fbpx
Wikipedia

Endospore

An endospore is a dormant, tough, and non-reproductive structure produced by some bacteria in the phylum Bacillota.[1][2] The name "endospore" is suggestive of a spore or seed-like form (endo means 'within'), but it is not a true spore (i.e., not an offspring). It is a stripped-down, dormant form to which the bacterium can reduce itself. Endospore formation is usually triggered by a lack of nutrients, and usually occurs in gram-positive bacteria. In endospore formation, the bacterium divides within its cell wall, and one side then engulfs the other.[3] Endospores enable bacteria to lie dormant for extended periods, even centuries. There are many reports of spores remaining viable over 10,000 years, and revival of spores millions of years old has been claimed. There is one report of viable spores of Bacillus marismortui in salt crystals approximately 250 million years old.[4][5] When the environment becomes more favorable, the endospore can reactivate itself into a vegetative state. Most types of bacteria cannot change to the endospore form. Examples of bacterial species that can form endospores include Bacillus cereus, Bacillus anthracis, Bacillus thuringiensis, Clostridium botulinum, and Clostridium tetani.[6]

An endospore stain of the cell Bacillus subtilis showing endospores as green and the vegetative cell as red
Phase-bright endospores of Paenibacillus alvei imaged with phase-contrast microscopy

The endospore consists of the bacterium's DNA, ribosomes and large amounts of dipicolinic acid. Dipicolinic acid is a spore-specific chemical that appears to help in the ability for endospores to maintain dormancy. This chemical accounts for up to 10% of the spore's dry weight.[3]

Endospores can survive without nutrients. They are resistant to ultraviolet radiation, desiccation, high temperature, extreme freezing and chemical disinfectants. Thermo-resistant endospores were first hypothesized by Ferdinand Cohn after studying Bacillus subtilis growth on cheese after boiling the cheese. His notion of spores being the reproductive mechanism for the growth was a large blow to the previous suggestions of spontaneous generation. Astrophysicist Steinn Sigurdsson said "There are viable bacterial spores that have been found that are 40 million years old on Earth – and we know they're very hardened to radiation."[7] Common antibacterial agents that work by destroying vegetative cell walls do not affect endospores. Endospores are commonly found in soil and water, where they may survive for long periods of time. A variety of different microorganisms form "spores" or "cysts", but the endospores of low G+C gram-positive bacteria are by far the most resistant to harsh conditions.[3]

Some classes of bacteria can turn into exospores, also known as microbial cysts, instead of endospores. Exospores and endospores are two kinds of "hibernating" or dormant stages seen in some classes of microorganisms.

Formation of an endospore through the process of sporulation.

Life cycle of bacteria

The bacterial life cycle does not necessarily include sporulation. Sporulation is usually triggered by adverse environmental conditions, so as to help the survival of the bacterium. Endospores exhibit no signs of life and can thus be described as cryptobiotic. Endospores retain viability indefinitely and they can germinate into vegetative cells under the appropriate conditions. Endospores have survived thousands of years until environmental stimuli trigger germination. They have been characterized as the most durable cells produced in nature.[8]

Structure

 
Variations in endospore morphology: (1, 4) central endospore; (2, 3, 5) terminal endospore; (6) lateral endospore

Bacteria produce a single endospore internally. The spore is sometimes surrounded by a thin covering known as the exosporium, which overlies the spore coat. The spore coat, which acts like a sieve that excludes large toxic molecules like lysozyme, is resistant to many toxic molecules and may also contain enzymes that are involved in germination. In Bacillus subtilus endospores, the spore coat is estimated to contain more than 70 coat proteins, which are organized into an inner and an outer coat layer.[9] The X-ray diffraction pattern of purified B. subtilis endospores indicates the presence of a component with a regular periodic structure, which Kadota and Iijima speculated might be formed from a keratin-like protein.[10] However, after further studies this group concluded that the structure of the spore coat protein was different from keratin.[11] When the B. subtilis genome was sequenced, no ortholog of human keratin was detected.[12] The cortex lies beneath the spore coat and consists of peptidoglycan. The core wall lies beneath the cortex and surrounds the protoplast or core of the endospore. The core contains the spore chromosomal DNA which is encased in chromatin-like proteins known as SASPs (small acid-soluble spore proteins), that protect the spore DNA from UV radiation and heat. The core also contains normal cell structures, such as ribosomes and other enzymes, but is not metabolically active.

Up to 20% of the dry weight of the endospore consists of calcium dipicolinate within the core, which is thought to stabilize the DNA. Dipicolinic acid could be responsible for the heat resistance of the spore, and calcium may aid in resistance to heat and oxidizing agents. However, mutants resistant to heat but lacking dipicolinic acid have been isolated, suggesting other mechanisms contributing to heat resistance are also at work.[13] Small acid-soluble proteins (SASPs) are found in endospores. These proteins tightly bind and condense the DNA, and are in part responsible for resistance to UV light and DNA-damaging chemicals.[3]

Visualising endospores under light microscopy can be difficult due to the impermeability of the endospore wall to dyes and stains. While the rest of a bacterial cell may stain, the endospore is left colourless. To combat this, a special stain technique called a Moeller stain is used. That allows the endospore to show up as red, while the rest of the cell stains blue. Another staining technique for endospores is the Schaeffer-Fulton stain, which stains endospores green and bacterial bodies red. The arrangement of spore layers is as follows:

  • Exosporium
  • Spore coat
  • Spore cortex
  • Core wall

Location

The position of the endospore differs among bacterial species and is useful in identification. The main types within the cell are terminal, subterminal, and centrally placed endospores. Terminal endospores are seen at the poles of cells, whereas central endospores are more or less in the middle. Subterminal endospores are those between these two extremes, usually seen far enough towards the poles but close enough to the center so as not to be considered either terminal or central. Lateral endospores are seen occasionally.

Examples of bacteria having terminal endospores include Clostridium tetani, the pathogen that causes the disease tetanus. Bacteria having a centrally placed endospore include Bacillus cereus. Sometimes the endospore can be so large the cell can be distended around the endospore. This is typical of Clostridium tetani.

Formation and destruction

 
Endospore formation and cycle

Under conditions of starvation, especially the lack of carbon and nitrogen sources, a single endospore forms within some of the bacteria through a process called sporulation.[14]

When a bacterium detects environmental conditions are becoming unfavourable it may start the process of endosporulation, which takes about eight hours. The DNA is replicated and a membrane wall known as a spore septum begins to form between it and the rest of the cell. The plasma membrane of the cell surrounds this wall and pinches off to leave a double membrane around the DNA, and the developing structure is now known as a forespore. Calcium dipicolinate, the calcium salt of dipicolinic acid, is incorporated into the forespore during this time. The dipicolinic acid helps stabilize the proteins and DNA in the endospore.[15]: 141  Next the peptidoglycan cortex forms between the two layers and the bacterium adds a spore coat to the outside of the forespore. In the final stages of endospore formation the newly forming endospore is dehydrated and allowed to mature before being released from the mother cell.[3] The cortex is what makes the endospore so resistant to temperature. The cortex contains an inner membrane known as the core. The inner membrane that surrounds this core leads to the endospore's resistance against UV light and harsh chemicals that would normally destroy microbes.[3] Sporulation is now complete, and the mature endospore will be released when the surrounding vegetative cell is degraded.

Endospores are resistant to most agents that would normally kill the vegetative cells they formed from. Unlike persister cells, endospores are the result of a morphological differentiation process triggered by nutrient limitation (starvation) in the environment; endosporulation is initiated by quorum sensing within the "starving" population.[15]: 141  Most disinfectants such as household cleaning products, alcohols, quaternary ammonium compounds and detergents have little effect on endospores. However, sterilant alkylating agents such as ethylene oxide (ETO), and 10% bleach are effective against endospores. To kill most anthrax spores, standard household bleach (with 10% sodium hypochlorite) must be in contact with the spores for at least several minutes; a very small proportion of spores can survive longer than 10 minutes in such a solution.[16] Higher concentrations of bleach are not more effective, and can cause some types of bacteria to aggregate and thus survive.

While significantly resistant to heat and radiation, endospores can be destroyed by burning or by autoclaving at a temperature exceeding the boiling point of water, 100 °C. Endospores are able to survive at 100 °C for hours, although the larger the number of hours the fewer that will survive. An indirect way to destroy them is to place them in an environment that reactivates them to their vegetative state. They will germinate within a day or two with the right environmental conditions, and then the vegetative cells, not as hardy as endospores, can be straightforwardly destroyed. This indirect method is called tyndallization. It was the usual method for a while in the late 19th century before the introduction of inexpensive autoclaves. Prolonged exposure to ionising radiation, such as x-rays and gamma rays, will also kill most endospores.

The endospores of certain types of (typically non-pathogenic) bacteria, such as Geobacillus stearothermophilus, are used as probes to verify that an autoclaved item has been rendered truly sterile: a small capsule containing the spores is put into the autoclave with the items; after the cycle the content of the capsule is cultured to check if anything will grow from it. If nothing will grow, then the spores were destroyed and the sterilization was successful.[17]

In hospitals, endospores on delicate invasive instruments such as endoscopes are killed by low-temperature, and non-corrosive, ethylene oxide sterilizers. Ethylene oxide is the only low-temperature sterilant to stop outbreaks on these instruments.[18] In contrast, "high level disinfection" does not kill endospores but is used for instruments such as a colonoscope that do not enter sterile bodily cavities. This latter method uses only warm water, enzymes, and detergents.

Bacterial endospores are resistant to antibiotics, most disinfectants, and physical agents such as radiation, boiling, and drying. The impermeability of the spore coat is thought to be responsible for the endospore's resistance to chemicals. The heat resistance of endospores is due to a variety of factors:

  • Calcium dipicolinate, abundant within the endospore, may stabilize and protect the endospore's DNA.
  • Small acid-soluble proteins (SASPs) saturate the endospore's DNA and protect it from heat, drying, chemicals, and radiation. They also function as a carbon and energy source for the development of a vegetative bacterium during germination.
  • The cortex may osmotically remove water from the interior of the endospore and the dehydration that results is thought to be very important in the endospore's resistance to heat and radiation.
  • Finally, DNA repair enzymes contained within the endospore are able to repair damaged DNA during germination.

Reactivation

Reactivation of the endospore occurs when conditions are more favourable and involves activation, germination, and outgrowth. Even if an endospore is located in plentiful nutrients, it may fail to germinate unless activation has taken place. This may be triggered by heating the endospore. Germination involves the dormant endospore starting metabolic activity and thus breaking hibernation. It is commonly characterised by rupture or absorption of the spore coat, swelling of the endospore, an increase in metabolic activity, and loss of resistance to environmental stress.

Outgrowth follows germination and involves the core of the endospore manufacturing new chemical components and exiting the old spore coat to develop into a fully functional vegetative bacterial cell, which can divide to produce more cells.

Endospores possess five times more sulfur than vegetative cells. This excess sulfur is concentrated in spore coats as an amino acid, cysteine. It is believed that the macromolecule accountable for maintaining the dormant state has a protein coat rich in cystine, stabilized by S-S linkages. A reduction in these linkages has the potential to change the tertiary structure, causing the protein to unfold. This conformational change in the protein is thought to be responsible for exposing active enzymatic sites necessary for endospore germination.[19]

Endospores can stay dormant for a very long time. For instance, endospores were found in the tombs of the Egyptian pharaohs. When placed in appropriate medium, under appropriate conditions, they were able to be reactivated. In 1995, Raul Cano of California Polytechnic State University found bacterial spores in the gut of a fossilized bee trapped in amber from a tree in the Dominican Republic. The bee fossilized in amber was dated to being about 25 million years old. The spores germinated when the amber was cracked open and the material from the gut of the bee was extracted and placed in nutrient medium. After the spores were analyzed by microscopy, it was determined that the cells were very similar to Bacillus sphaericus which is found in bees in the Dominican Republic today.[15]

Importance

As a simplified model for cellular differentiation, the molecular details of endospore formation have been extensively studied, specifically in the model organism Bacillus subtilis. These studies have contributed much to our understanding of the regulation of gene expression, transcription factors, and the sigma factor subunits of RNA polymerase.

Endospores of the bacterium Bacillus anthracis were used in the 2001 anthrax attacks. The powder found in contaminated postal letters consisted of anthrax endospores. This intentional distribution led to 22 known cases of anthrax (11 inhalation and 11 cutaneous). The case fatality rate among those patients with inhalation anthrax was 45% (5/11). The six other individuals with inhalation anthrax and all the individuals with cutaneous anthrax recovered. Had it not been for antibiotic therapy, many more might have been stricken.[15]

According to WHO veterinary documents, B. anthracis sporulates when it sees oxygen instead of the carbon dioxide present in mammal blood; this signals to the bacteria that it has reached the end of the animal, and an inactive dispersable morphology is useful.

Sporulation requires the presence of free oxygen. In the natural situation, this means the vegetative cycles occur within the low oxygen environment of the infected host and, within the host, the organism is exclusively in the vegetative form. Once outside the host, sporulation commences upon exposure to the air and the spore forms are essentially the exclusive phase in the environment.[20][21]

Biotechnology

Bacillus subtilis spores are useful for the expression of recombinant proteins and in particular for the surface display of peptides and proteins as a tool for fundamental and applied research in the fields of microbiology, biotechnology and vaccination.[22]

Endospore-forming bacteria

Examples of endospore-forming bacteria include the genera:

See also

References

  1. ^ Murray, Patrick R.; Ellen Jo Baron (2003). Manual of Clinical Microbiology. Vol. 1. Washington, D.C.: ASM.
  2. ^ C. Michael Hogan (2010). . In Sidney Draggan; C.J. Cleveland (eds.). Encyclopedia of Earth. Washington DC: National Council for Science and the Environment. Archived from the original on 2011-05-11.
  3. ^ a b c d e f "Bacterial Endospores". Cornell University College of Agriculture and Life Sciences, Department of Microbiology. from the original on June 15, 2018. Retrieved October 21, 2018.
  4. ^ Cano, RJ; Borucki, MK (1995). "Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber". Science. 268 (5213): 1060–1064. Bibcode:1995Sci...268.1060C. doi:10.1126/science.7538699. PMID 7538699.
  5. ^ Ringo, John (2004). "Reproduction of Bacteria". Fundamental Genetics. pp. 153–160. doi:10.1017/CBO9780511807022.018. ISBN 9780511807022.
  6. ^ "" at Dorland's Medical Dictionary
  7. ^ BBC Staff (23 August 2011). "Impacts 'more likely' to have spread life from Earth". BBC. from the original on 24 August 2011. Retrieved 2011-08-24.
  8. ^ Doetsch, R. N.; Cook, T. M. (1973). Introduction to Bacteria and Their Ecobiology. doi:10.1007/978-94-015-1135-3. ISBN 978-94-015-1137-7. S2CID 46703605.
  9. ^ Henriques AO, Moran CP Jr (2007). "Structure, assembly, and function of the spore surface layers". Annu Rev Microbiol. 61: 555–588. doi:10.1146/annurev.micro.61.080706.093224. PMID 18035610.
  10. ^ Kadota H, Iijima K (1965). "The X-ray diffraction pattern of spores of Bacillus subtilis". Agric Biol Chem. 29 (1): 80–81. doi:10.1080/00021369.1965.10858352.
  11. ^ Hiragi Y, Iijima K, and Kadota H (1967). "Hexagonal single crystal pattern from the spore coat of Bacillus subtilis". Nature. 215 (5097): 154–5. Bibcode:1967Natur.215..154H. doi:10.1038/215154a0. PMID 4963432. S2CID 4160084.
  12. ^ Kunst F, et al. (1997). "The complete genome sequence of the gram-positive bacterium Bacillus subtilis". Nature. 390 (6657): 249–56. Bibcode:1997Natur.390..249K. doi:10.1038/36786. PMID 9384377.
  13. ^ Prescott, L. (1993). Microbiology, Wm. C. Brown Publishers, ISBN 0-697-01372-3.
  14. ^ "2.4E: Endospores". Biology LibreTexts. 2016-03-02. Retrieved 2019-12-30.
  15. ^ a b c d Pommerville, Jeffrey C. (2014). Fundamentals of microbiology (10th ed.). Burlington, MA: Jones & Bartlett Learning. ISBN 978-1449688615.
  16. ^ Heninger, Sara; Christine A. Anderson; Gerald Beltz; Andrew B. Onderdonk (January 1, 2009). "Decontamination of Bacillus anthracis Spores: Evaluation of Various Disinfectants". Applied Biosafety. 14 (1): 7–10. doi:10.1177/153567600901400103. PMC 2957119. PMID 20967138.
  17. ^ . Archived from the original on March 3, 2016. Retrieved June 18, 2016.
  18. ^ "Ethylene Oxide Sterilization | Disinfection & Sterilization Guidelines | Guidelines Library | Infection Control |CDC". www.cdc.gov. 4 April 2019. from the original on 17 November 2019. Retrieved 11 October 2019.
  19. ^ Keynan, A.; Evenchik, Z.; Halvorson, H. O.; Hastings, J. W. (1964). "Activation of bacterial endospores". Journal of Bacteriology. 88 (2): 313–318. doi:10.1128/JB.88.2.313-318.1964. PMC 277301. PMID 14203345.
  20. ^ Anthrax in humans and animals (PDF) (4th ed.). OIE. 2008. ISBN 978-92-4-154753-6. (PDF) from the original on 2012-10-23. Retrieved 2013-08-22.
  21. ^ (PDF). Terrestrial Manual. 2012. Archived from the original (PDF) on August 12, 2016. Retrieved June 18, 2016.
  22. ^ Abel-Santos, E, ed. (2012). Bacterial Spores: Current Research and Applications. Caister Academic Press. ISBN 978-1-908230-00-3.

External links

  • Malachite green – endospore staining technique (video)
  • Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments

endospore, confused, with, endospory, plants, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, book. Not to be confused with Endospory in plants This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Endospore news newspapers books scholar JSTOR June 2010 Learn how and when to remove this template message An endospore is a dormant tough and non reproductive structure produced by some bacteria in the phylum Bacillota 1 2 The name endospore is suggestive of a spore or seed like form endo means within but it is not a true spore i e not an offspring It is a stripped down dormant form to which the bacterium can reduce itself Endospore formation is usually triggered by a lack of nutrients and usually occurs in gram positive bacteria In endospore formation the bacterium divides within its cell wall and one side then engulfs the other 3 Endospores enable bacteria to lie dormant for extended periods even centuries There are many reports of spores remaining viable over 10 000 years and revival of spores millions of years old has been claimed There is one report of viable spores of Bacillus marismortui in salt crystals approximately 250 million years old 4 5 When the environment becomes more favorable the endospore can reactivate itself into a vegetative state Most types of bacteria cannot change to the endospore form Examples of bacterial species that can form endospores include Bacillus cereus Bacillus anthracis Bacillus thuringiensis Clostridium botulinum and Clostridium tetani 6 An endospore stain of the cell Bacillus subtilis showing endospores as green and the vegetative cell as red Phase bright endospores of Paenibacillus alvei imaged with phase contrast microscopy The endospore consists of the bacterium s DNA ribosomes and large amounts of dipicolinic acid Dipicolinic acid is a spore specific chemical that appears to help in the ability for endospores to maintain dormancy This chemical accounts for up to 10 of the spore s dry weight 3 Endospores can survive without nutrients They are resistant to ultraviolet radiation desiccation high temperature extreme freezing and chemical disinfectants Thermo resistant endospores were first hypothesized by Ferdinand Cohn after studying Bacillus subtilis growth on cheese after boiling the cheese His notion of spores being the reproductive mechanism for the growth was a large blow to the previous suggestions of spontaneous generation Astrophysicist Steinn Sigurdsson said There are viable bacterial spores that have been found that are 40 million years old on Earth and we know they re very hardened to radiation 7 Common antibacterial agents that work by destroying vegetative cell walls do not affect endospores Endospores are commonly found in soil and water where they may survive for long periods of time A variety of different microorganisms form spores or cysts but the endospores of low G C gram positive bacteria are by far the most resistant to harsh conditions 3 Some classes of bacteria can turn into exospores also known as microbial cysts instead of endospores Exospores and endospores are two kinds of hibernating or dormant stages seen in some classes of microorganisms Formation of an endospore through the process of sporulation Contents 1 Life cycle of bacteria 2 Structure 3 Location 4 Formation and destruction 5 Reactivation 6 Importance 6 1 Biotechnology 7 Endospore forming bacteria 8 See also 9 References 10 External linksLife cycle of bacteria EditThe bacterial life cycle does not necessarily include sporulation Sporulation is usually triggered by adverse environmental conditions so as to help the survival of the bacterium Endospores exhibit no signs of life and can thus be described as cryptobiotic Endospores retain viability indefinitely and they can germinate into vegetative cells under the appropriate conditions Endospores have survived thousands of years until environmental stimuli trigger germination They have been characterized as the most durable cells produced in nature 8 Structure Edit Variations in endospore morphology 1 4 central endospore 2 3 5 terminal endospore 6 lateral endospore Bacteria produce a single endospore internally The spore is sometimes surrounded by a thin covering known as the exosporium which overlies the spore coat The spore coat which acts like a sieve that excludes large toxic molecules like lysozyme is resistant to many toxic molecules and may also contain enzymes that are involved in germination In Bacillus subtilus endospores the spore coat is estimated to contain more than 70 coat proteins which are organized into an inner and an outer coat layer 9 The X ray diffraction pattern of purified B subtilis endospores indicates the presence of a component with a regular periodic structure which Kadota and Iijima speculated might be formed from a keratin like protein 10 However after further studies this group concluded that the structure of the spore coat protein was different from keratin 11 When the B subtilis genome was sequenced no ortholog of human keratin was detected 12 The cortex lies beneath the spore coat and consists of peptidoglycan The core wall lies beneath the cortex and surrounds the protoplast or core of the endospore The core contains the spore chromosomal DNA which is encased in chromatin like proteins known as SASPs small acid soluble spore proteins that protect the spore DNA from UV radiation and heat The core also contains normal cell structures such as ribosomes and other enzymes but is not metabolically active Up to 20 of the dry weight of the endospore consists of calcium dipicolinate within the core which is thought to stabilize the DNA Dipicolinic acid could be responsible for the heat resistance of the spore and calcium may aid in resistance to heat and oxidizing agents However mutants resistant to heat but lacking dipicolinic acid have been isolated suggesting other mechanisms contributing to heat resistance are also at work 13 Small acid soluble proteins SASPs are found in endospores These proteins tightly bind and condense the DNA and are in part responsible for resistance to UV light and DNA damaging chemicals 3 Visualising endospores under light microscopy can be difficult due to the impermeability of the endospore wall to dyes and stains While the rest of a bacterial cell may stain the endospore is left colourless To combat this a special stain technique called a Moeller stain is used That allows the endospore to show up as red while the rest of the cell stains blue Another staining technique for endospores is the Schaeffer Fulton stain which stains endospores green and bacterial bodies red The arrangement of spore layers is as follows Exosporium Spore coat Spore cortex Core wallLocation EditThe position of the endospore differs among bacterial species and is useful in identification The main types within the cell are terminal subterminal and centrally placed endospores Terminal endospores are seen at the poles of cells whereas central endospores are more or less in the middle Subterminal endospores are those between these two extremes usually seen far enough towards the poles but close enough to the center so as not to be considered either terminal or central Lateral endospores are seen occasionally Examples of bacteria having terminal endospores include Clostridium tetani the pathogen that causes the disease tetanus Bacteria having a centrally placed endospore include Bacillus cereus Sometimes the endospore can be so large the cell can be distended around the endospore This is typical of Clostridium tetani Formation and destruction Edit Endospore formation and cycle Further information Bacterial morphological plasticity Under conditions of starvation especially the lack of carbon and nitrogen sources a single endospore forms within some of the bacteria through a process called sporulation 14 When a bacterium detects environmental conditions are becoming unfavourable it may start the process of endosporulation which takes about eight hours The DNA is replicated and a membrane wall known as a spore septum begins to form between it and the rest of the cell The plasma membrane of the cell surrounds this wall and pinches off to leave a double membrane around the DNA and the developing structure is now known as a forespore Calcium dipicolinate the calcium salt of dipicolinic acid is incorporated into the forespore during this time The dipicolinic acid helps stabilize the proteins and DNA in the endospore 15 141 Next the peptidoglycan cortex forms between the two layers and the bacterium adds a spore coat to the outside of the forespore In the final stages of endospore formation the newly forming endospore is dehydrated and allowed to mature before being released from the mother cell 3 The cortex is what makes the endospore so resistant to temperature The cortex contains an inner membrane known as the core The inner membrane that surrounds this core leads to the endospore s resistance against UV light and harsh chemicals that would normally destroy microbes 3 Sporulation is now complete and the mature endospore will be released when the surrounding vegetative cell is degraded Endospores are resistant to most agents that would normally kill the vegetative cells they formed from Unlike persister cells endospores are the result of a morphological differentiation process triggered by nutrient limitation starvation in the environment endosporulation is initiated by quorum sensing within the starving population 15 141 Most disinfectants such as household cleaning products alcohols quaternary ammonium compounds and detergents have little effect on endospores However sterilant alkylating agents such as ethylene oxide ETO and 10 bleach are effective against endospores To kill most anthrax spores standard household bleach with 10 sodium hypochlorite must be in contact with the spores for at least several minutes a very small proportion of spores can survive longer than 10 minutes in such a solution 16 Higher concentrations of bleach are not more effective and can cause some types of bacteria to aggregate and thus survive While significantly resistant to heat and radiation endospores can be destroyed by burning or by autoclaving at a temperature exceeding the boiling point of water 100 C Endospores are able to survive at 100 C for hours although the larger the number of hours the fewer that will survive An indirect way to destroy them is to place them in an environment that reactivates them to their vegetative state They will germinate within a day or two with the right environmental conditions and then the vegetative cells not as hardy as endospores can be straightforwardly destroyed This indirect method is called tyndallization It was the usual method for a while in the late 19th century before the introduction of inexpensive autoclaves Prolonged exposure to ionising radiation such as x rays and gamma rays will also kill most endospores The endospores of certain types of typically non pathogenic bacteria such as Geobacillus stearothermophilus are used as probes to verify that an autoclaved item has been rendered truly sterile a small capsule containing the spores is put into the autoclave with the items after the cycle the content of the capsule is cultured to check if anything will grow from it If nothing will grow then the spores were destroyed and the sterilization was successful 17 In hospitals endospores on delicate invasive instruments such as endoscopes are killed by low temperature and non corrosive ethylene oxide sterilizers Ethylene oxide is the only low temperature sterilant to stop outbreaks on these instruments 18 In contrast high level disinfection does not kill endospores but is used for instruments such as a colonoscope that do not enter sterile bodily cavities This latter method uses only warm water enzymes and detergents Bacterial endospores are resistant to antibiotics most disinfectants and physical agents such as radiation boiling and drying The impermeability of the spore coat is thought to be responsible for the endospore s resistance to chemicals The heat resistance of endospores is due to a variety of factors Calcium dipicolinate abundant within the endospore may stabilize and protect the endospore s DNA Small acid soluble proteins SASPs saturate the endospore s DNA and protect it from heat drying chemicals and radiation They also function as a carbon and energy source for the development of a vegetative bacterium during germination The cortex may osmotically remove water from the interior of the endospore and the dehydration that results is thought to be very important in the endospore s resistance to heat and radiation Finally DNA repair enzymes contained within the endospore are able to repair damaged DNA during germination Reactivation EditReactivation of the endospore occurs when conditions are more favourable and involves activation germination and outgrowth Even if an endospore is located in plentiful nutrients it may fail to germinate unless activation has taken place This may be triggered by heating the endospore Germination involves the dormant endospore starting metabolic activity and thus breaking hibernation It is commonly characterised by rupture or absorption of the spore coat swelling of the endospore an increase in metabolic activity and loss of resistance to environmental stress Outgrowth follows germination and involves the core of the endospore manufacturing new chemical components and exiting the old spore coat to develop into a fully functional vegetative bacterial cell which can divide to produce more cells Endospores possess five times more sulfur than vegetative cells This excess sulfur is concentrated in spore coats as an amino acid cysteine It is believed that the macromolecule accountable for maintaining the dormant state has a protein coat rich in cystine stabilized by S S linkages A reduction in these linkages has the potential to change the tertiary structure causing the protein to unfold This conformational change in the protein is thought to be responsible for exposing active enzymatic sites necessary for endospore germination 19 Endospores can stay dormant for a very long time For instance endospores were found in the tombs of the Egyptian pharaohs When placed in appropriate medium under appropriate conditions they were able to be reactivated In 1995 Raul Cano of California Polytechnic State University found bacterial spores in the gut of a fossilized bee trapped in amber from a tree in the Dominican Republic The bee fossilized in amber was dated to being about 25 million years old The spores germinated when the amber was cracked open and the material from the gut of the bee was extracted and placed in nutrient medium After the spores were analyzed by microscopy it was determined that the cells were very similar to Bacillus sphaericus which is found in bees in the Dominican Republic today 15 Importance EditAs a simplified model for cellular differentiation the molecular details of endospore formation have been extensively studied specifically in the model organism Bacillus subtilis These studies have contributed much to our understanding of the regulation of gene expression transcription factors and the sigma factor subunits of RNA polymerase Endospores of the bacterium Bacillus anthracis were used in the 2001 anthrax attacks The powder found in contaminated postal letters consisted of anthrax endospores This intentional distribution led to 22 known cases of anthrax 11 inhalation and 11 cutaneous The case fatality rate among those patients with inhalation anthrax was 45 5 11 The six other individuals with inhalation anthrax and all the individuals with cutaneous anthrax recovered Had it not been for antibiotic therapy many more might have been stricken 15 According to WHO veterinary documents B anthracis sporulates when it sees oxygen instead of the carbon dioxide present in mammal blood this signals to the bacteria that it has reached the end of the animal and an inactive dispersable morphology is useful Sporulation requires the presence of free oxygen In the natural situation this means the vegetative cycles occur within the low oxygen environment of the infected host and within the host the organism is exclusively in the vegetative form Once outside the host sporulation commences upon exposure to the air and the spore forms are essentially the exclusive phase in the environment 20 21 Biotechnology Edit Bacillus subtilis spores are useful for the expression of recombinant proteins and in particular for the surface display of peptides and proteins as a tool for fundamental and applied research in the fields of microbiology biotechnology and vaccination 22 Endospore forming bacteria EditExamples of endospore forming bacteria include the genera Acetonema Actinomyces Alkalibacillus Ammoniphilus Amphibacillus Anaerobacter Anaerospora Aneurinibacillus Anoxybacillus Bacillus Brevibacillus Caldanaerobacter Caloramator Caminicella Cerasibacillus Clostridium Clostridiisalibacter Cohnella Coxiella i e Coxiella burnetii Dendrosporobacter Desulfotomaculum Desulfosporomusa Desulfosporosinus Desulfovirgula Desulfunispora Desulfurispora Filifactor Filobacillus Gelria Geobacillus Geosporobacter Gracilibacillus Halobacillus Halonatronum Heliobacterium Heliophilum Laceyella Lentibacillus Lysinibacillus Mahella Metabacterium Moorella Natroniella Oceanobacillus Orenia Ornithinibacillus Oxalophagus Oxobacter Paenibacillus Paraliobacillus Pelospora Pelotomaculum Piscibacillus Planifilum Pontibacillus Propionispora Salinibacillus Salsuginibacillus Seinonella Shimazuella Sporacetigenium Sporoanaerobacter Sporobacter Sporobacterium Sporohalobacter Sporolactobacillus Sporomusa Sporosarcina Sporotalea Sporotomaculum Syntrophomonas Syntrophospora Tenuibacillus Tepidibacter Terribacillus Thalassobacillus Thermoacetogenium Thermoactinomyces Thermoalkalibacillus Thermoanaerobacter Thermoanaeromonas Thermobacillus Thermoflavimicrobium Thermovenabulum Tuberibacillus Virgibacillus VulcanobacillusSee also EditEndospore stainingReferences Edit Murray Patrick R Ellen Jo Baron 2003 Manual of Clinical Microbiology Vol 1 Washington D C ASM C Michael Hogan 2010 Bacteria In Sidney Draggan C J Cleveland eds Encyclopedia of Earth Washington DC National Council for Science and the Environment Archived from the original on 2011 05 11 a b c d e f Bacterial Endospores Cornell University College of Agriculture and Life Sciences Department of Microbiology Archived from the original on June 15 2018 Retrieved October 21 2018 Cano RJ Borucki MK 1995 Revival and identification of bacterial spores in 25 to 40 million year old Dominican amber Science 268 5213 1060 1064 Bibcode 1995Sci 268 1060C doi 10 1126 science 7538699 PMID 7538699 Ringo John 2004 Reproduction of Bacteria Fundamental Genetics pp 153 160 doi 10 1017 CBO9780511807022 018 ISBN 9780511807022 endospore at Dorland s Medical Dictionary BBC Staff 23 August 2011 Impacts more likely to have spread life from Earth BBC Archived from the original on 24 August 2011 Retrieved 2011 08 24 Doetsch R N Cook T M 1973 Introduction to Bacteria and Their Ecobiology doi 10 1007 978 94 015 1135 3 ISBN 978 94 015 1137 7 S2CID 46703605 Henriques AO Moran CP Jr 2007 Structure assembly and function of the spore surface layers Annu Rev Microbiol 61 555 588 doi 10 1146 annurev micro 61 080706 093224 PMID 18035610 Kadota H Iijima K 1965 The X ray diffraction pattern of spores of Bacillus subtilis Agric Biol Chem 29 1 80 81 doi 10 1080 00021369 1965 10858352 Hiragi Y Iijima K and Kadota H 1967 Hexagonal single crystal pattern from the spore coat of Bacillus subtilis Nature 215 5097 154 5 Bibcode 1967Natur 215 154H doi 10 1038 215154a0 PMID 4963432 S2CID 4160084 Kunst F et al 1997 The complete genome sequence of the gram positive bacterium Bacillus subtilis Nature 390 6657 249 56 Bibcode 1997Natur 390 249K doi 10 1038 36786 PMID 9384377 Prescott L 1993 Microbiology Wm C Brown Publishers ISBN 0 697 01372 3 2 4E Endospores Biology LibreTexts 2016 03 02 Retrieved 2019 12 30 a b c d Pommerville Jeffrey C 2014 Fundamentals of microbiology 10th ed Burlington MA Jones amp Bartlett Learning ISBN 978 1449688615 Heninger Sara Christine A Anderson Gerald Beltz Andrew B Onderdonk January 1 2009 Decontamination of Bacillus anthracis Spores Evaluation of Various Disinfectants Applied Biosafety 14 1 7 10 doi 10 1177 153567600901400103 PMC 2957119 PMID 20967138 The Autoclave Archived from the original on March 3 2016 Retrieved June 18 2016 Ethylene Oxide Sterilization Disinfection amp Sterilization Guidelines Guidelines Library Infection Control CDC www cdc gov 4 April 2019 Archived from the original on 17 November 2019 Retrieved 11 October 2019 Keynan A Evenchik Z Halvorson H O Hastings J W 1964 Activation of bacterial endospores Journal of Bacteriology 88 2 313 318 doi 10 1128 JB 88 2 313 318 1964 PMC 277301 PMID 14203345 Anthrax in humans and animals PDF 4th ed OIE 2008 ISBN 978 92 4 154753 6 Archived PDF from the original on 2012 10 23 Retrieved 2013 08 22 OIE Listed Diseases and Other Diseases of Importance PDF Terrestrial Manual 2012 Archived from the original PDF on August 12 2016 Retrieved June 18 2016 Abel Santos E ed 2012 Bacterial Spores Current Research and Applications Caister Academic Press ISBN 978 1 908230 00 3 External links Edit Wikimedia Commons has media related to Endospore Marise A Hussey Anne Zayaitz Endospore Stain Protocol Microbe Library American Society of Microbiology Endospores Brief Microbiology Text page Malachite green endospore staining technique video Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments Retrieved from https en wikipedia org w index php title Endospore amp oldid 1094227471, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.