fbpx
Wikipedia

Electromagnetic warfare

Electromagnetic warfare (EW), sometimes known as electronic warfare,[1] is any action involving the use of the electromagnetic spectrum (EM spectrum) or directed energy to control the spectrum, attack an enemy, or impede enemy assaults. The purpose of electronic warfare is to deny the opponent the advantage of—and ensure friendly unimpeded access to—the EM spectrum. EW can be applied from air, sea, land, and/or space by crewed and uncrewed systems and can target communication, radar, or other military and civilian assets.[2][3]

The electromagnetic environment

Military operations are executed in an information environment increasingly complicated by the electromagnetic spectrum. The electromagnetic spectrum portion of the information environment is referred to as the electromagnetic environment (EME). The recognized need for military forces to have unimpeded access to and use of the electromagnetic environment creates vulnerabilities and opportunities for electronic warfare in support of military operations.[2]

Within the information operations construct, EW is an element of information warfare; more specifically, it is an element of offensive and defensive counterinformation.[4]

NATO has a different and arguably[citation needed] more encompassing and comprehensive approach to EW. A military committee conceptual document from 2007 (MCM_0142 Nov 2007 Military Committee Transformation Concept for Future NATO Electronic Warfare)[citation needed] recognised the EME as an operational maneuver space and warfighting environment/domain. In NATO, EW is considered to be warfare in the EME. NATO has adopted simplified language which parallels those used in other warfighting environments like maritime, land, and air/space. For example, an electronic attack (EA) is offensive use of EM energy, electronic defense (ED), and electronic surveillance (ES). The use of the traditional NATO EW terms, electronic countermeasures (ECM), electronic protective measures (EPM), and electronic support measures (ESM) has been retained as they contribute to and support electronic attack (EA), electronic defense (ED) and electronic surveillance (ES). Besides EW, other EM operations include intelligence, surveillance, target acquisition and reconnaissance (ISTAR), and signals intelligence (SIGINT). Subsequently, NATO has issued EW policy and doctrine and is addressing the other NATO defense lines of development.

Primary EW activities have been developed over time to exploit the opportunities and vulnerabilities that are inherent in the physics of EM energy. Activities used in EW include electro-optical, infrared and radio frequency countermeasures; EM compatibility and deception; radio jamming, radar jamming and deception and electronic counter-countermeasures (or anti-jamming); electronic masking, probing, reconnaissance, and intelligence; electronic security; EW reprogramming; emission control; spectrum management; and wartime reserve modes.[2][4]

Subdivisions

Electronic warfare consists of three major subdivisions: electronic attack (EA), electronic protection (EP), and electronic warfare support (ES).[2]

Electronic attack

 
Krasukha, a Russian mobile, ground-based, electronic warfare (EW) system used to jam AWACS and airborne radars on radar-guided missiles.

Electronic attack (EA), also known as electronic countermeasures (ECM), involves the offensive use of electromagnetic energy weapons, directed energy weapons, or anti-radiation weapons to attack personnel, facilities, or equipment with the intent of degrading, neutralizing, or destroying enemy combat capability including human life. In the case of electromagnetic energy, this action is most commonly referred to as "jamming" and can be performed on communications systems or radar systems. In the case of anti-radiation weapons, this often includes missiles or bombs that can home in on a specific signal (radio or radar) and follow that path directly to impact, thus destroying the system broadcasting.

Electronic protection

 
A right front view of a USAF Boeing E-4 advanced airborne command post (AABNCP) on the electromagnetic pulse (EMP) simulator (HAGII-C) for testing.

Electronic protection (EP), also known as an electronic protective measure (EPM) or electronic counter-countermeasure (ECCM) are a measure used to protect against an electronic enemy attack (EA) or to protect against friendly forces who unintentionally deploy the equivalent of an electronic attack on friendly forces. (sometimes called EW fratricide).[5] The effectiveness of electronic protection (EP) level is the ability to counter an electronic attack (EA).

Flares are often used to distract infrared homing missiles from missing their target. The use of flare rejection logic in the guidance (seeker head) of an infrared homing missile to counter an adversary's use of flares is an example of EP. While defensive EA actions (jamming) and EP (defeating jamming) both protect personnel, facilities, capabilities, and equipment, EP protects from the effects of EA (friendly and/or adversary). Other examples of EP include spread spectrum technologies, the use of restricted frequency lists, emissions control (EMCON), and low observability (stealth) technology.[2]

Electronic warfare self-protection (EWSP) is a suite of countermeasure systems fitted primarily to aircraft for the purpose of protecting the host from weapons fire and can include, among others: directional infrared countermeasures (DIRCM, flare systems and other forms of infrared countermeasures for protection against infrared missiles; chaff (protection against radar-guided missiles); and DRFM decoy systems (protection against radar-targeted anti-aircraft weapons).

An electronic warfare tactics range (EWTR) is a practice range that provides training for personnel operating in electronic warfare. There are two examples of such ranges in Europe: one at RAF Spadeadam in the northwest county of Cumbria, England, and the Multinational Aircrew Electronic Warfare Tactics Facility Polygone range on the border between Germany and France. EWTRs are equipped with ground-based equipment to simulate electronic warfare threats that aircrew might encounter on missions. Other EW training and tactics ranges are available for ground and naval forces as well.

Antifragile EW is a step beyond standard EP, occurring when a communications link being jammed actually increases in capability as a result of a jamming attack, although this is only possible under certain circumstances such as reactive forms of jamming.[6]

In November 2021, Israel Aerospace Industries announced a new electronic warfare system named Scorpius that can disrupt radar and communications from ships, UAVs, and missiles simultaneously and at varying distances.[7]

Electronic warfare support

 
RAF Menwith Hill, a large ECHELON site in the United Kingdom, and part of the UK-USA Security Agreement

Electronic warfare support (ES) is a subdivision of EW involving actions taken by an operational commander or operator to detect, intercept, identify, locate, and/or localize sources of intended and unintended radiated electromagnetic (EM) energy. These Electronic Support Measures (ESM) aim to enable immediate threat recognition focuses on serving military service needs even in the most tactical, rugged, and extreme environments. This is often referred to as simply reconnaissance, although today, more common terms are intelligence, surveillance and reconnaissance (ISR) or intelligence, surveillance, target acquisition, and reconnaissance (ISTAR). The purpose is to provide immediate recognition, prioritization, and targeting of threats to battlefield commanders.[2]

Signals intelligence (SIGINT), a discipline overlapping with ES, is the related process of analyzing and identifying intercepted transmissions from sources such as radio communication, mobile phones, radar, or microwave communication. SIGINT is broken into two categories: electronic intelligence (ELINT) and communications intelligence (COMINT). Analysis parameters measured in signals of these categories can include frequency, bandwidth, modulation, and polarization.

The distinction between SIGINT and ES is determined by the controller of the collection assets, the information provided, and the intended purpose of the information. Electronic warfare support is conducted by assets under the operational control of a commander to provide tactical information, specifically threat prioritization, recognition, location, targeting, and avoidance. However, the same assets and resources that are tasked with ES can simultaneously collect information that meets the collection requirements for more strategic intelligence.[2]

History

The history of electronic warfare goes back to at least the beginning of the 20th century. The earliest documented consideration of EW was during the Russo-Japanese War of 1904–1905. The Japanese auxiliary cruiser Shinano Maru had located the Russian Baltic Fleet in Tsushima Strait, and was communicating the fleet's location by "wireless" to the Imperial Japanese Fleet HQ. The captain of the Russian warship Ural requested permission to disrupt the Japanese communications link by attempting to transmit a stronger radio signal over the Shinano Maru's signal, hoping to distort the Japanese signal at the receiving end. Russian Admiral Zinovy Rozhestvensky refused the advice and denied the Ural permission to electronically jam the enemy, which in those circumstances might have proved invaluable. The intelligence the Japanese gained ultimately led to the decisive Battle of Tsushima. The battle was humiliating for Russia. The Russian navy lost all its battleships and most of its cruisers and destroyers. These staggering losses effectively ended the Russo-Japanese War in Japan's favor. 4,380 Russians were killed and 5,917 were captured, including two admirals, with a further 1,862 interned.[8]

During World War II, the Allies and Axis Powers both extensively used EW, or what Winston Churchill referred to as the "Battle of the Beams".[8] Navigational radars had gained in use to vector bombers to their targets and back to their home base. The first application of EW in WWII was to defeat those navigational radars.[8] Chaff was also introduced during WWII to confuse and defeat tracking radar systems.

As time progressed and battlefield communication and radar technology improved, so did electronic warfare. Electronic warfare played a major role in many military operations during the Vietnam War. Aircraft on bombing runs and air-to-air missions often relied on EW to survive the battle, although many were defeated by Vietnamese ECCM.[9]

As another example, in 2007, an Israeli attack on a suspected Syrian nuclear site during Operation Outside the Box (or Operation Orchard) used electronic warfare systems to disrupt Syrian air defenses while Israeli jets crossed much of Syria, bombed their targets, and returned to Israel undeterred.[10][11] The target of the flight of 10 F-15I aircraft was a suspected nuclear reactor under construction near the Euphrates River modeled after a North Korean reactor and supposedly financed with Iranian assistance. Some reports say[11] Israeli EW systems deactivated all of Syria's air defense systems for the entire period of the raid, infiltrating the country, bombing their target and escaping.

In December 2010, the Russian army received their first land-based Army operated multifunctional electronic warfare system known as Borisoglebsk 2 developed by Sozvezdie. Development of the system started in 2004 and evaluation testing successfully completed in December 2010. The Borisoglebsk-2 brings four different types of jamming stations into a single system with a single control console, helping the operator make battlefield decisions within seconds. The Borisoglebsk-2 system is mounted on nine MT-LB armored vehicles and is intended to suppress mobile satellite communications and satellite-based navigation signals.[12] This EW system is developed to conduct electronic reconnaissance and suppression of radio-frequency sources.[13] Newspaper, Svenska Dagbladet, said its initial usage caused concern within NATO.[14] A Russian blog[15] described Borisoglebsk-2 thus:

The 'Borisoglebsk-2', when compared to its predecessors, has better technical characteristics: wider frequency bandwidth for conducting radar collection and jamming, faster scanning times of the frequency spectrum, and higher precision when identifying the location and source of radar emissions, and increased capacity for suppression.

During the first two days of the 2022 Russian invasion of Ukraine, Russian EW disrupted Ukraine's air defense radars and communications, severely disrupting Ukrainian ground-based air defense systems. Russian jamming was so effective in fact that it interfered with their own communications, so efforts were scaled back. This led to Ukrainian SAMs regaining much of their effectiveness, and they began inflicting significant losses on Russian aircraft by the start of March.[16] Rapid Russian advances at the start of the war prevented EW troops from properly supporting them, but they had deployed extensive jamming infrastructure by late March and April. EW complexes were set up in the Donbas in concentrations of up to 10 complexes per 13 mi (21 km) of frontage. Electronic suppression of GPS and radio signals caused heavy losses of Ukrainian UAVs, depriving them of intelligence and precise artillery fire spotting. Small quadcopters had an average life expectancy of around three flights, and larger fixed-wing UAVs like the Bayraktar TB2 had a life expectancy of about six flights. By summer 2022, only some one-third of Ukrainian UAV missions could be said to have been successful, and EW had contributed to Ukraine losing 90% of the thousands of drones it had at the beginning of the invasion.[17]

Russian EW capacity to disrupt GPS signals is credited with the reduction in the success of Ukrainian usage of HIMARS and JDAM bombs. The failure of GPS guidance forces these weapons, in particular JDAMS, to use inertial navigation system which reduces accuracy from around 5 metres (15 ft) down to around 27 metres (90 ft).[18]

19 May 2023, Ukraine is losing some 10,000 drones a month due to Russian electronic warfare according to report by the Royal United Services Institute. This is an average of 300 drones a day. Russia has established EW posts about every 10 kilometres (6 mi) of the front, being some 6 kilometres (4 mi) back from the front line.[19]

In popular culture

In the movie Spaceballs, an electronic attack "jams" a weapons system with a literal jar of jam. In both Top Gun: Maverick and Behind Enemy Lines, characters utilize chaff and flares from their F/A-18s to confuse/deflect guided missiles.[citation needed]

See also

Other electronic warfare systems:

Historic:

U.S. specific:

References

Citations

  1. ^ https://warontherocks.com/2021/01/to-rule-the-invisible-battlefield-the-electromagnetic-spectrum-and-chinese-military-power/
  2. ^ a b c d e f g "Joint Publication 3-13.1 Electronic Warfare" (Online PDF available for download). Chairman of the Joint Chiefs of Staff (CJCS) - Armed Forces of the United States of America. 25 January 2007. pp. i, v–x. Retrieved 2011-05-01. EW contributes to the success of information operations (IO) by using offensive and defensive tactics and techniques in a variety of combinations to shape, disrupt, and exploit adversarial use of the EM spectrum while protecting friendly freedom of action in that spectrum.
  3. ^ (PDF). Archived from the original (PDF) on 2018-10-10. Retrieved 2018-10-10.
  4. ^ a b (PDF). Secretary of the Air Force. 5 November 2002. pp. i, v–x. Archived from the original (Online PDF available for download) on 12 August 2011. Retrieved 1 May 2011.
  5. ^ Huber, Arthur F.; Carlberg, Gary Gilliard; Prince Marquet, L. D. (2007-01-01). "Deconflicting Electronic Warfare in Joint Operations". Defense Technical Information Center. Retrieved 2022-07-31.
  6. ^ Lichtman, Marc; Vondal, Matthew; Clancy, Charles; Reed, Jeffrey (Feb 2016). "Antifragile Communications". IEEE Systems Journal. 12: 659–670. doi:10.1109/JSYST.2016.2517164. hdl:10919/72267. S2CID 4339184.
  7. ^ "Having a catch up with… Lynette Willoughby". 2020-09-02. Retrieved 2021-11-13.
  8. ^ a b c "History of Electronic Warfare". Blogspot.com. December 7, 2009. Retrieved August 14, 2018.
  9. ^ Dickson (Col), John R. (May 1987). "Electronic Warfare in Vietnam: Did We Learn Our Lessons?" (PDF). DTIC.mil. (PDF) from the original on March 4, 2017. Retrieved August 14, 2018.
  10. ^ Katz, Yaakov (September 29, 2010). "And They Struck Them With Blindness". The Jerusalem Post. Retrieved August 14, 2018.
  11. ^ a b Fulghum, David (November 26, 2007). "Israel Shows Electronic Prowess". Aviation Week and Space Technology. Retrieved August 14, 2018.
  12. ^ "Borisoglebsk-2". Deagel.com.
  13. ^ Administrator (February 11, 2015). "Russian Army Units of Eastern District Have Received New Borisoglebsk-2 Electronic Warfare Vehicles". armyrecognition.com. Retrieved August 14, 2018.
  14. ^ "Putins nya supervapen skrämmer Nato" [Putin's New Superpower Scares NATO]. Svenska Dagbladet. 16 August 2015.
  15. ^ Shoki Driver (9 February 2015). "Russian Military News in English". shokidriver.blogspot.se.
  16. ^ Russian forces were suffering from 'electronic fratricide' within days of attacking Ukraine, a new report says. Business Insider. 21 November 2022.
  17. ^ Russia’s Electronic-Warfare Troops Knocked Out 90 Percent Of Ukraine’s Drones. Forbes. 24 December 2022.
  18. ^ KYLE MIZOKAMI (21 April 2023). "GPS-Guided Bombs Should've Been Ukraine's Ace in the Hole. Then, Russian Jamming Stepped In". popularmechanics.com. Retrieved 2023-04-21.
  19. ^ Mia Jankowicz (22 May 2023). "Ukraine is losing 10,000 drones a month to Russian electronic-warfare systems that send fake signals and screw with their navigation, researchers say". popularmechanics.com. Business Insider. Retrieved 2023-05-26.

Sources

  •   This article incorporates public domain material from the United States Air Force.
  •   This article incorporates public domain material from Joint Publication 3-13.1 Electronic Warfare (PDF). DTIC.
  • The Changing Capability of Manpack Electronic Warfare Systems 2016-01-02 at the Wayback Machine
  • Carlo Kopp. "", Australian Aviation, June/July/August, 1993
  • Association of Old Crows 2020-05-28 at the Wayback Machine
  • Electronic Warfare Jamming Systems 2016-02-21 at the Wayback Machine
  • Information Warfare, Information Operations and Electronic Attack on APA
  • Electronic Warfare Products
  • Air Force Instruction on Electronic Warfare (EW) Operations (PDF)

Further reading

  • EW 101: A First Course in Electronic Warfare; David Adamy; 2001; ISBN 978-1580531696.
  • EW 102: A Second Course in Electronic Warfare; David Adamy; 2004; ISBN 978-1580536868.
  • Deception in War; Jon Latimer; 2001; ISBN 978-0719556050.
  • FM 3-36: Electronic Warfare In Operations. Safeguarding Soldiers Through Technology. Fort Leavenworth, U.S. Army Combined Arms Center 2011-09-28 at the Wayback Machine (CAC), 26 February 2009 – PDF, 114 p., 4,5 MB. See also: John Milburn: Army manual raises emphasis on electronic warfare[dead link]. The Washington Post, 26 February 2009.
  • Jogiaas, Aadu. . Archived from the original on 14 November 2011.
  • Bolton, Matt; Munro, Matt (2011). (PDF). Lonely Planet Magazine (December): 48–55. Archived from the original (PDF) on 2013-11-13.

electromagnetic, warfare, warfare, internet, cyberwarfare, underground, resistance, album, electronic, warfare, album, sometimes, known, electronic, warfare, action, involving, electromagnetic, spectrum, spectrum, directed, energy, control, spectrum, attack, e. For warfare on the Internet see Cyberwarfare For the Underground Resistance album see Electronic Warfare album Electromagnetic warfare EW sometimes known as electronic warfare 1 is any action involving the use of the electromagnetic spectrum EM spectrum or directed energy to control the spectrum attack an enemy or impede enemy assaults The purpose of electronic warfare is to deny the opponent the advantage of and ensure friendly unimpeded access to the EM spectrum EW can be applied from air sea land and or space by crewed and uncrewed systems and can target communication radar or other military and civilian assets 2 3 Contents 1 The electromagnetic environment 2 Subdivisions 2 1 Electronic attack 2 2 Electronic protection 2 3 Electronic warfare support 3 History 4 In popular culture 5 See also 6 References 6 1 Citations 6 2 Sources 7 Further readingThe electromagnetic environment EditMilitary operations are executed in an information environment increasingly complicated by the electromagnetic spectrum The electromagnetic spectrum portion of the information environment is referred to as the electromagnetic environment EME The recognized need for military forces to have unimpeded access to and use of the electromagnetic environment creates vulnerabilities and opportunities for electronic warfare in support of military operations 2 Within the information operations construct EW is an element of information warfare more specifically it is an element of offensive and defensive counterinformation 4 NATO has a different and arguably citation needed more encompassing and comprehensive approach to EW A military committee conceptual document from 2007 MCM 0142 Nov 2007 Military Committee Transformation Concept for Future NATO Electronic Warfare citation needed recognised the EME as an operational maneuver space and warfighting environment domain In NATO EW is considered to be warfare in the EME NATO has adopted simplified language which parallels those used in other warfighting environments like maritime land and air space For example an electronic attack EA is offensive use of EM energy electronic defense ED and electronic surveillance ES The use of the traditional NATO EW terms electronic countermeasures ECM electronic protective measures EPM and electronic support measures ESM has been retained as they contribute to and support electronic attack EA electronic defense ED and electronic surveillance ES Besides EW other EM operations include intelligence surveillance target acquisition and reconnaissance ISTAR and signals intelligence SIGINT Subsequently NATO has issued EW policy and doctrine and is addressing the other NATO defense lines of development Primary EW activities have been developed over time to exploit the opportunities and vulnerabilities that are inherent in the physics of EM energy Activities used in EW include electro optical infrared and radio frequency countermeasures EM compatibility and deception radio jamming radar jamming and deception and electronic counter countermeasures or anti jamming electronic masking probing reconnaissance and intelligence electronic security EW reprogramming emission control spectrum management and wartime reserve modes 2 4 Subdivisions EditElectronic warfare consists of three major subdivisions electronic attack EA electronic protection EP and electronic warfare support ES 2 Electronic attack Edit Krasukha a Russian mobile ground based electronic warfare EW system used to jam AWACS and airborne radars on radar guided missiles Main article Electronic countermeasure Electronic attack EA also known as electronic countermeasures ECM involves the offensive use of electromagnetic energy weapons directed energy weapons or anti radiation weapons to attack personnel facilities or equipment with the intent of degrading neutralizing or destroying enemy combat capability including human life In the case of electromagnetic energy this action is most commonly referred to as jamming and can be performed on communications systems or radar systems In the case of anti radiation weapons this often includes missiles or bombs that can home in on a specific signal radio or radar and follow that path directly to impact thus destroying the system broadcasting Electronic protection Edit A right front view of a USAF Boeing E 4 advanced airborne command post AABNCP on the electromagnetic pulse EMP simulator HAGII C for testing Main article Electronic counter countermeasure Electronic protection EP also known as an electronic protective measure EPM or electronic counter countermeasure ECCM are a measure used to protect against an electronic enemy attack EA or to protect against friendly forces who unintentionally deploy the equivalent of an electronic attack on friendly forces sometimes called EW fratricide 5 The effectiveness of electronic protection EP level is the ability to counter an electronic attack EA Flares are often used to distract infrared homing missiles from missing their target The use of flare rejection logic in the guidance seeker head of an infrared homing missile to counter an adversary s use of flares is an example of EP While defensive EA actions jamming and EP defeating jamming both protect personnel facilities capabilities and equipment EP protects from the effects of EA friendly and or adversary Other examples of EP include spread spectrum technologies the use of restricted frequency lists emissions control EMCON and low observability stealth technology 2 Electronic warfare self protection EWSP is a suite of countermeasure systems fitted primarily to aircraft for the purpose of protecting the host from weapons fire and can include among others directional infrared countermeasures DIRCM flare systems and other forms of infrared countermeasures for protection against infrared missiles chaff protection against radar guided missiles and DRFM decoy systems protection against radar targeted anti aircraft weapons An electronic warfare tactics range EWTR is a practice range that provides training for personnel operating in electronic warfare There are two examples of such ranges in Europe one at RAF Spadeadam in the northwest county of Cumbria England and the Multinational Aircrew Electronic Warfare Tactics Facility Polygone range on the border between Germany and France EWTRs are equipped with ground based equipment to simulate electronic warfare threats that aircrew might encounter on missions Other EW training and tactics ranges are available for ground and naval forces as well Antifragile EW is a step beyond standard EP occurring when a communications link being jammed actually increases in capability as a result of a jamming attack although this is only possible under certain circumstances such as reactive forms of jamming 6 In November 2021 Israel Aerospace Industries announced a new electronic warfare system named Scorpius that can disrupt radar and communications from ships UAVs and missiles simultaneously and at varying distances 7 Electronic warfare support Edit Main article Electronic warfare support measures RAF Menwith Hill a large ECHELON site in the United Kingdom and part of the UK USA Security Agreement Electronic warfare support ES is a subdivision of EW involving actions taken by an operational commander or operator to detect intercept identify locate and or localize sources of intended and unintended radiated electromagnetic EM energy These Electronic Support Measures ESM aim to enable immediate threat recognition focuses on serving military service needs even in the most tactical rugged and extreme environments This is often referred to as simply reconnaissance although today more common terms are intelligence surveillance and reconnaissance ISR or intelligence surveillance target acquisition and reconnaissance ISTAR The purpose is to provide immediate recognition prioritization and targeting of threats to battlefield commanders 2 Signals intelligence SIGINT a discipline overlapping with ES is the related process of analyzing and identifying intercepted transmissions from sources such as radio communication mobile phones radar or microwave communication SIGINT is broken into two categories electronic intelligence ELINT and communications intelligence COMINT Analysis parameters measured in signals of these categories can include frequency bandwidth modulation and polarization The distinction between SIGINT and ES is determined by the controller of the collection assets the information provided and the intended purpose of the information Electronic warfare support is conducted by assets under the operational control of a commander to provide tactical information specifically threat prioritization recognition location targeting and avoidance However the same assets and resources that are tasked with ES can simultaneously collect information that meets the collection requirements for more strategic intelligence 2 History EditThe history of electronic warfare goes back to at least the beginning of the 20th century The earliest documented consideration of EW was during the Russo Japanese War of 1904 1905 The Japanese auxiliary cruiser Shinano Maru had located the Russian Baltic Fleet in Tsushima Strait and was communicating the fleet s location by wireless to the Imperial Japanese Fleet HQ The captain of the Russian warship Ural requested permission to disrupt the Japanese communications link by attempting to transmit a stronger radio signal over the Shinano Maru s signal hoping to distort the Japanese signal at the receiving end Russian Admiral Zinovy Rozhestvensky refused the advice and denied the Ural permission to electronically jam the enemy which in those circumstances might have proved invaluable The intelligence the Japanese gained ultimately led to the decisive Battle of Tsushima The battle was humiliating for Russia The Russian navy lost all its battleships and most of its cruisers and destroyers These staggering losses effectively ended the Russo Japanese War in Japan s favor 4 380 Russians were killed and 5 917 were captured including two admirals with a further 1 862 interned 8 During World War II the Allies and Axis Powers both extensively used EW or what Winston Churchill referred to as the Battle of the Beams 8 Navigational radars had gained in use to vector bombers to their targets and back to their home base The first application of EW in WWII was to defeat those navigational radars 8 Chaff was also introduced during WWII to confuse and defeat tracking radar systems As time progressed and battlefield communication and radar technology improved so did electronic warfare Electronic warfare played a major role in many military operations during the Vietnam War Aircraft on bombing runs and air to air missions often relied on EW to survive the battle although many were defeated by Vietnamese ECCM 9 As another example in 2007 an Israeli attack on a suspected Syrian nuclear site during Operation Outside the Box or Operation Orchard used electronic warfare systems to disrupt Syrian air defenses while Israeli jets crossed much of Syria bombed their targets and returned to Israel undeterred 10 11 The target of the flight of 10 F 15I aircraft was a suspected nuclear reactor under construction near the Euphrates River modeled after a North Korean reactor and supposedly financed with Iranian assistance Some reports say 11 Israeli EW systems deactivated all of Syria s air defense systems for the entire period of the raid infiltrating the country bombing their target and escaping In December 2010 the Russian army received their first land based Army operated multifunctional electronic warfare system known as Borisoglebsk 2 developed by Sozvezdie Development of the system started in 2004 and evaluation testing successfully completed in December 2010 The Borisoglebsk 2 brings four different types of jamming stations into a single system with a single control console helping the operator make battlefield decisions within seconds The Borisoglebsk 2 system is mounted on nine MT LB armored vehicles and is intended to suppress mobile satellite communications and satellite based navigation signals 12 This EW system is developed to conduct electronic reconnaissance and suppression of radio frequency sources 13 Newspaper Svenska Dagbladet said its initial usage caused concern within NATO 14 A Russian blog 15 described Borisoglebsk 2 thus The Borisoglebsk 2 when compared to its predecessors has better technical characteristics wider frequency bandwidth for conducting radar collection and jamming faster scanning times of the frequency spectrum and higher precision when identifying the location and source of radar emissions and increased capacity for suppression During the first two days of the 2022 Russian invasion of Ukraine Russian EW disrupted Ukraine s air defense radars and communications severely disrupting Ukrainian ground based air defense systems Russian jamming was so effective in fact that it interfered with their own communications so efforts were scaled back This led to Ukrainian SAMs regaining much of their effectiveness and they began inflicting significant losses on Russian aircraft by the start of March 16 Rapid Russian advances at the start of the war prevented EW troops from properly supporting them but they had deployed extensive jamming infrastructure by late March and April EW complexes were set up in the Donbas in concentrations of up to 10 complexes per 13 mi 21 km of frontage Electronic suppression of GPS and radio signals caused heavy losses of Ukrainian UAVs depriving them of intelligence and precise artillery fire spotting Small quadcopters had an average life expectancy of around three flights and larger fixed wing UAVs like the Bayraktar TB2 had a life expectancy of about six flights By summer 2022 only some one third of Ukrainian UAV missions could be said to have been successful and EW had contributed to Ukraine losing 90 of the thousands of drones it had at the beginning of the invasion 17 Russian EW capacity to disrupt GPS signals is credited with the reduction in the success of Ukrainian usage of HIMARS and JDAM bombs The failure of GPS guidance forces these weapons in particular JDAMS to use inertial navigation system which reduces accuracy from around 5 metres 15 ft down to around 27 metres 90 ft 18 19 May 2023 Ukraine is losing some 10 000 drones a month due to Russian electronic warfare according to report by the Royal United Services Institute This is an average of 300 drones a day Russia has established EW posts about every 10 kilometres 6 mi of the front being some 6 kilometres 4 mi back from the front line 19 In popular culture EditIn the movie Spaceballs an electronic attack jams a weapons system with a literal jar of jam In both Top Gun Maverick and Behind Enemy Lines characters utilize chaff and flares from their F A 18s to confuse deflect guided missiles citation needed See also EditCyberwarfare Electromagnetic pulse Electromagnetic interference Electronic harassment Ivan s hammer L3Harris Technologies Suppression of Enemy Air Defenses SEAD Other electronic warfare systems ADM 160 MALD Krasukha electronic warfare system Radar warning receiver RWR Samyukta electronic warfare system Sky Shadow radar Historic 36th Electronic Warfare Squadron 55th Wing Battle of Latakia the first recorded use of deception EW in a naval battle No 100 Group RAFU S specific Association of Old Crows DARPA Electronic warfare officer Fleet Electronic Warfare Center Joint Functional Component Command Network Warfare National Electronics Museum U S Marine Corps Radio Reconnaissance Platoon USACEWP United States Army Computer Network Operations Electronic Warfare Proponents References EditCitations Edit https warontherocks com 2021 01 to rule the invisible battlefield the electromagnetic spectrum and chinese military power a b c d e f g Joint Publication 3 13 1 Electronic Warfare Online PDF available for download Chairman of the Joint Chiefs of Staff CJCS Armed Forces of the United States of America 25 January 2007 pp i v x Retrieved 2011 05 01 EW contributes to the success of information operations IO by using offensive and defensive tactics and techniques in a variety of combinations to shape disrupt and exploit adversarial use of the EM spectrum while protecting friendly freedom of action in that spectrum Russian Electronic Warfare Page 20 PDF Archived from the original PDF on 2018 10 10 Retrieved 2018 10 10 a b Electronic Warfare Air Force Doctrine Document 2 5 1 PDF Secretary of the Air Force 5 November 2002 pp i v x Archived from the original Online PDF available for download on 12 August 2011 Retrieved 1 May 2011 Huber Arthur F Carlberg Gary Gilliard Prince Marquet L D 2007 01 01 Deconflicting Electronic Warfare in Joint Operations Defense Technical Information Center Retrieved 2022 07 31 Lichtman Marc Vondal Matthew Clancy Charles Reed Jeffrey Feb 2016 Antifragile Communications IEEE Systems Journal 12 659 670 doi 10 1109 JSYST 2016 2517164 hdl 10919 72267 S2CID 4339184 Having a catch up with Lynette Willoughby 2020 09 02 Retrieved 2021 11 13 a b c History of Electronic Warfare Blogspot com December 7 2009 Retrieved August 14 2018 Dickson Col John R May 1987 Electronic Warfare in Vietnam Did We Learn Our Lessons PDF DTIC mil Archived PDF from the original on March 4 2017 Retrieved August 14 2018 Katz Yaakov September 29 2010 And They Struck Them With Blindness The Jerusalem Post Retrieved August 14 2018 a b Fulghum David November 26 2007 Israel Shows Electronic Prowess Aviation Week and Space Technology Retrieved August 14 2018 Borisoglebsk 2 Deagel com Administrator February 11 2015 Russian Army Units of Eastern District Have Received New Borisoglebsk 2 Electronic Warfare Vehicles armyrecognition com Retrieved August 14 2018 Putins nya supervapen skrammer Nato Putin s New Superpower Scares NATO Svenska Dagbladet 16 August 2015 Shoki Driver 9 February 2015 Russian Military News in English shokidriver blogspot se Russian forces were suffering from electronic fratricide within days of attacking Ukraine a new report says Business Insider 21 November 2022 Russia s Electronic Warfare Troops Knocked Out 90 Percent Of Ukraine s Drones Forbes 24 December 2022 KYLE MIZOKAMI 21 April 2023 GPS Guided Bombs Should ve Been Ukraine s Ace in the Hole Then Russian Jamming Stepped In popularmechanics com Retrieved 2023 04 21 Mia Jankowicz 22 May 2023 Ukraine is losing 10 000 drones a month to Russian electronic warfare systems that send fake signals and screw with their navigation researchers say popularmechanics com Business Insider Retrieved 2023 05 26 Sources Edit This article incorporates public domain material from the United States Air Force This article incorporates public domain material from Joint Publication 3 13 1 Electronic Warfare PDF DTIC The Changing Capability of Manpack Electronic Warfare Systems Archived 2016 01 02 at the Wayback Machine Carlo Kopp Electronic Warfare in Operation Desert Storm Australian Aviation June July August 1993 Association of Old Crows Archived 2020 05 28 at the Wayback Machine Electronic Warfare Jamming Systems Archived 2016 02 21 at the Wayback Machine Information Warfare Information Operations and Electronic Attack on APA Electronic Warfare Products Air Force Instruction on Electronic Warfare EW Operations PDF Further reading EditEW 101 A First Course in Electronic Warfare David Adamy 2001 ISBN 978 1580531696 EW 102 A Second Course in Electronic Warfare David Adamy 2004 ISBN 978 1580536868 Deception in War Jon Latimer 2001 ISBN 978 0719556050 FM 3 36 Electronic Warfare In Operations Safeguarding Soldiers Through Technology Fort Leavenworth U S Army Combined Arms Center Archived 2011 09 28 at the Wayback Machine CAC 26 February 2009 PDF 114 p 4 5 MB See also John Milburn Army manual raises emphasis on electronic warfare dead link The Washington Post 26 February 2009 Jogiaas Aadu Disturbing soviet transmissions in August 1991 Archived from the original on 14 November 2011 Bolton Matt Munro Matt 2011 The Tallinn Cables PDF Lonely Planet Magazine December 48 55 Archived from the original PDF on 2013 11 13 Retrieved from https en wikipedia org w index php title Electromagnetic warfare amp oldid 1157612750, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.