fbpx
Wikipedia

Drag coefficient

In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water. It is used in the drag equation in which a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a particular surface area.[3]

Drag coefficients in fluids with Reynolds number approximately 104[1][2]

The drag coefficient of any object comprises the effects of the two basic contributors to fluid dynamic drag: skin friction and form drag. The drag coefficient of a lifting airfoil or hydrofoil also includes the effects of lift-induced drag.[4][5] The drag coefficient of a complete structure such as an aircraft also includes the effects of interference drag.[6][7]

Definition

 
Table of drag coefficients in increasing order, of assorted prisms (right column) and rounded shapes (left column) at Reynolds numbers between 104 and 106 with flow from the left [8]

The drag coefficient   is defined as

 

where:

  •   is the drag force, which is by definition the force component in the direction of the flow velocity;[9]
  •   is the mass density of the fluid;[10]
  •   is the flow speed of the object relative to the fluid;
  •   is the reference area

The reference area depends on what type of drag coefficient is being measured. For automobiles and many other objects, the reference area is the projected frontal area of the vehicle. This may not necessarily be the cross-sectional area of the vehicle, depending on where the cross-section is taken. For example, for a sphere   (note this is not the surface area =  ).

For airfoils, the reference area is the nominal wing area. Since this tends to be large compared to the frontal area, the resulting drag coefficients tend to be low, much lower than for a car with the same drag, frontal area, and speed.

Airships and some bodies of revolution use the volumetric drag coefficient, in which the reference area is the square of the cube root of the airship volume (volume to the two-thirds power). Submerged streamlined bodies use the wetted surface area.

Two objects having the same reference area moving at the same speed through a fluid will experience a drag force proportional to their respective drag coefficients. Coefficients for unstreamlined objects can be 1 or more, for streamlined objects much less.

Background

 
Flow around a plate, showing stagnation. The force in the upper configuration is equal to
 
and in the lower configuration
 

The drag equation

 

is essentially a statement that the drag force on any object is proportional to the density of the fluid and proportional to the square of the relative flow speed between the object and the fluid. The factor of   comes from the dynamic pressure of the fluid, which is equal to the kinetic energy density.

The value of   is not a constant but varies as a function of flow speed, flow direction, object position, object size, fluid density and fluid viscosity. Speed, kinematic viscosity and a characteristic length scale of the object are incorporated into a dimensionless quantity called the Reynolds number  .   is thus a function of  . In a compressible flow, the speed of sound is relevant, and   is also a function of Mach number  .

For certain body shapes, the drag coefficient   only depends on the Reynolds number  , Mach number   and the direction of the flow. For low Mach number  , the drag coefficient is independent of Mach number. Also, the variation with Reynolds number   within a practical range of interest is usually small, while for cars at highway speed and aircraft at cruising speed, the incoming flow direction is also more-or-less the same. Therefore, the drag coefficient   can often be treated as a constant.[11]

For a streamlined body to achieve a low drag coefficient, the boundary layer around the body must remain attached to the surface of the body for as long as possible, causing the wake to be narrow. A high form drag results in a broad wake. The boundary layer will transition from laminar to turbulent if Reynolds number of the flow around the body is sufficiently great. Larger velocities, larger objects, and lower viscosities contribute to larger Reynolds numbers.[12]

 
Drag coefficient Cd for a sphere as a function of Reynolds number Re, as obtained from laboratory experiments. The dark line is for a sphere with a smooth surface, while the lighter line is for the case of a rough surface. The numbers along the line indicate several flow regimes and associated changes in the drag coefficient:
•2: attached flow (Stokes flow) and steady separated flow,
•3: separated unsteady flow, having a laminar flow boundary layer upstream of the separation, and producing a vortex street,
•4: separated unsteady flow with a laminar boundary layer at the upstream side, before flow separation, with downstream of the sphere a chaotic turbulent wake,
•5: post-critical separated flow, with a turbulent boundary layer.

For other objects, such as small particles, one can no longer consider that the drag coefficient   is constant, but certainly is a function of Reynolds number.[13][14][15] At a low Reynolds number, the flow around the object does not transition to turbulent but remains laminar, even up to the point at which it separates from the surface of the object. At very low Reynolds numbers, without flow separation, the drag force   is proportional to   instead of  ; for a sphere this is known as Stokes' law. The Reynolds number will be low for small objects, low velocities, and high viscosity fluids.[12]

A   equal to 1 would be obtained in a case where all of the fluid approaching the object is brought to rest, building up stagnation pressure over the whole front surface. The top figure shows a flat plate with the fluid coming from the right and stopping at the plate. The graph to the left of it shows equal pressure across the surface. In a real flat plate, the fluid must turn around the sides, and full stagnation pressure is found only at the center, dropping off toward the edges as in the lower figure and graph. Only considering the front side, the   of a real flat plate would be less than 1; except that there will be suction on the backside: a negative pressure (relative to ambient). The overall   of a real square flat plate perpendicular to the flow is often given as 1.17.[citation needed] Flow patterns and therefore   for some shapes can change with the Reynolds number and the roughness of the surfaces.

Drag coefficient examples

General

In general,   is not an absolute constant for a given body shape. It varies with the speed of airflow (or more generally with Reynolds number  ). A smooth sphere, for example, has a   that varies from high values for laminar flow to 0.47 for turbulent flow. Although the drag coefficient decreases with increasing  , the drag force increases.

cd Item[16]
0.001 Laminar flat plate parallel to the flow ( )
0.005 Turbulent flat plate parallel to the flow ( )
0.1 Smooth sphere ( )
0.47 Rough sphere ( )
0.81 Triangular trapeze (45°)
0.9-1.7 Trapeze with triangular basis (45°)
0.295 Bullet (not ogive, at subsonic velocity)
0.48 Rough sphere ( )
1.0–1.1 Skier
1.0–1.3 Wires and cables
1.0–1.3 Adult human (upright position)
1.1-1.3 Ski jumper[17]
1.28 Flat plate perpendicular to flow (3D)[18]
1.3–1.5 Empire State Building
1.8–2.0 Eiffel Tower
1.98–2.05 Long flat plate perpendicular to flow (2D)

Aircraft

As noted above, aircraft use their wing area as the reference area when computing  , while automobiles (and many other objects) use projected frontal area; thus, coefficients are not directly comparable between these classes of vehicles. In the aerospace industry, the drag coefficient is sometimes expressed in drag counts where 1 drag count = 0.0001 of a  .[19]

cd Drag Count Aircraft type[20]
0.021 210 F-4 Phantom II (subsonic)
0.022 220 Learjet 24
0.024 240 Boeing 787[21]
0.0265 265 Airbus A380[22]
0.027 270 Cessna 172/182
0.027 270 Cessna 310
0.031 310 Boeing 747
0.044 440 F-4 Phantom II (supersonic)
0.048 480 F-104 Starfighter

Automobile

Blunt and streamlined body flows

Concept

The force between a fluid and a body, when there is relative motion, can only be transmitted by normal pressure and tangential friction stresses. So, for the whole body, the drag part of the force, which is in-line with the approaching fluid motion, is composed of frictional drag (viscous drag) and pressure drag (form drag). The total drag and component drag forces can be related as follows:

 

where:

  • A is the planform area of the body,
  • S is the wet surface of the body,
  •   is the pressure drag coefficient,
  •   is the friction drag coefficient,
  •   is the unit vector in the direction of the shear stress acting on the body surface dS,
  •   is the unit vector in the direction perpendicular to the body surface dS, pointing from the fluid to the solid,
  •   magnitude of the shear stress acting on the body surface dS,
  •   is the pressure far away from the body (note that this constant does not affect the final result),
  •   is pressure at surface dS,
  •   is the unit vector in direction of free stream flow

Therefore, when the drag is dominated by a frictional component, the body is called a streamlined body; whereas in the case of dominant pressure drag, the body is called a blunt or bluff body. Thus, the shape of the body and the angle of attack determine the type of drag. For example, an airfoil is considered as a body with a small angle of attack by the fluid flowing across it. This means that it has attached boundary layers, which produce much less pressure drag.

 
Trade-off relationship between zero-lift drag and lift induced drag

The wake produced is very small and drag is dominated by the friction component. Therefore, such a body (here an airfoil) is described as streamlined, whereas for bodies with fluid flow at high angles of attack, boundary layer separation takes place. This mainly occurs due to adverse pressure gradients at the top and rear parts of an airfoil.

Due to this, wake formation takes place, which consequently leads to eddy formation and pressure loss due to pressure drag. In such situations, the airfoil is stalled and has higher pressure drag than friction drag. In this case, the body is described as a blunt body.

A streamlined body looks like a fish (Tuna), Oropesa, etc. or an airfoil with small angle of attack, whereas a blunt body looks like a brick, a cylinder or an airfoil with high angle of attack. For a given frontal area and velocity, a streamlined body will have lower resistance than a blunt body. Cylinders and spheres are taken as blunt bodies because the drag is dominated by the pressure component in the wake region at high Reynolds number.

To reduce this drag, either the flow separation could be reduced or the surface area in contact with the fluid could be reduced (to reduce friction drag). This reduction is necessary in devices like cars, bicycle, etc. to avoid vibration and noise production.

Practical example

The aerodynamic design of cars has evolved from the 1920s to the end of the 20th century. This change in design from a blunt body to a more streamlined body reduced the drag coefficient from about 0.95 to 0.30.

 
Time history of cars' aerodynamic drag in comparison to change in geometry of streamlined bodies (blunt to streamline).

See also

Notes

  1. ^ Baker, W.E. (1983). Explosion Hazards and Evaluation, Volume 5. Elsevier Science. ISBN 978-0-444-59988-9.
  2. ^ AARØNÆS, ANTON STADE (2014). Dynamic response of pipe rack steel structures to explosion loads (PDF). CHALMERS UNIVERSITY OF TECHNOLOGY.
  3. ^ McCormick, Barnes W. (1979). Aerodynamics, Aeronautics, and Flight Mechanics. New York: John Wiley & Sons, Inc. p. 24. ISBN 0-471-03032-5.
  4. ^ Clancy, L. J. (1975). "5.18". Aerodynamics. ISBN 978-0-470-15837-1.
  5. ^ Abbott, Ira H., and Von Doenhoff, Albert E.: Theory of Wing Sections. Sections 1.2 and 1.3
  6. ^ "Modern Drag Equation". Wright.nasa.gov. 2010-03-25. from the original on 2011-03-02. Retrieved 2010-12-07.
  7. ^ Clancy, L. J.: Aerodynamics. Section 11.17
  8. ^ Hoerner, Sighard F. (1965). Fluid-Dynamic Drag : Practical Information on Aerodynamic Drag and Hydrodynamic Resistance (2 ed.). p. 3–17.
  9. ^ See lift force and vortex induced vibration for a possible force components transverse to the flow direction
  10. ^ Note that for the Earth's atmosphere, the air density can be found using the barometric formula. Air is 1.293 kg/m3 at 0 °C (32 °F) and 1 atmosphere.
  11. ^ Clancy, L. J.: Aerodynamics. Sections 4.15 and 5.4
  12. ^ a b Clancy, L. J.: Aerodynamics. Section 4.17
  13. ^ Clift R., Grace J. R., Weber M. E.: Bubbles, drops, and particles. Academic Press NY (1978).
  14. ^ Briens C. L.: Powder Technology. 67, 1991, 87-91.
  15. ^ Haider A., Levenspiel O.: Powder Technology. 58, 1989, 63-70.
  16. ^
  17. ^ "Drag Coefficient". Engineeringtoolbox.com. from the original on 2010-12-04. Retrieved 2010-12-07.
  18. ^ "Shape Effects on Drag". NASA. from the original on 2013-02-16. Retrieved 2013-03-11.
  19. ^ Basha, W. A. and Ghaly, W. S., "Drag Prediction in Transitional Flow over Airfoils," Journal of Aircraft, Vol. 44, 2007, p. 824–32.
  20. ^ "Ask Us – Drag Coefficient & Lifting Line Theory". Aerospaceweb.org. 2004-07-11. Retrieved 2010-12-07.
  21. ^ "Boeing 787 Dreamliner : Analysis". Lissys.demon.co.uk. 2006-06-21. from the original on 2010-08-13. Retrieved 2010-12-07.
  22. ^ "Airbus A380" (PDF). 2005-05-02. (PDF) from the original on 2015-09-23. Retrieved 2014-10-06.

References

  • L. J. Clancy (1975): Aerodynamics. Pitman Publishing Limited, London, ISBN 0-273-01120-0
  • Abbott, Ira H., and Von Doenhoff, Albert E. (1959): Theory of Wing Sections. Dover Publications Inc., New York, Standard Book Number 486-60586-8
  • Hoerner, Dr. Sighard F., Fluid-Dynamic Drag, Hoerner Fluid Dynamics, Bricktown New Jersey, 1965.
  • Bluff Body:
  • Drag of Blunt Bodies and Streamlined Bodies: http://www.princeton.edu/~asmits/Bicycle_web/blunt.html
  • Hucho, W.H., Janssen, L.J., Emmelmann, H.J. 6(1975): The optimization of body details-A method for reducing the aerodynamics drag. SAE 760185.

drag, coefficient, fluid, dynamics, drag, coefficient, commonly, denoted, displaystyle, mathrm, displaystyle, displaystyle, dimensionless, quantity, that, used, quantify, drag, resistance, object, fluid, environment, such, water, used, drag, equation, which, l. In fluid dynamics the drag coefficient commonly denoted as c d displaystyle c mathrm d c x displaystyle c x or c w displaystyle c rm w is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment such as air or water It is used in the drag equation in which a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag The drag coefficient is always associated with a particular surface area 3 Drag coefficients in fluids with Reynolds number approximately 104 1 2 The drag coefficient of any object comprises the effects of the two basic contributors to fluid dynamic drag skin friction and form drag The drag coefficient of a lifting airfoil or hydrofoil also includes the effects of lift induced drag 4 5 The drag coefficient of a complete structure such as an aircraft also includes the effects of interference drag 6 7 Contents 1 Definition 2 Background 3 Drag coefficient examples 3 1 General 3 2 Aircraft 3 3 Automobile 4 Blunt and streamlined body flows 4 1 Concept 4 1 1 Practical example 5 See also 6 Notes 7 ReferencesDefinition Edit Table of drag coefficients in increasing order of assorted prisms right column and rounded shapes left column at Reynolds numbers between 104 and 106 with flow from the left 8 The drag coefficient c d displaystyle c mathrm d is defined asc d 2 F d r u 2 A displaystyle c mathrm d dfrac 2F mathrm d rho u 2 A where F d displaystyle F mathrm d is the drag force which is by definition the force component in the direction of the flow velocity 9 r displaystyle rho is the mass density of the fluid 10 u displaystyle u is the flow speed of the object relative to the fluid A displaystyle A is the reference areaThe reference area depends on what type of drag coefficient is being measured For automobiles and many other objects the reference area is the projected frontal area of the vehicle This may not necessarily be the cross sectional area of the vehicle depending on where the cross section is taken For example for a sphere A p r 2 displaystyle A pi r 2 note this is not the surface area 4 p r 2 displaystyle 4 pi r 2 For airfoils the reference area is the nominal wing area Since this tends to be large compared to the frontal area the resulting drag coefficients tend to be low much lower than for a car with the same drag frontal area and speed Airships and some bodies of revolution use the volumetric drag coefficient in which the reference area is the square of the cube root of the airship volume volume to the two thirds power Submerged streamlined bodies use the wetted surface area Two objects having the same reference area moving at the same speed through a fluid will experience a drag force proportional to their respective drag coefficients Coefficients for unstreamlined objects can be 1 or more for streamlined objects much less Background EditMain article Drag equation Flow around a plate showing stagnation The force in the upper configuration is equal toF 1 2 r u 2 A displaystyle F frac 1 2 rho u 2 A and in the lower configurationF d 1 2 r u 2 c d A displaystyle F d tfrac 1 2 rho u 2 c d A The drag equation F d 1 2 r u 2 c d A displaystyle F rm d tfrac 1 2 rho u 2 c rm d A is essentially a statement that the drag force on any object is proportional to the density of the fluid and proportional to the square of the relative flow speed between the object and the fluid The factor of 1 2 displaystyle 1 2 comes from the dynamic pressure of the fluid which is equal to the kinetic energy density The value of c d displaystyle c mathrm d is not a constant but varies as a function of flow speed flow direction object position object size fluid density and fluid viscosity Speed kinematic viscosity and a characteristic length scale of the object are incorporated into a dimensionless quantity called the Reynolds number R e displaystyle scriptstyle Re C d displaystyle scriptstyle C mathrm d is thus a function of R e displaystyle scriptstyle Re In a compressible flow the speed of sound is relevant and c d displaystyle c mathrm d is also a function of Mach number M a displaystyle mathrm Ma For certain body shapes the drag coefficient c d displaystyle c mathrm d only depends on the Reynolds number R e displaystyle mathrm Re Mach number M a displaystyle mathrm Ma and the direction of the flow For low Mach number M a displaystyle mathrm Ma the drag coefficient is independent of Mach number Also the variation with Reynolds number R e displaystyle mathrm Re within a practical range of interest is usually small while for cars at highway speed and aircraft at cruising speed the incoming flow direction is also more or less the same Therefore the drag coefficient c d displaystyle c mathrm d can often be treated as a constant 11 For a streamlined body to achieve a low drag coefficient the boundary layer around the body must remain attached to the surface of the body for as long as possible causing the wake to be narrow A high form drag results in a broad wake The boundary layer will transition from laminar to turbulent if Reynolds number of the flow around the body is sufficiently great Larger velocities larger objects and lower viscosities contribute to larger Reynolds numbers 12 Drag coefficient Cd for a sphere as a function of Reynolds number Re as obtained from laboratory experiments The dark line is for a sphere with a smooth surface while the lighter line is for the case of a rough surface The numbers along the line indicate several flow regimes and associated changes in the drag coefficient 2 attached flow Stokes flow and steady separated flow 3 separated unsteady flow having a laminar flow boundary layer upstream of the separation and producing a vortex street 4 separated unsteady flow with a laminar boundary layer at the upstream side before flow separation with downstream of the sphere a chaotic turbulent wake 5 post critical separated flow with a turbulent boundary layer For other objects such as small particles one can no longer consider that the drag coefficient c d displaystyle c mathrm d is constant but certainly is a function of Reynolds number 13 14 15 At a low Reynolds number the flow around the object does not transition to turbulent but remains laminar even up to the point at which it separates from the surface of the object At very low Reynolds numbers without flow separation the drag force F d displaystyle F mathrm d is proportional to v displaystyle scriptstyle v instead of v 2 displaystyle v 2 for a sphere this is known as Stokes law The Reynolds number will be low for small objects low velocities and high viscosity fluids 12 A c d displaystyle c mathrm d equal to 1 would be obtained in a case where all of the fluid approaching the object is brought to rest building up stagnation pressure over the whole front surface The top figure shows a flat plate with the fluid coming from the right and stopping at the plate The graph to the left of it shows equal pressure across the surface In a real flat plate the fluid must turn around the sides and full stagnation pressure is found only at the center dropping off toward the edges as in the lower figure and graph Only considering the front side the c d displaystyle c mathrm d of a real flat plate would be less than 1 except that there will be suction on the backside a negative pressure relative to ambient The overall c d displaystyle c mathrm d of a real square flat plate perpendicular to the flow is often given as 1 17 citation needed Flow patterns and therefore C d displaystyle scriptstyle C mathrm d for some shapes can change with the Reynolds number and the roughness of the surfaces Drag coefficient examples EditGeneral Edit In general c d displaystyle c mathrm d is not an absolute constant for a given body shape It varies with the speed of airflow or more generally with Reynolds number R e displaystyle mathrm Re A smooth sphere for example has a c d displaystyle c mathrm d that varies from high values for laminar flow to 0 47 for turbulent flow Although the drag coefficient decreases with increasing R e displaystyle mathrm Re the drag force increases cd Item 16 0 001 Laminar flat plate parallel to the flow R e lt 10 6 displaystyle mathrm Re lt 10 6 0 005 Turbulent flat plate parallel to the flow R e gt 10 6 displaystyle mathrm Re gt 10 6 0 1 Smooth sphere R e 10 6 displaystyle mathrm Re 10 6 0 47 Rough sphere R e 10 6 displaystyle mathrm Re 10 6 0 81 Triangular trapeze 45 0 9 1 7 Trapeze with triangular basis 45 0 295 Bullet not ogive at subsonic velocity 0 48 Rough sphere R e 10 6 displaystyle mathrm Re 10 6 1 0 1 1 Skier1 0 1 3 Wires and cables1 0 1 3 Adult human upright position 1 1 1 3 Ski jumper 17 1 28 Flat plate perpendicular to flow 3D 18 1 3 1 5 Empire State Building1 8 2 0 Eiffel Tower1 98 2 05 Long flat plate perpendicular to flow 2D Aircraft Edit As noted above aircraft use their wing area as the reference area when computing c d displaystyle c mathrm d while automobiles and many other objects use projected frontal area thus coefficients are not directly comparable between these classes of vehicles In the aerospace industry the drag coefficient is sometimes expressed in drag counts where 1 drag count 0 0001 of a c d displaystyle c mathrm d 19 cd Drag Count Aircraft type 20 0 021 210 F 4 Phantom II subsonic 0 022 220 Learjet 240 024 240 Boeing 787 21 0 0265 265 Airbus A380 22 0 027 270 Cessna 172 1820 027 270 Cessna 3100 031 310 Boeing 7470 044 440 F 4 Phantom II supersonic 0 048 480 F 104 StarfighterAutomobile Edit Main article Automobile drag coefficientBlunt and streamlined body flows EditConcept Edit The force between a fluid and a body when there is relative motion can only be transmitted by normal pressure and tangential friction stresses So for the whole body the drag part of the force which is in line with the approaching fluid motion is composed of frictional drag viscous drag and pressure drag form drag The total drag and component drag forces can be related as follows c d 2 F d r v 2 A c p c f 2 r v 2 A S d S p p o n i c p 2 r v 2 A S d S t i T w c f displaystyle begin aligned c mathrm d amp dfrac 2F mathrm d rho v 2 A amp c mathrm p c mathrm f amp underbrace dfrac 2 rho v 2 A displaystyle int S mathrm d S p p o left hat mathbf n cdot hat mathbf i right c mathrm p underbrace dfrac 2 rho v 2 A displaystyle int S mathrm d S left hat mathbf t cdot hat mathbf i right T rm w c mathrm f end aligned where A is the planform area of the body S is the wet surface of the body c p displaystyle c mathrm p is the pressure drag coefficient c f displaystyle c mathrm f is the friction drag coefficient t displaystyle hat mathbf t is the unit vector in the direction of the shear stress acting on the body surface dS n displaystyle hat mathbf n is the unit vector in the direction perpendicular to the body surface dS pointing from the fluid to the solid T w displaystyle T mathrm w magnitude of the shear stress acting on the body surface dS p o displaystyle p mathrm o is the pressure far away from the body note that this constant does not affect the final result p displaystyle p is pressure at surface dS i displaystyle hat mathbf i is the unit vector in direction of free stream flowTherefore when the drag is dominated by a frictional component the body is called a streamlined body whereas in the case of dominant pressure drag the body is called a blunt or bluff body Thus the shape of the body and the angle of attack determine the type of drag For example an airfoil is considered as a body with a small angle of attack by the fluid flowing across it This means that it has attached boundary layers which produce much less pressure drag Trade off relationship between zero lift drag and lift induced drag The wake produced is very small and drag is dominated by the friction component Therefore such a body here an airfoil is described as streamlined whereas for bodies with fluid flow at high angles of attack boundary layer separation takes place This mainly occurs due to adverse pressure gradients at the top and rear parts of an airfoil Due to this wake formation takes place which consequently leads to eddy formation and pressure loss due to pressure drag In such situations the airfoil is stalled and has higher pressure drag than friction drag In this case the body is described as a blunt body A streamlined body looks like a fish Tuna Oropesa etc or an airfoil with small angle of attack whereas a blunt body looks like a brick a cylinder or an airfoil with high angle of attack For a given frontal area and velocity a streamlined body will have lower resistance than a blunt body Cylinders and spheres are taken as blunt bodies because the drag is dominated by the pressure component in the wake region at high Reynolds number To reduce this drag either the flow separation could be reduced or the surface area in contact with the fluid could be reduced to reduce friction drag This reduction is necessary in devices like cars bicycle etc to avoid vibration and noise production Practical example Edit The aerodynamic design of cars has evolved from the 1920s to the end of the 20th century This change in design from a blunt body to a more streamlined body reduced the drag coefficient from about 0 95 to 0 30 Time history of cars aerodynamic drag in comparison to change in geometry of streamlined bodies blunt to streamline See also EditAutomotive aerodynamics Automobile drag coefficient Ballistic coefficient Drag crisis Zero lift drag coefficientNotes Edit Baker W E 1983 Explosion Hazards and Evaluation Volume 5 Elsevier Science ISBN 978 0 444 59988 9 AARONAES ANTON STADE 2014 Dynamic response of pipe rack steel structures to explosion loads PDF CHALMERS UNIVERSITY OF TECHNOLOGY McCormick Barnes W 1979 Aerodynamics Aeronautics and Flight Mechanics New York John Wiley amp Sons Inc p 24 ISBN 0 471 03032 5 Clancy L J 1975 5 18 Aerodynamics ISBN 978 0 470 15837 1 Abbott Ira H and Von Doenhoff Albert E Theory of Wing Sections Sections 1 2 and 1 3 Modern Drag Equation Wright nasa gov 2010 03 25 Archived from the original on 2011 03 02 Retrieved 2010 12 07 Clancy L J Aerodynamics Section 11 17 Hoerner Sighard F 1965 Fluid Dynamic Drag Practical Information on Aerodynamic Drag and Hydrodynamic Resistance 2 ed p 3 17 See lift force and vortex induced vibration for a possible force components transverse to the flow direction Note that for the Earth s atmosphere the air density can be found using the barometric formula Air is 1 293 kg m3 at 0 C 32 F and 1 atmosphere Clancy L J Aerodynamics Sections 4 15 and 5 4 a b Clancy L J Aerodynamics Section 4 17 Clift R Grace J R Weber M E Bubbles drops and particles Academic Press NY 1978 Briens C L Powder Technology 67 1991 87 91 Haider A Levenspiel O Powder Technology 58 1989 63 70 Shapes Drag Coefficient Engineeringtoolbox com Archived from the original on 2010 12 04 Retrieved 2010 12 07 Shape Effects on Drag NASA Archived from the original on 2013 02 16 Retrieved 2013 03 11 Basha W A and Ghaly W S Drag Prediction in Transitional Flow over Airfoils Journal of Aircraft Vol 44 2007 p 824 32 Ask Us Drag Coefficient amp Lifting Line Theory Aerospaceweb org 2004 07 11 Retrieved 2010 12 07 Boeing 787 Dreamliner Analysis Lissys demon co uk 2006 06 21 Archived from the original on 2010 08 13 Retrieved 2010 12 07 Airbus A380 PDF 2005 05 02 Archived PDF from the original on 2015 09 23 Retrieved 2014 10 06 References EditL J Clancy 1975 Aerodynamics Pitman Publishing Limited London ISBN 0 273 01120 0 Abbott Ira H and Von Doenhoff Albert E 1959 Theory of Wing Sections Dover Publications Inc New York Standard Book Number 486 60586 8 Hoerner Dr Sighard F Fluid Dynamic Drag Hoerner Fluid Dynamics Bricktown New Jersey 1965 Bluff Body http user engineering uiowa edu me 160 lecture notes Bluff 20Body2 pdf Drag of Blunt Bodies and Streamlined Bodies http www princeton edu asmits Bicycle web blunt html Hucho W H Janssen L J Emmelmann H J 6 1975 The optimization of body details A method for reducing the aerodynamics drag SAE 760185 Retrieved from https en wikipedia org w index php title Drag coefficient amp oldid 1131979534, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.