fbpx
Wikipedia

Coxiella burnetii

Coxiella burnetii is an obligate intracellular bacterial pathogen, and is the causative agent of Q fever.[1] The genus Coxiella is morphologically similar to Rickettsia, but with a variety of genetic and physiological differences. C. burnetii is a small Gram-negative, coccobacillary bacterium that is highly resistant to environmental stresses such as high temperature, osmotic pressure, and ultraviolet light. These characteristics are attributed to a small cell variant form of the organism that is part of a biphasic developmental cycle, including a more metabolically and replicatively active large cell variant form.[2] It can survive standard disinfectants, and is resistant to many other environmental changes like those presented in the phagolysosome.[3]

Coxiella burnetii
A dry fracture of a Vero cell exposing the contents of a vacuole where Coxiella burnetii is growing
Scientific classification
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Legionellales
Family: Coxiellaceae
Genus: Coxiella
Species:
C. burnetii
Binomial name
Coxiella burnetii
(Derrick 1939)
Philip 1948

History and naming edit

Research in the 1920s and 1930s identified what appeared to be a new type of Rickettsia, isolated from ticks, that was able to pass through filters. The first description of what may have been Coxiella burnetii was published in 1930 by Hideyo Noguchi, but since his samples did not survive, it remains unclear as to whether it was the same organism. The definitive descriptions were published in the late 1930s as part of research into the cause of Q fever, by Edward Holbrook Derrick and Macfarlane Burnet in Australia, and Herald Rea Cox and Gordon Davis at the Rocky Mountain Laboratory (RML) in the United States.[4]

The RML team proposed the name Rickettsia diaporica, derived from the Greek word for having the ability to pass through filter pores, to avoid naming it after either Cox or Davis if indeed Noguchi's description had priority. Around the same time, Derrick proposed the name Rickettsia burnetii, in recognition of Burnet's contribution in identifying the organism as a Rickettsia. As it became clear that the species differed significantly from other Rickettsia, it was first elevated to a subgenus named after Cox, Coxiella, and then in 1948 to its own genus of that name, proposed by Cornelius B. Philip, another RML researcher.[4] Research in the 1960s–1970s by French Canadian-American microbiologist and virologist Paul Fiset was instrumental in the development of the first successful Q fever vaccine.[5]

Coxiella was difficult to study because it could not be reproduced outside a host. However, in 2009, scientists reported a technique allowing the bacteria to grow in an axenic culture and suggested the technique may be useful for study of other pathogens.[6]

Pathogenesis edit

 
Immunohistochemical detection of C. burnetii in resected cardiac valve of a 60-year-old man with Q fever endocarditis, Cayenne, French Guiana, monoclonal antibody against C. burnetii and hematoxylin were used for staining: Original magnification ×50

The ID50 (the dose needed to infect 50% of experimental subjects) is one via inhalation; i.e., inhalation of one organism will yield disease in 50% of the population. This is an extremely low infectious dose (only 1-10 organisms required), making C. burnetii one of the most infectious known organisms.[7][8] Disease occurs in two stages: an acute stage that presents with headaches, chills, and respiratory symptoms, and an insidious chronic stage.

While most infections clear up spontaneously, treatment with tetracycline or doxycycline appears to reduce the symptomatic duration and reduce the likelihood of chronic infection. A combination of erythromycin and rifampin is highly effective in curing the disease, and vaccination with Q-VAX vaccine (CSL) is effective for prevention of it.[citation needed]

The bacteria use a type IVB secretion system known as Icm/Dot (intracellular multiplication / defect in organelle trafficking genes) to inject over 100 effector proteins into the host. These effectors increase the bacteria's ability to survive and grow inside the host cell by modulating many host cell pathways, including blocking cell death, inhibiting immune reactions, and altering vesicle trafficking.[9][10][11] In Legionella pneumophila, which uses the same secretion system and also injects effectors, survival is enhanced because these proteins interfere with fusion of the bacteria-containing vacuole with the host's degradation endosomes.[12]

Use as a biological weapon edit

The United States ended its biological warfare program in 1969. When it did, C. burnetii was one of seven agents it had standardized as biological weapons.[13]

Genomics edit

At least 75[14] completely sequenced genomes of Coxiella burnetii strains exist,[15] which contain about 2.1 Mbp of DNA each and encode around 2,100 open reading frames; 746 (or about 35%) of these genes have no known function.

In bacteria small regulatory RNAs are activated during stress and virulence conditions. Coxiella burnetii small RNAs (CbSRs 1, 11, 12, and 14) are encoded within intergenic region (IGR). CbSRs 2, 3, 4 and 9 are located antisense to identified ORFs. The CbSRs are up-regulated during intracellular growth in host cells.[16]

All C. burnetii isolates either carry one of four conserved independently-replicating large plasmids (QpH1, QpDG, QpRS, or QpDV) or a chromosomal element derived from QpRS. QpH1 carries virluence factors important for the bacterium's survival inside mouse macrophages[17] and Vero cells; growth on axenic media is unaffected. QpH1 also contains a toxin-antitoxin system.[18] Among all plasmids, 8 conserved genes code for proteins that are inserted into the host cell via the secretion system.[18]

Additional images edit

References edit

  1. ^ Shaw EI, Voth DE (January 2019). "Coxiella burnetii: A Pathogenic Intracellular Acidophile". Microbiology. 165 (1): 1–3. doi:10.1099/mic.0.000707. PMC 6600347. PMID 30422108.
  2. ^ Voth DE, Heinzen RA (April 2007). "Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii". Cellular Microbiology. 9 (4): 829–40. doi:10.1111/j.1462-5822.2007.00901.x. PMID 17381428.
  3. ^ Sankaran N (2000). "Coxiella burnetii". Microbes and people : an A-Z of microorganisms in our lives. Phoenix, Arizona: The Oryx Press. pp. 72. ISBN 1-57356-217-3. "In contrast to other rickettsiae, which are highly sensitive and easily killed by chemical disinfectants and changes in their surroundings, C. burnetii is highly resistant" & "Q fever". Centers for Disease Control and Prevention; National Center for Infectious Diseases; Division of Viral and Rickettsial Diseases; Viral and Rickettsial Zoonoses Branch. 2003-02-13. Retrieved 2006-05-24. "The organisms are resistant to heat, drying, and many common disinfectants."
  4. ^ a b McDade JE (1990). "Historical Aspects of Q Fever". In Marrie TJ (ed.). Q Fever, Volume I: The Disease. CRC Press. pp. 5–22. ISBN 0-8493-5984-8.
  5. ^ Saxon, Wolfgang (March 8, 2001). "Dr. Paul Fiset, 78, Microbiologist And Developer of Q Fever Vaccine". New York Times. p. C-17.
  6. ^ Omsland A, Cockrell DC, Howe D, Fischer ER, Virtaneva K, Sturdevant DE, et al. (March 2009). "Host cell-free growth of the Q fever bacterium Coxiella burnetii". Proceedings of the National Academy of Sciences of the United States of America. 106 (11): 4430–4. Bibcode:2009PNAS..106.4430O. doi:10.1073/pnas.0812074106. PMC 2657411. PMID 19246385.
  7. ^ Tigertt WD, Benenson AS, Gochenour WS (September 1961). "Airborne Q fever". Bacteriological Reviews. 25 (3): 285–93. doi:10.1128/br.25.3.285-293.1961. PMC 441106. PMID 13921201.
  8. ^ "Q fever caused by Coxiella burnetii". Centers for Disease Control. 15 January 2019.
  9. ^ Lührmann A, Nogueira CV, Carey KL, Roy CR (November 2010). "Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein". Proceedings of the National Academy of Sciences of the United States of America. 107 (44): 18997–9001. Bibcode:2010PNAS..10718997L. doi:10.1073/pnas.1004380107. PMC 2973885. PMID 20944063.
  10. ^ Clemente TM, Mulye M, Justis AV, Nallandhighal S, Tran TM, Gilk SD (October 2018). Freitag NE (ed.). "Coxiella burnetii Blocks Intracellular Interleukin-17 Signaling in Macrophages". Infection and Immunity. 86 (10). doi:10.1128/IAI.00532-18. PMC 6204741. PMID 30061378.
  11. ^ Newton HJ, Kohler LJ, McDonough JA, Temoche-Diaz M, Crabill E, Hartland EL, Roy CR (July 2014). Valdivia RH (ed.). "A screen of Coxiella burnetii mutants reveals important roles for Dot/Icm effectors and host autophagy in vacuole biogenesis". PLOS Pathogens. 10 (7): e1004286. doi:10.1371/journal.ppat.1004286. PMC 4117601. PMID 25080348.
  12. ^ Pan X, Lührmann A, Satoh A, Laskowski-Arce MA, Roy CR (June 2008). "Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors". Science. 320 (5883): 1651–4. Bibcode:2008Sci...320.1651P. doi:10.1126/science.1158160. PMC 2514061. PMID 18566289.
  13. ^ Croddy, Eric C.; Hart, C. Perez-Armendariz J. (2002). Chemical and Biological Warfare. Springer. pp. 30–31. ISBN 0-387-95076-1.
  14. ^ Abou Abdallah, Rita; Million, Matthieu; Delerce, Jeremy; Anani, Hussein; Diop, Awa; Caputo, Aurelia; Zgheib, Rita; Rousset, Elodie; Sidi Boumedine, Karim; Raoult, Didier; Fournier, Pierre-Edouard (21 November 2022). "Pangenomic analysis of Coxiella burnetii unveils new traits in genome architecture". Frontiers in Microbiology. 13. doi:10.3389/fmicb.2022.1022356. PMC 9721466. PMID 36478861.
  15. ^ "Genome - NCBI". National Center for Biotechnology Information, U.S. National Library of Medicine. from the original on 2011-11-28. Retrieved 1 January 2022.
  16. ^ Warrier I, Hicks LD, Battisti JM, Raghavan R, Minnick MF (2014). "Identification of novel small RNAs and characterization of the 6S RNA of Coxiella burnetii". PLOS ONE. 9 (6): e100147. Bibcode:2014PLoSO...9j0147W. doi:10.1371/journal.pone.0100147. PMC 4064990. PMID 24949863.
  17. ^ Luo, Shengdong; Lu, Shanshan; Fan, Huahao; Chen, Zeliang; Sun, Zhihui; Hu, Yan; Li, Ruisheng; An, Xiaoping; Uversky, Vladimir N.; Tong, Yigang; Song, Lihua (8 April 2021). "The Coxiella burnetii QpH1 Plasmid Is a Virulence Factor for Colonizing Bone Marrow-Derived Murine Macrophages". Journal of Bacteriology. 203 (9). doi:10.1128/jb.00588-20. PMC 8092169. PMID 33558394.
  18. ^ a b Wachter, S; Cockrell, DC; Miller, HE; Virtaneva, K; Kanakabandi, K; Darwitz, B; Heinzen, RA; Beare, PA (December 2022). "The endogenous Coxiella burnetii plasmid encodes a functional toxin-antitoxin system". Molecular Microbiology. 118 (6): 744–764. doi:10.1111/mmi.15001. PMC 10098735. PMID 36385554.

External links edit

  • Coxiella burnetii genomes and related information at PATRIC, a Bioinformatics Resource Center funded by NIAID

coxiella, burnetii, obligate, intracellular, bacterial, pathogen, causative, agent, fever, genus, coxiella, morphologically, similar, rickettsia, with, variety, genetic, physiological, differences, burnetii, small, gram, negative, coccobacillary, bacterium, th. Coxiella burnetii is an obligate intracellular bacterial pathogen and is the causative agent of Q fever 1 The genus Coxiella is morphologically similar to Rickettsia but with a variety of genetic and physiological differences C burnetii is a small Gram negative coccobacillary bacterium that is highly resistant to environmental stresses such as high temperature osmotic pressure and ultraviolet light These characteristics are attributed to a small cell variant form of the organism that is part of a biphasic developmental cycle including a more metabolically and replicatively active large cell variant form 2 It can survive standard disinfectants and is resistant to many other environmental changes like those presented in the phagolysosome 3 Coxiella burnetiiA dry fracture of a Vero cell exposing the contents of a vacuole whereCoxiella burnetii is growingScientific classificationDomain BacteriaPhylum PseudomonadotaClass GammaproteobacteriaOrder LegionellalesFamily CoxiellaceaeGenus CoxiellaSpecies C burnetiiBinomial nameCoxiella burnetii Derrick 1939 Philip 1948 Contents 1 History and naming 2 Pathogenesis 3 Use as a biological weapon 4 Genomics 5 Additional images 6 References 7 External linksHistory and naming editResearch in the 1920s and 1930s identified what appeared to be a new type of Rickettsia isolated from ticks that was able to pass through filters The first description of what may have been Coxiella burnetii was published in 1930 by Hideyo Noguchi but since his samples did not survive it remains unclear as to whether it was the same organism The definitive descriptions were published in the late 1930s as part of research into the cause of Q fever by Edward Holbrook Derrick and Macfarlane Burnet in Australia and Herald Rea Cox and Gordon Davis at the Rocky Mountain Laboratory RML in the United States 4 The RML team proposed the name Rickettsia diaporica derived from the Greek word for having the ability to pass through filter pores to avoid naming it after either Cox or Davis if indeed Noguchi s description had priority Around the same time Derrick proposed the name Rickettsia burnetii in recognition of Burnet s contribution in identifying the organism as a Rickettsia As it became clear that the species differed significantly from other Rickettsia it was first elevated to a subgenus named after Cox Coxiella and then in 1948 to its own genus of that name proposed by Cornelius B Philip another RML researcher 4 Research in the 1960s 1970s by French Canadian American microbiologist and virologist Paul Fiset was instrumental in the development of the first successful Q fever vaccine 5 Coxiella was difficult to study because it could not be reproduced outside a host However in 2009 scientists reported a technique allowing the bacteria to grow in an axenic culture and suggested the technique may be useful for study of other pathogens 6 Pathogenesis edit nbsp Immunohistochemical detection of C burnetii in resected cardiac valve of a 60 year old man with Q fever endocarditis Cayenne French Guiana monoclonal antibody against C burnetii and hematoxylin were used for staining Original magnification 50The ID50 the dose needed to infect 50 of experimental subjects is one via inhalation i e inhalation of one organism will yield disease in 50 of the population This is an extremely low infectious dose only 1 10 organisms required making C burnetii one of the most infectious known organisms 7 8 Disease occurs in two stages an acute stage that presents with headaches chills and respiratory symptoms and an insidious chronic stage While most infections clear up spontaneously treatment with tetracycline or doxycycline appears to reduce the symptomatic duration and reduce the likelihood of chronic infection A combination of erythromycin and rifampin is highly effective in curing the disease and vaccination with Q VAX vaccine CSL is effective for prevention of it citation needed The bacteria use a type IVB secretion system known as Icm Dot intracellular multiplication defect in organelle trafficking genes to inject over 100 effector proteins into the host These effectors increase the bacteria s ability to survive and grow inside the host cell by modulating many host cell pathways including blocking cell death inhibiting immune reactions and altering vesicle trafficking 9 10 11 In Legionella pneumophila which uses the same secretion system and also injects effectors survival is enhanced because these proteins interfere with fusion of the bacteria containing vacuole with the host s degradation endosomes 12 Use as a biological weapon editThe United States ended its biological warfare program in 1969 When it did C burnetii was one of seven agents it had standardized as biological weapons 13 Genomics editAt least 75 14 completely sequenced genomes of Coxiella burnetii strains exist 15 which contain about 2 1 Mbp of DNA each and encode around 2 100 open reading frames 746 or about 35 of these genes have no known function In bacteria small regulatory RNAs are activated during stress and virulence conditions Coxiella burnetii small RNAs CbSRs 1 11 12 and 14 are encoded within intergenic region IGR CbSRs 2 3 4 and 9 are located antisense to identified ORFs The CbSRs are up regulated during intracellular growth in host cells 16 All C burnetii isolates either carry one of four conserved independently replicating large plasmids QpH1 QpDG QpRS or QpDV or a chromosomal element derived from QpRS QpH1 carries virluence factors important for the bacterium s survival inside mouse macrophages 17 and Vero cells growth on axenic media is unaffected QpH1 also contains a toxin antitoxin system 18 Among all plasmids 8 conserved genes code for proteins that are inserted into the host cell via the secretion system 18 Additional images edit nbsp C burnetii the causative agent of Q feverReferences edit Shaw EI Voth DE January 2019 Coxiella burnetii A Pathogenic Intracellular Acidophile Microbiology 165 1 1 3 doi 10 1099 mic 0 000707 PMC 6600347 PMID 30422108 Voth DE Heinzen RA April 2007 Lounging in a lysosome the intracellular lifestyle of Coxiella burnetii Cellular Microbiology 9 4 829 40 doi 10 1111 j 1462 5822 2007 00901 x PMID 17381428 Sankaran N 2000 Coxiella burnetii Microbes and people an A Z of microorganisms in our lives Phoenix Arizona The Oryx Press pp 72 ISBN 1 57356 217 3 In contrast to other rickettsiae which are highly sensitive and easily killed by chemical disinfectants and changes in their surroundings C burnetii is highly resistant amp Q fever Centers for Disease Control and Prevention National Center for Infectious Diseases Division of Viral and Rickettsial Diseases Viral and Rickettsial Zoonoses Branch 2003 02 13 Retrieved 2006 05 24 The organisms are resistant to heat drying and many common disinfectants a b McDade JE 1990 Historical Aspects of Q Fever In Marrie TJ ed Q Fever Volume I The Disease CRC Press pp 5 22 ISBN 0 8493 5984 8 Saxon Wolfgang March 8 2001 Dr Paul Fiset 78 Microbiologist And Developer of Q Fever Vaccine New York Times p C 17 Omsland A Cockrell DC Howe D Fischer ER Virtaneva K Sturdevant DE et al March 2009 Host cell free growth of the Q fever bacterium Coxiella burnetii Proceedings of the National Academy of Sciences of the United States of America 106 11 4430 4 Bibcode 2009PNAS 106 4430O doi 10 1073 pnas 0812074106 PMC 2657411 PMID 19246385 Tigertt WD Benenson AS Gochenour WS September 1961 Airborne Q fever Bacteriological Reviews 25 3 285 93 doi 10 1128 br 25 3 285 293 1961 PMC 441106 PMID 13921201 Q fever caused by Coxiella burnetii Centers for Disease Control 15 January 2019 Luhrmann A Nogueira CV Carey KL Roy CR November 2010 Inhibition of pathogen induced apoptosis by a Coxiella burnetii type IV effector protein Proceedings of the National Academy of Sciences of the United States of America 107 44 18997 9001 Bibcode 2010PNAS 10718997L doi 10 1073 pnas 1004380107 PMC 2973885 PMID 20944063 Clemente TM Mulye M Justis AV Nallandhighal S Tran TM Gilk SD October 2018 Freitag NE ed Coxiella burnetii Blocks Intracellular Interleukin 17 Signaling in Macrophages Infection and Immunity 86 10 doi 10 1128 IAI 00532 18 PMC 6204741 PMID 30061378 Newton HJ Kohler LJ McDonough JA Temoche Diaz M Crabill E Hartland EL Roy CR July 2014 Valdivia RH ed A screen of Coxiella burnetii mutants reveals important roles for Dot Icm effectors and host autophagy in vacuole biogenesis PLOS Pathogens 10 7 e1004286 doi 10 1371 journal ppat 1004286 PMC 4117601 PMID 25080348 Pan X Luhrmann A Satoh A Laskowski Arce MA Roy CR June 2008 Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors Science 320 5883 1651 4 Bibcode 2008Sci 320 1651P doi 10 1126 science 1158160 PMC 2514061 PMID 18566289 Croddy Eric C Hart C Perez Armendariz J 2002 Chemical and Biological Warfare Springer pp 30 31 ISBN 0 387 95076 1 Abou Abdallah Rita Million Matthieu Delerce Jeremy Anani Hussein Diop Awa Caputo Aurelia Zgheib Rita Rousset Elodie Sidi Boumedine Karim Raoult Didier Fournier Pierre Edouard 21 November 2022 Pangenomic analysis of Coxiella burnetii unveils new traits in genome architecture Frontiers in Microbiology 13 doi 10 3389 fmicb 2022 1022356 PMC 9721466 PMID 36478861 Genome NCBI National Center for Biotechnology Information U S National Library of Medicine Archived from the original on 2011 11 28 Retrieved 1 January 2022 Warrier I Hicks LD Battisti JM Raghavan R Minnick MF 2014 Identification of novel small RNAs and characterization of the 6S RNA of Coxiella burnetii PLOS ONE 9 6 e100147 Bibcode 2014PLoSO 9j0147W doi 10 1371 journal pone 0100147 PMC 4064990 PMID 24949863 Luo Shengdong Lu Shanshan Fan Huahao Chen Zeliang Sun Zhihui Hu Yan Li Ruisheng An Xiaoping Uversky Vladimir N Tong Yigang Song Lihua 8 April 2021 The Coxiella burnetii QpH1 Plasmid Is a Virulence Factor for Colonizing Bone Marrow Derived Murine Macrophages Journal of Bacteriology 203 9 doi 10 1128 jb 00588 20 PMC 8092169 PMID 33558394 a b Wachter S Cockrell DC Miller HE Virtaneva K Kanakabandi K Darwitz B Heinzen RA Beare PA December 2022 The endogenous Coxiella burnetii plasmid encodes a functional toxin antitoxin system Molecular Microbiology 118 6 744 764 doi 10 1111 mmi 15001 PMC 10098735 PMID 36385554 External links edit nbsp Wikimedia Commons has media related to Coxiella burnetii Coxiella burnetii genomes and related information at PATRIC a Bioinformatics Resource Center funded by NIAID Portal nbsp Biology Retrieved from https en wikipedia org w index php title Coxiella burnetii amp oldid 1200048652, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.