fbpx
Wikipedia

Fish ladder

A fish ladder, also known as a fishway, fish pass, fish steps, or fish cannon is a structure on or around artificial and natural barriers (such as dams, locks and waterfalls) to facilitate diadromous fishes' natural migration as well as movements of potamodromous species.[1] Most fishways enable fish to pass around the barriers by swimming and leaping up a series of relatively low steps (hence the term ladder) into the waters on the other side. The velocity of water falling over the steps has to be great enough to attract the fish to the ladder, but it cannot be so great that it washes fish back downstream or exhausts them to the point of inability to continue their journey upriver.

Pool-and-weir fish ladder at Bonneville Dam on the Columbia River
Drone video of a fish way in Estonia, on the river Jägala
FERC Fish Ladder Safety Sign

History edit

 
Denil Fishway on Salmon Creek, Montana

Written reports of rough fishways date to 17th-century France, where bundles of branches were used to make steps in steep channels to bypass obstructions.

A 1714 construction of an old channel bypassing a dam, "originally cut for the passage of fish up and down the river", is mentioned in the 1823 U.S. Circuit Court Case Tyler v. Wilkinson. This example predates the 1880 fish ladder at Pawtuxet Falls. The 1714 channel "wholly failed for this purpose" and, in 1730, a mill was built in its place. The channel and its mill usage became an important legal case in U.S. water law.[2]

A pool and weir salmon ladder was built around 1830 by James Smith, a Scottish engineer on the River Teith, near Deanston, Perthshire in Scotland. Both the weir and salmon ladder are there today and many subsequent salmon ladders built in Scotland were inspired by it.[3]

A version was patented in 1837 by Richard McFarlan of Bathurst, New Brunswick, Canada, who designed a fishway to bypass a dam at his water-powered lumber mill.[4] In 1852–1854, the Ballisodare Fish Pass was built in County Sligo in Ireland to draw salmon into a river that had not supported a fishery. In 1880, the first fish ladder was built in Rhode Island, United States, on the Pawtuxet Falls Dam. The ladder was removed in 1924, when the City of Providence replaced the wood dam with a concrete one. USA legislated fishways in 1888.[5]

As the Industrial Age advanced, dams and other river obstructions became larger and more common, leading to the need for effective fish by-passes.[6]

Types edit

Pool and weir
One of the oldest styles of fish ladders. It uses a series of small dams and pools of regular length to make a long, sloping channel for fish to travel around the obstruction. The channel acts as a fixed lock to gradually step down the water level; to head upstream, fish must jump over from box to box in the ladder.
Baffle fishway
Uses a series of symmetrical close-spaced baffles in a channel to redirect the flow of water, allowing fish to swim around the barrier. Baffle fishways need not have resting areas, although pools can be included to provide a resting area or to reduce the velocity of the flow. Such fishways can be built with switchbacks to minimize the space needed for their construction. Baffles come in variety of designs. The most common design is the Larinier pass, named after the French engineer who designed them. They are suitable for coarse fish as well as salmonids, and can be built large enough to be used by canoes.[7] The original design for a Denil fishway was developed in 1909 by a Belgian scientist, G. Denil; it has since been adjusted and adapted in many ways. The Alaskan Steeppass, for example, is a modular prefabricated Denil-fishway variant originally designed for remote areas of Alaska. Baffles have been installed by Project Maitai in several waterways in Nelson, New Zealand, to improve fish passage as part of general environmental restoration.
Fish elevator (or fish lift)
Breaks with the ladder design by providing a sort of elevator to carry fish over a barrier. It is well suited to tall barriers. With a fish elevator, fish swim into a collection area at the base of the obstruction. When enough fish accumulate in the collection area, they are nudged into a hopper that carries them into a flume that empties into the river above the barrier. On the Connecticut River, for example, two fish elevators lift up to 500 fish at a time, 52 feet (15.85 m), to clear the Holyoke Dam. In 2013, the elevator carried over 400,000 fish.[8]
Rock-ramp fishway
Uses large rocks and timbers to make pools and small falls that mimic natural structures. Because of the length of the channel needed for the ladder, such structures are most appropriate for relatively short barriers. They have a significant advantage in that they can provide fish spawning habitat.[9]
Vertical-slot fish passage
Similar to a pool-and-weir system, except that each "dam" has a narrow slot in it near the channel wall. This allows fish to swim upstream without leaping over an obstacle. Vertical-slot fish passages also tend to handle reasonably well the seasonal fluctuation in water levels on each side of the barrier. Recent studies suggest that navigation locks have a potential to be operated as vertical slot fishways to provide increased access for a range of biota, including poor swimmers.[10][11]
Fish siphon
Allows the pass to be installed parallel to a water course and can be used to link two watercourses. The pass utilises a syphon effect to regulate its flow. This style is particularly favoured to aid flood defence.
Fish cannon
A wet, flexible pneumatic tube uses air pressure to suck in salmon one at a time and gently shoot them out into the destination water. The system was originally designed by Bellevue, Washington company Whooshh to safely move apples.[12][13][14]
Borland Fish Lift
This is similar to a canal lock. At the downstream end of the obstruction, fish are attracted to a collecting pool by an outflow of water through a sluice gate. At fixed intervals, the gate is closed, and water from the upper level fills the collecting pool and an inclined shaft, lifting the fish up to the upstream level. Once the shaft is full, a sluice at the top level opens, to allow fish to continue their journey upstream. The top sluice then closes, and the shaft empties for the process to begin again. A number of Borland fish lifts have been built in Scotland, associated with hydro-electric dams, including one at Aigas Dam on the River Beauly.[15]

Effectiveness edit

 
This fish failed to enter the narrow opening in the fish ladder in Akerselva, Norway

Fish ladders have a mixed record of effectiveness. They vary in effectiveness for different types of species, with one study showing that only three percent of American Shad make it through all the fish ladders on the way to their spawning ground.[16] Effectiveness depends on the fish species' swimming ability, and how the fish moves up and downstream. A fish passage that is designed to allow fish to pass upstream may not allow passage downstream, for instance.[17] Fish passages do not always work. In practice a challenge is matching swimming performance data to hydrodynamic measurements.[18][19] Swim tests rarely use the same protocol and the output is either a single-point measurement or a bulk velocity. In contrast, physical and numerical modelling of fluid flow (i.e. hydrodynamics) deliver a detailed flow map, with a fine spatial and temporal resolution. Regulatory agencies face a difficult task to match hydrodynamic measurements and swimming performance data.

Culverts edit

During the last three decades,[when?] the ecological impact of culverts on natural streams and rivers has been recognised. While the culvert discharge capacity derives from hydrological and hydraulic engineering considerations,[20] this results often in large velocities in the barrel, which may prevent fish from passing through.

Baffles may be installed along the barrel invert to provide some fish-friendly alternative.[21][22][23] For low discharges, the baffles decrease the flow velocity and increase the water depth to facilitate fish passage. At larger discharges, baffles induce lower local velocities and generate recirculation regions. However, baffles can reduce drastically the culvert discharge capacity for a given afflux,[24] thus increasing substantially the total cost of the culvert structure to achieve the same design discharge and afflux. It is believed that fish-turbulence interplay may facilitate upstream migration, albeit an optimum design must be based upon a careful characterisation of both hydrodynamics and fish kinematics.[19][25][26] Finally the practical engineering design implications cannot be ignored, while a solid understanding of turbulence typology is a basic requirement to any successful boundary treatment conducive of upstream fish passage.[27]

See also edit

Citations edit

  1. ^ "What is a Fish Ladder?". Michigan: Michigan Department of Natural Resources. Retrieved 27 April 2012.
  2. ^ Mason, William P. "Tyler v. Wilkinson". Open Casebook. Harvard Law School Library. Retrieved 30 August 2023.
  3. ^ "James Smith (1789-1850) - Graces Guide".
  4. ^ Mario Theriault, Great Maritime Inventions 1833–1950, Goose Lane, 2001, p. 45
  5. ^ "33 U.S. Code § 608 - Construction of fishways". LII / Legal Information Institute.
  6. ^ Office Of Technology Assessment Washington DC (1995) Fish passage technologies : protection at hydropower facilities Diana Publishing, ISBN 1-4289-2016-1.
  7. ^ "How fish climb". Canal and River Trust. 22 December 2020. from the original on 26 January 2021.
  8. ^ "2013 Connecticut River Migratory Fish". U.S. Fish and Wildlife Service. United States Fish and Wildlife Service. Retrieved October 25, 2016.
  9. ^ Aadland, Luther P. (2010). Reconnecting Rivers: Natural Channel Design in Dam Removals and Fish Passage. Minnesota Department of Natural Resources.
  10. ^ Silva, S.; Lowry, M.; Macaya-Solis, C.; Byatt, B.; Lucas, M. C. (2017). "Can navigation locks be used to help migratory fishes with poor swimming performance pass tidal barrages? A test with lampreys". Ecological Engineering. 102: 291–302. Bibcode:2017EcEng.102..291S. doi:10.1016/j.ecoleng.2017.02.027.
  11. ^ Quaranta, E.; Katopodis, C.; Revelli, R.; Comoglio, C (2017). "Turbulent flow field comparison and related suitability for fish passage of a standard and a simplified low-gradient vertical slot fishway" (PDF). River Research and Applications. 33 (8): 1295–1305. Bibcode:2017RivRA..33.1295Q. doi:10.1002/rra.3193. S2CID 134135405.
  12. ^ 'Salmon Cannon' Fires Fish Over Dams At 22mph 13 August 2014 www.youtube.com, accessed 15 January 2022
  13. ^ "Whoosh: 'Salmon Cannon' Shoots Fish Upstream to Spawn". www.livescience.com. 13 November 2014. Retrieved 16 January 2022.
  14. ^ "What is the 'salmon cannon' and how do the fish feel about it?". The Guardian. 15 August 2019. Retrieved 16 January 2022.
  15. ^ Wood, Emma (2005). (PDF). Scottish and Southern Energy. p. 8. Archived from the original (PDF) on 18 October 2007.
  16. ^ Waldman, John. "Blocked Migration: Fish Ladders On U.S. Dams Are Not Effective". Yale Environment 360. Yale School of Forestry and Environmental Sciences. Retrieved 18 March 2016.
  17. ^ Kraft, Amy (February 20, 2013). "Upstream Battle: Fishes Shun Modern Dam Passages, Contributing to Population Declines". Scientific American. Retrieved 18 March 2016.
  18. ^ Katopodis, C.; Gervais, R. (2016). "Fish Swimming Performance Database and Analyses". DFO CSAS Research Document No. 2016/002, Canadian Science Advisory Secretariat, Fisheries and Oceans Canada, Ottawa, Canada: 1–550.
  19. ^ a b Wang, H.; Chanson, H. (2017). "How a better understanding of Fish-Hydrodynamics Interactions might enhance upstream fish passage in culverts". Civil Engineering Research Report No. CE162: 1–43.
  20. ^ Chanson, H. (2004). The Hydraulics of Open Channel Flow: An Introduction. Butterworth-Heinemann, 2nd edition, Oxford, UK. ISBN 978-0-7506-5978-9.
  21. ^ Olsen, A.; Tullis, B. (2013). "Laboratory Study of Fish Passage and Discharge Capacity in Slip-Lined, Baffled Culverts". Journal of Hydraulic Engineering. 139 (4): 424–432. doi:10.1061/(asce)hy.1943-7900.0000697. ISSN 0733-9429.
  22. ^ Chanson, H.; Uys, W. (2016). "Baffle Designs to Facilitate Fish Passage in Box Culverts: A Preliminary Study". 6th IAHR International Symposium on Hydraulic Structures, Hydraulic Structures and Water System Management: 295–304. doi:10.15142/T300628160828. ISBN 978-1-884575-75-4.
  23. ^ Cabonce, J.; Fernando, R.; Wang, H.; Chanson, H. (2017). Using Triangular Baffles to Facilitate Upstream Fish Passage in Box Culverts: Physical Modelling. Hydraulic Model Report No. CH107/17, School of Civil Engineering, The University of Queensland, Brisbane, Australia, 130 pages. ISBN 978-1-74272-186-6.
  24. ^ Larinier, M. (2002). "Fish Passage through Culverts, Rock Weirs and Estuarine Obstructions". Bulletin Français de la Pêche et de la Pisciculture. 364 (18): 119–134. doi:10.1051/kmae/2002097.
  25. ^ Wang, H.; Chanson, H. (2017). "Baffle Systems to Facilitate Upstream Fish Passage in Standard Box Culverts: How About Fish-Turbulence Interplay?". 37th IAHR World Congress, IAHR & USAINS, Kuala Lumpur, Malaysia. 3: 2586–2595.
  26. ^ Wang, H.; Chanson, H. (2018). "Modelling Upstream Fish Passage in Standard Box Culverts: Interplay between Turbulence, Fish Kinematics, and Energetics" (PDF). River Research and Applications. 34 (3): 244–252. Bibcode:2018RivRA..34..244W. doi:10.1002/rra.3245.
  27. ^ Chanson, H. (2019). "Utilising the Boundary Layer to Help Restore the Connectivity of Fish Habitats and Populations. An Engineering Discussion" (PDF). Ecological Engineering. 141 (105613): 105613. Bibcode:2019EcEng.14105613C. doi:10.1016/j.ecoleng.2019.105613. S2CID 207901913.

General and cited references edit

  • (1997) US Army Corps of Engineers.
  • Fish-friendly waterways and culverts - Integration of hydrodynamics and fish turbulence interplay (2017) The University of Queensland.

External links edit

fish, ladder, this, article, lead, section, short, adequately, summarize, points, please, consider, expanding, lead, provide, accessible, overview, important, aspects, article, april, 2024, fish, ladder, also, known, fishway, fish, pass, fish, steps, fish, can. This article s lead section may be too short to adequately summarize the key points Please consider expanding the lead to provide an accessible overview of all important aspects of the article April 2024 A fish ladder also known as a fishway fish pass fish steps or fish cannon is a structure on or around artificial and natural barriers such as dams locks and waterfalls to facilitate diadromous fishes natural migration as well as movements of potamodromous species 1 Most fishways enable fish to pass around the barriers by swimming and leaping up a series of relatively low steps hence the term ladder into the waters on the other side The velocity of water falling over the steps has to be great enough to attract the fish to the ladder but it cannot be so great that it washes fish back downstream or exhausts them to the point of inability to continue their journey upriver Pool and weir fish ladder at Bonneville Dam on the Columbia River source source source source source source source source Drone video of a fish way in Estonia on the river Jagala FERC Fish Ladder Safety Sign Contents 1 History 2 Types 3 Effectiveness 4 Culverts 5 See also 6 Citations 7 General and cited references 8 External linksHistory edit nbsp Denil Fishway on Salmon Creek Montana Written reports of rough fishways date to 17th century France where bundles of branches were used to make steps in steep channels to bypass obstructions A 1714 construction of an old channel bypassing a dam originally cut for the passage of fish up and down the river is mentioned in the 1823 U S Circuit Court Case Tyler v Wilkinson This example predates the 1880 fish ladder at Pawtuxet Falls The 1714 channel wholly failed for this purpose and in 1730 a mill was built in its place The channel and its mill usage became an important legal case in U S water law 2 A pool and weir salmon ladder was built around 1830 by James Smith a Scottish engineer on the River Teith near Deanston Perthshire in Scotland Both the weir and salmon ladder are there today and many subsequent salmon ladders built in Scotland were inspired by it 3 A version was patented in 1837 by Richard McFarlan of Bathurst New Brunswick Canada who designed a fishway to bypass a dam at his water powered lumber mill 4 In 1852 1854 the Ballisodare Fish Pass was built in County Sligo in Ireland to draw salmon into a river that had not supported a fishery In 1880 the first fish ladder was built in Rhode Island United States on the Pawtuxet Falls Dam The ladder was removed in 1924 when the City of Providence replaced the wood dam with a concrete one USA legislated fishways in 1888 5 As the Industrial Age advanced dams and other river obstructions became larger and more common leading to the need for effective fish by passes 6 Types editSee also fish migration Pool and weir One of the oldest styles of fish ladders It uses a series of small dams and pools of regular length to make a long sloping channel for fish to travel around the obstruction The channel acts as a fixed lock to gradually step down the water level to head upstream fish must jump over from box to box in the ladder Baffle fishway Uses a series of symmetrical close spaced baffles in a channel to redirect the flow of water allowing fish to swim around the barrier Baffle fishways need not have resting areas although pools can be included to provide a resting area or to reduce the velocity of the flow Such fishways can be built with switchbacks to minimize the space needed for their construction Baffles come in variety of designs The most common design is the Larinier pass named after the French engineer who designed them They are suitable for coarse fish as well as salmonids and can be built large enough to be used by canoes 7 The original design for a Denil fishway was developed in 1909 by a Belgian scientist G Denil it has since been adjusted and adapted in many ways The Alaskan Steeppass for example is a modular prefabricated Denil fishway variant originally designed for remote areas of Alaska Baffles have been installed by Project Maitai in several waterways in Nelson New Zealand to improve fish passage as part of general environmental restoration Fish elevator or fish lift Breaks with the ladder design by providing a sort of elevator to carry fish over a barrier It is well suited to tall barriers With a fish elevator fish swim into a collection area at the base of the obstruction When enough fish accumulate in the collection area they are nudged into a hopper that carries them into a flume that empties into the river above the barrier On the Connecticut River for example two fish elevators lift up to 500 fish at a time 52 feet 15 85 m to clear the Holyoke Dam In 2013 the elevator carried over 400 000 fish 8 Rock ramp fishway Uses large rocks and timbers to make pools and small falls that mimic natural structures Because of the length of the channel needed for the ladder such structures are most appropriate for relatively short barriers They have a significant advantage in that they can provide fish spawning habitat 9 Vertical slot fish passage Similar to a pool and weir system except that each dam has a narrow slot in it near the channel wall This allows fish to swim upstream without leaping over an obstacle Vertical slot fish passages also tend to handle reasonably well the seasonal fluctuation in water levels on each side of the barrier Recent studies suggest that navigation locks have a potential to be operated as vertical slot fishways to provide increased access for a range of biota including poor swimmers 10 11 Fish siphon Allows the pass to be installed parallel to a water course and can be used to link two watercourses The pass utilises a syphon effect to regulate its flow This style is particularly favoured to aid flood defence Fish cannon A wet flexible pneumatic tube uses air pressure to suck in salmon one at a time and gently shoot them out into the destination water The system was originally designed by Bellevue Washington company Whooshh to safely move apples 12 13 14 Borland Fish Lift This is similar to a canal lock At the downstream end of the obstruction fish are attracted to a collecting pool by an outflow of water through a sluice gate At fixed intervals the gate is closed and water from the upper level fills the collecting pool and an inclined shaft lifting the fish up to the upstream level Once the shaft is full a sluice at the top level opens to allow fish to continue their journey upstream The top sluice then closes and the shaft empties for the process to begin again A number of Borland fish lifts have been built in Scotland associated with hydro electric dams including one at Aigas Dam on the River Beauly 15 This section contains an unencyclopedic or excessive gallery of images Please help improve the section by removing excessive or indiscriminate images or by moving relevant images beside adjacent text in accordance with the Manual of Style on use of images Learn how and when to remove this message nbsp John Day Dam fish ladder on the Columbia River United States nbsp Fish elevator nbsp Fish ladder in Meuse River the Netherlands nbsp Fish ladder in North Vancouver Canada nbsp Detail of fish ladder in Uppsala Sweden nbsp Detail of fish ladder on the River Dart in England nbsp At the Charles River Dam near Boston United States nbsp Bi directional seasonal ladder at Camp Pico Blanco on the Little Sur River in Big Sur California United States nbsp Fish ladder for salmon near the power station in Gullspang Sweden nbsp A small fish ladder on the River Otter Devon nbsp Fish ladder access point from the downriver side of the power generator lock complex Mosel at KoblenzEffectiveness edit nbsp This fish failed to enter the narrow opening in the fish ladder in Akerselva Norway Fish ladders have a mixed record of effectiveness They vary in effectiveness for different types of species with one study showing that only three percent of American Shad make it through all the fish ladders on the way to their spawning ground 16 Effectiveness depends on the fish species swimming ability and how the fish moves up and downstream A fish passage that is designed to allow fish to pass upstream may not allow passage downstream for instance 17 Fish passages do not always work In practice a challenge is matching swimming performance data to hydrodynamic measurements 18 19 Swim tests rarely use the same protocol and the output is either a single point measurement or a bulk velocity In contrast physical and numerical modelling of fluid flow i e hydrodynamics deliver a detailed flow map with a fine spatial and temporal resolution Regulatory agencies face a difficult task to match hydrodynamic measurements and swimming performance data Culverts editFurther information Culvert Fish passage During the last three decades when the ecological impact of culverts on natural streams and rivers has been recognised While the culvert discharge capacity derives from hydrological and hydraulic engineering considerations 20 this results often in large velocities in the barrel which may prevent fish from passing through Baffles may be installed along the barrel invert to provide some fish friendly alternative 21 22 23 For low discharges the baffles decrease the flow velocity and increase the water depth to facilitate fish passage At larger discharges baffles induce lower local velocities and generate recirculation regions However baffles can reduce drastically the culvert discharge capacity for a given afflux 24 thus increasing substantially the total cost of the culvert structure to achieve the same design discharge and afflux It is believed that fish turbulence interplay may facilitate upstream migration albeit an optimum design must be based upon a careful characterisation of both hydrodynamics and fish kinematics 19 25 26 Finally the practical engineering design implications cannot be ignored while a solid understanding of turbulence typology is a basic requirement to any successful boundary treatment conducive of upstream fish passage 27 See also editElver pass Glen D Palmer Dam Dam in Yorkville Illinois Fish doorbell Crowdsourced fish ladder Fish migration Movement of fishes from one part of a water body to another on a regular basis Fish screen device designed to prevent fish from swimming or being drawn into an aqueductPages displaying wikidata descriptions as a fallback Pitlochry fish ladder Structure in Perth and Kinross Scotland Salmon run Annual migration of salmonCitations edit What is a Fish Ladder Michigan Michigan Department of Natural Resources Retrieved 27 April 2012 Mason William P Tyler v Wilkinson Open Casebook Harvard Law School Library Retrieved 30 August 2023 James Smith 1789 1850 Graces Guide Mario Theriault Great Maritime Inventions 1833 1950 Goose Lane 2001 p 45 33 U S Code 608 Construction of fishways LII Legal Information Institute Office Of Technology Assessment Washington DC 1995 Fish passage technologies protection at hydropower facilities Diana Publishing ISBN 1 4289 2016 1 How fish climb Canal and River Trust 22 December 2020 Archived from the original on 26 January 2021 2013 Connecticut River Migratory Fish U S Fish and Wildlife Service United States Fish and Wildlife Service Retrieved October 25 2016 Aadland Luther P 2010 Reconnecting Rivers Natural Channel Design in Dam Removals and Fish Passage Minnesota Department of Natural Resources Silva S Lowry M Macaya Solis C Byatt B Lucas M C 2017 Can navigation locks be used to help migratory fishes with poor swimming performance pass tidal barrages A test with lampreys Ecological Engineering 102 291 302 Bibcode 2017EcEng 102 291S doi 10 1016 j ecoleng 2017 02 027 Quaranta E Katopodis C Revelli R Comoglio C 2017 Turbulent flow field comparison and related suitability for fish passage of a standard and a simplified low gradient vertical slot fishway PDF River Research and Applications 33 8 1295 1305 Bibcode 2017RivRA 33 1295Q doi 10 1002 rra 3193 S2CID 134135405 Salmon Cannon Fires Fish Over Dams At 22mph 13 August 2014 www youtube com accessed 15 January 2022 Whoosh Salmon Cannon Shoots Fish Upstream to Spawn www livescience com 13 November 2014 Retrieved 16 January 2022 What is the salmon cannon and how do the fish feel about it The Guardian 15 August 2019 Retrieved 16 January 2022 Wood Emma 2005 Power from the Glens PDF Scottish and Southern Energy p 8 Archived from the original PDF on 18 October 2007 Waldman John Blocked Migration Fish Ladders On U S Dams Are Not Effective Yale Environment 360 Yale School of Forestry and Environmental Sciences Retrieved 18 March 2016 Kraft Amy February 20 2013 Upstream Battle Fishes Shun Modern Dam Passages Contributing to Population Declines Scientific American Retrieved 18 March 2016 Katopodis C Gervais R 2016 Fish Swimming Performance Database and Analyses DFO CSAS Research Document No 2016 002 Canadian Science Advisory Secretariat Fisheries and Oceans Canada Ottawa Canada 1 550 a b Wang H Chanson H 2017 How a better understanding of Fish Hydrodynamics Interactions might enhance upstream fish passage in culverts Civil Engineering Research Report No CE162 1 43 Chanson H 2004 The Hydraulics of Open Channel Flow An Introduction Butterworth Heinemann 2nd edition Oxford UK ISBN 978 0 7506 5978 9 Olsen A Tullis B 2013 Laboratory Study of Fish Passage and Discharge Capacity in Slip Lined Baffled Culverts Journal of Hydraulic Engineering 139 4 424 432 doi 10 1061 asce hy 1943 7900 0000697 ISSN 0733 9429 Chanson H Uys W 2016 Baffle Designs to Facilitate Fish Passage in Box Culverts A Preliminary Study 6th IAHR International Symposium on Hydraulic Structures Hydraulic Structures and Water System Management 295 304 doi 10 15142 T300628160828 ISBN 978 1 884575 75 4 Cabonce J Fernando R Wang H Chanson H 2017 Using Triangular Baffles to Facilitate Upstream Fish Passage in Box Culverts Physical Modelling Hydraulic Model Report No CH107 17 School of Civil Engineering The University of Queensland Brisbane Australia 130 pages ISBN 978 1 74272 186 6 Larinier M 2002 Fish Passage through Culverts Rock Weirs and Estuarine Obstructions Bulletin Francais de la Peche et de la Pisciculture 364 18 119 134 doi 10 1051 kmae 2002097 Wang H Chanson H 2017 Baffle Systems to Facilitate Upstream Fish Passage in Standard Box Culverts How About Fish Turbulence Interplay 37th IAHR World Congress IAHR amp USAINS Kuala Lumpur Malaysia 3 2586 2595 Wang H Chanson H 2018 Modelling Upstream Fish Passage in Standard Box Culverts Interplay between Turbulence Fish Kinematics and Energetics PDF River Research and Applications 34 3 244 252 Bibcode 2018RivRA 34 244W doi 10 1002 rra 3245 Chanson H 2019 Utilising the Boundary Layer to Help Restore the Connectivity of Fish Habitats and Populations An Engineering Discussion PDF Ecological Engineering 141 105613 105613 Bibcode 2019EcEng 14105613C doi 10 1016 j ecoleng 2019 105613 S2CID 207901913 General and cited references editTo Save the Salmon 1997 US Army Corps of Engineers Fish friendly waterways and culverts Integration of hydrodynamics and fish turbulence interplay 2017 The University of Queensland External links edit nbsp Wikimedia Commons has media related to Fish ladder A study of the hydraulics of flow over fishways Construction of a vertical slot fish passage and eel ladder for the St Ours Dam Richelieu River Quebec Fish Passage Center Fish passes Design dimensions and monitoring Food and Agriculture Organization of the United Nations Deutscher Verband fur Wasserwirtschaft und Kulturbau DVWK Rome 2002 ISBN 92 5 104894 0 ISBN 3 89554 027 7 Zip download permanent dead link from FTP area of the FAO s European Inland Fisheries Advisory Commission EIFAC U S Orders Modification of Klamath River Dams Removal May Prove More Cost Effective for allowing the passage of Salmon The Washington Post January 31 2007 Fish Ladders and Elevators not working Upstream fish passage in box culverts how do fish and turbulence interplay by Dr Hang Wang and Professor Hubert Chanson School of Civil Engineering University of Queensland Retrieved from https en wikipedia org w index php title Fish ladder amp oldid 1222463976, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.