigh, Colin (1993). "Temporal Organization: Reflections of a Darwinian Clock -Watcher". Annual Review of Physiology. 55: 24. doi:10.1146/annurev.ph.55.030193.000313. PMID 8466172.
  15. ^ Pittendrigh, Colin (September 1972). "Circadian Surfaces and the Diversity of Possible Roles of Circadian Organization in Photoperiodic Induction". Proceedings of the National Academy of Sciences. 69 (9): 2734–2737. Bibcode:1972PNAS...69.2734P. doi:10.1073/pnas.69.9.2734. PMC 427028. PMID 4506793.
  16. ^ a b Goldman, Bruce (2001). "Mammalian Photoperiodic System: Formal Properties and Neuroendocrine Mechanisms of Photoperiodic Time Measurement". Journal of Biological Rhythms. 16 (4): 283–301. doi:10.1177/074873001129001980. PMID 11506375. S2CID 20091562.
  17. ^ "Erwin Bünning". Plant Science Bulletin. 7 (4): 3. December 1961. Retrieved 7 April 2015.
  18. ^ "Awards and Funding - Past Awardees". American Society of Plant Biologists. Retrieved 8 April 2015.
  19. ^ "Awards and Funding - Awards". American Society of Plant Biologists. Retrieved 8 April 2015.
  20. ^ a b c Chandrashekaran, M. K. (December 20, 1985). "Erwin Bünning--An Appreciation". Current Science. 54 (24): 1271, 1272.
  21. ^ "YUMPU". YUMPU. Retrieved 1 May 2010.

erwin, bünning, january, 1906, october, 1990, german, biologist, most, famous, contributions, were, field, chronobiology, where, proposed, model, endogenous, circadian, rhythms, governing, plant, photoperiodism, from, these, contributions, bünning, considered,. Erwin Bunning 23 January 1906 4 October 1990 was a German biologist His most famous contributions were to the field of chronobiology where he proposed a model for the endogenous circadian rhythms governing plant photoperiodism From these contributions Bunning is considered a co founder of chronobiology along with Jurgen Aschoff and Colin Pittendrigh 1 Erwin BunningBorn 1906 01 23 January 23 1906Hamburg GermanyDiedOctober 4 1990 1990 10 04 aged 84 Tubingen GermanyNationalityGermanAlma materUniversity of GottingenHumboldt University of BerlinKnown forModel of plant photoperiodismSpouseEleanore BunningChildren3ParentsHeinrich BunningHermine WinklerScientific careerFieldschronobiologybotanyInstitutionsUniversity of JenaUniversity of KonigsbergUniversity of StrasbourgUniversity of CologneUniversity of Tubingen Contents 1 Life 1 1 Early life and education 1 2 Academic career 1 3 Later life and legacy 2 Key contributions 2 1 Historical context 2 2 Experiments 2 3 Bunning s model 3 Honors 4 Selected publications 5 See also 6 ReferencesLife editEarly life and education edit Bunning was born on 23 January 1906 in Hamburg Germany to Heinrich Bunning and Hermine Bunning born Winkler A teacher of German English mathematics and biology Bunning s father was the primary academic influence on Erwin s early life passing on to Erwin a passion for botany Bunning received his primary education in Hamburg from 1912 1925 Bunning then attended the University of Gottingen and the University of Berlin from October 1925 July 1928 where he studied biology chemistry physics and philosophy Bunning earned his Doctorate of Philosophy from the University of Berlin in May 1929 During this time Bunning married his wife Eleanore the two would later have three children 2 Academic career edit In 1930 Bunning took an assistantship under Otto Renner at the University of Jena then one of Germany s largest botanical institutes During the rise of the Nazi Party in Germany in the early 1930s Renner stood in open opposition to the Nazis publicly defending Jewish scientists Similarly Bunning was considered a communist sympathizer a stance likely influenced by Bunning s father a Social Democrat opposed to the Nazis Bunning s political beliefs created tension between him and some of his students In response to this tension Bunning left Jena for a lectureship at the East Prussian University of Konigsberg 2 In 1936 Bunning published his model for plant photoperiodism wherein he proposed that endogenous internal circadian rhythms enable plants to measure day length Bunning s model of photoperiodism would go largely unnoticed by the scientific community until 1960 when he chaired the 1960 Cold Spring Harbor Symposium on Biological Clocks There Colin Pittendrigh drew attention to Bunning s work and named his 1936 model on plant photoperiodism the Bunning hypothesis 1 3 4 nbsp Bunning spent most of his academic career at the University of TubingenIn 1938 Bunning spent a year traveling through Java and Sumatra His observations on the islands resulted in the book Tropische Regenwalder Tropical Rainforests Upon his return to Germany in 1939 Bunning was conscripted in the German military World War II Military authorities appointed Bunning as an associate professor at the University of Strasbourg After the war Bunning became a full professor at the University of Cologne in 1945 before moving to the University of Tubingen the next year 1946 where he stayed until his retirement in 1971 2 At Tubingen Bunning entered into the workspace of his role model Wilhelm Pfeffer the man who postulated in 1875 that the orientation of plants in space changes with the time of day 5 Bunning would later publish a biography on Pfeffer 2 Later life and legacy edit Over his career Bunning published over 260 papers in the fields of plant physiology and general biology as well as a very popular textbook on plant physiology Bunning suffered by drinking Alzheimer s and died on 4 October 1990 in Tubingen Germany after contracting pneumonia 2 Following his death the German newspaper Schwabisches Tagblatt described Bunning as one of the greatest botanists of the 20th century 1 Key contributions editHistorical context edit Changes in the positioning of plant leaves over the course of the day were observed as early as the 4th century B C by Androsthenes Alexander the Great s historian This phenomenon however was not researched further until 1729 when Jean Jacques d Ortous de Mairan provided experimental data that mimosa plants close their leaves at night a movement that persists rhythmically in constant darkness 5 In 1875 Wilhelm Pfeffer Bunning s role model put forward that these movements might be controlled by an endogenous biological clock 5 This theory formed the foundation for Bunning s later work 5 Prior to Bunning s work the prevailing hypothesis on circadian rhythms was the hourglass hypothesis which postulates that circadian rhythmicity within an organism is entirely driven by the external light dark cycle and that an organism s hourglass is reset each day 6 Bunning however proposed that biological clocks are endogenous and synchronize to daily stimuli Unlike in the hourglass hypothesis Bunning s hypothesis proposes that circadian rhythmicity derives from an interaction between light and a circadian pacemaker not external stimuli alone 6 The general premise of Bunning s hypothesis became a model for circadian time keeping across species off of which many chronobiologists even into the present base their models 7 Experiments edit In the early 1930s Bunning proposed that organisms rely on a circadian rhythm of sensitivity to light to measure photoperiod He demonstrated that plants open and close their leaves and insects eclose according to circadian rhythms even in continuous light or darkness 8 His crossing experiments with bean plants of different periods in 1935 demonstrated that the next generation had periods of intermediate durations supporting the suggestion that circadian rhythms are heritable 9 Bunning also demonstrated that an artificial photoperiod can induce flowering at inappropriate times supporting his model of endogenous oscillators entrained to external stimuli To create artificial photoperiods Bunning exposed plants to a light dark cycle indicative of a specific season such as the long days and short nights of summer By entraining the plants to a spring or summer photoperiod Bunning was able to induce flowering even if the actual season were fall or winter 8 10 From his results Bunning proposed that biological clocks have sensors for both light and dark and their relationship aids photoperiodic timekeeping 11 His published works provided key synthesis of existing evidence for biological clocks across species including plants flies and fungi His 1958 work The Physiological Clock was hailed as a milestone in the field of chronobiology and his later works on plant physiology helped apply his work on photoperiodism to practical uses 12 In 1935 he demonstrated that plants with different inherent periods would become desynchronized in constant conditions 13 This work provided evidence for the dismissal of the Factor X hypothesis which held that circadian rhythms were not endogenous and were instead reliant on an unknown external stimulus some Factor X 14 Bunning s model edit Bunning was the pioneer of the Bunning Hypothesis later known as the External Coincidence model This model proposed a circadian rhythm of photoperiodic photosensitivity in plants As day length increases with the spring and summer seasons for example light hits a plant s photosensitive phase triggering a physiological or behavioral response The Bunning Hypothesis proposed that light has two functions for an organism 15 1 Light is the primary Zeitgeber for the synchronization of biological rhythms 16 2 Light triggers photoinductive responses during certain phases of the circadian cycle 16 Honors editBunning received many honors in his life both in the field of chronobiology and botany In 1960 he chaired in the 25th Cold Spring Harbor Symposium Biological Clocks 4 The next year Bunning was elected Corresponding Member of the Botanical Society of America 17 During his life he was also elected honorary member of the Japanese Botanical Society the German Botanical Society the American Society of Plant Physiologists and the Swiss Botanical Society 12 He became an elected member of the American Philosophical Society the Heidelberg Academy for Sciences and Humanities the Bavarian Academy of Sciences and Humanities and the German Academy of Scientists Leopoldina In addition he was elected a Foreign Associate of the American National Academy of Sciences 1968 12 Foreign Member of the Royal Society of London and an Honorary Fellow of the Indian Academy of Sciences 1986 2 In 1973 Bunning won the Charles Reid Barnes Life Membership Award 18 for meritorious work in plant biology 19 The Universities of Glasgow 1974 Freiburg 1976 and Erlangen 1977 conferred honorary doctorates on him 20 as did the University of Gottingen 2 Bunning is considered by many to be the father of the field of chronobiology 2 20 His work on measuring the free running period of plant rhythms and experiments with cross breeding strains of plants with different periods aided in the development of that field 2 20 Bunning was invited by M K Chandrashekaran to India in 1978 to conduct the Biological Oscillation workshop in Madurai Kamaraj University 21 Selected publications editUber die Erblichkeit der Tagesperiodizitat bei den Phaseolus Blattern 1932 Die endogene Tagesperiodik als Grundlage der photoperiodischen Reaktion 1936 Entwicklungs und Bewegungsphysiologie der Pflanze 1948 In den Waldern Nordsumatras Reisebuch eines Biologen In the North Sumatran Forests Travels of a Biologist 1949 Die physiologische Uhr The Physiological Clock 1958 Biological clocks Chairman s Address Cold Spring Harbor Symposium 1960 Interference of Moonlight with the Photoperiodic Measurement of Time by Plants and their Adaptive Reaction 1969 With Ilse Moser Wilhelm Pfeffer Apotheker Chemiker Botaniker Physiologe 1845 1920 1975 Pfeffer s views on rhythms 1975 With M K Chandrashekaran Fifty years of research in the wake of Wilhelm Pfeffer 1977 See also editChronobiology Circadian rhythms Photoperiodism Colin Pittendrigh Jurgen AschoffReferences edit a b c Chandrashekaran M 1998 Biological rhythms research A personal account PDF Journal of Biosciences 23 5 545 555 doi 10 1007 bf02709165 S2CID 28626642 a b c d e f g h i Chandrashekaran M K April 2006 Erwin Bunning 1906 1990 A centennial homage PDF Journal of Biosciences 31 1 5 12 doi 10 1007 BF02705230 PMID 16595870 S2CID 45901454 Retrieved 7 April 2015 Saunders D 2005 Erwin Bunning and Tony Lees two giants of chronobiology and the problem of time measurement in insect photoperiodism Journal of Insect Physiology 51 6 599 608 doi 10 1016 j jinsphys 2004 12 002 PMID 15993124 a b Witkowski Jan XXV Biological Clocks 1960 CSHL Digital Photo Archives Retrieved 7 April 2015 a b c d Datta Subhash Chandra 1994 Plant Physiology New Delhi New Age International P Ltd Publishers p 450 ISBN 81 224 0517 7 a b Pittendrigh Colin 1964 The Entrainment of Circadian Oscillations by Light and Their Role as Photoperiodic Clocks The American Naturalist 98 902 261 294 doi 10 1086 282327 JSTOR 2459454 S2CID 84898684 Saunders D S May 2011 Deciphering time measurement The role of circadian clock genes and formal experimentation in insect photoperiodism Journal of Insect Physiology 57 5 557 566 doi 10 1016 j jinsphys 2011 01 013 PMID 21295039 a b Went F W 1958 The Mechanism of Photoperiodism in plants Photobiology Moore Ede Martin 1984 The Clocks that Time Us Harvard University Press p 11 ISBN 0674135814 Saunders D S 2002 Insect clocks Elsevier p 340 Johannson Mikael November 2014 Time to flower interplay between photoperiod and the circadian clock Journal of Experimental Botany 66 3 719 730 doi 10 1093 jxb eru441 PMID 25371508 a b c Bonner James June 1994 Erwin Bunning 23 January 1906 4 October 1990 Proceedings of the American Philosophical Society 138 2 318 320 JSTOR 987126 Kung Shain dow Yang Shang Fa 1998 Discoveries in Plant Biology Volume 1 Singapore World Scientific p 297 ISBN 981 02 1313 1 Pittendrigh Colin 1993 Temporal Organization Reflections of a Darwinian Clock Watcher Annual Review of Physiology 55 24 doi 10 1146 annurev ph 55 030193 000313 PMID 8466172 Pittendrigh Colin September 1972 Circadian Surfaces and the Diversity of Possible Roles of Circadian Organization in Photoperiodic Induction Proceedings of the National Academy of Sciences 69 9 2734 2737 Bibcode 1972PNAS 69 2734P doi 10 1073 pnas 69 9 2734 PMC 427028 PMID 4506793 a b Goldman Bruce 2001 Mammalian Photoperiodic System Formal Properties and Neuroendocrine Mechanisms of Photoperiodic Time Measurement Journal of Biological Rhythms 16 4 283 301 doi 10 1177 074873001129001980 PMID 11506375 S2CID 20091562 Erwin Bunning Plant Science Bulletin 7 4 3 December 1961 Retrieved 7 April 2015 Awards and Funding Past Awardees American Society of Plant Biologists Retrieved 8 April 2015 Awards and Funding Awards American Society of Plant Biologists Retrieved 8 April 2015 a b c Chandrashekaran M K December 20 1985 Erwin Bunning An Appreciation Current Science 54 24 1271 1272 YUMPU YUMPU Retrieved 1 May 2010 Retrieved from https en wikipedia org w index php title Erwin Bunning amp oldid 1189870822, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.