fbpx
Wikipedia

Dawson function

In mathematics, the Dawson function or Dawson integral[1] (named after H. G. Dawson[2]) is the one-sided Fourier–Laplace sine transform of the Gaussian function.

Plot of the Dawson integral function F(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Definition edit

 
The Dawson function,   around the origin
 
The Dawson function,   around the origin

The Dawson function is defined as either:

 
also denoted as   or   or alternatively
 

The Dawson function is the one-sided Fourier–Laplace sine transform of the Gaussian function,

 

It is closely related to the error function erf, as

 

where erfi is the imaginary error function, erfi(x) = −i erf(ix).
Similarly,

 
in terms of the real error function, erf.

In terms of either erfi or the Faddeeva function   the Dawson function can be extended to the entire complex plane:[3]

 
which simplifies to
 
 
for real  

For   near zero, F(x) ≈ x. For   large, F(x) ≈ 1/(2x). More specifically, near the origin it has the series expansion

 
while for large   it has the asymptotic expansion
 

More precisely

 
where   is the double factorial.

  satisfies the differential equation

 
with the initial condition   Consequently, it has extrema for
 
resulting in x = ±0.92413887... (OEISA133841), F(x) = ±0.54104422... (OEISA133842).

Inflection points follow for

 
resulting in x = ±1.50197526... (OEISA133843), F(x) = ±0.42768661... (OEISA245262). (Apart from the trivial inflection point at    )

Relation to Hilbert transform of Gaussian edit

The Hilbert transform of the Gaussian is defined as

 

P.V. denotes the Cauchy principal value, and we restrict ourselves to real     can be related to the Dawson function as follows. Inside a principal value integral, we can treat   as a generalized function or distribution, and use the Fourier representation

 

With   we use the exponential representation of   and complete the square with respect to   to find

 

We can shift the integral over   to the real axis, and it gives   Thus

 

We complete the square with respect to   and obtain

 

We change variables to  

 

The integral can be performed as a contour integral around a rectangle in the complex plane. Taking the imaginary part of the result gives

 
where   is the Dawson function as defined above.

The Hilbert transform of   is also related to the Dawson function. We see this with the technique of differentiating inside the integral sign. Let

 

Introduce

 

The  th derivative is

 

We thus find

 

The derivatives are performed first, then the result evaluated at   A change of variable also gives   Since   we can write   where   and   are polynomials. For example,   Alternatively,   can be calculated using the recurrence relation (for  )

 

See also edit

References edit

  1. ^ Temme, N. M. (2010), "Error Functions, Dawson's and Fresnel Integrals", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  2. ^ Dawson, H. G. (1897). "On the Numerical Value of  ". Proceedings of the London Mathematical Society. s1-29 (1): 519–522. doi:10.1112/plms/s1-29.1.519.
  3. ^ Mofreh R. Zaghloul and Ahmed N. Ali, "Algorithm 916: Computing the Faddeyeva and Voigt Functions," ACM Trans. Math. Soft. 38 (2), 15 (2011). Preprint available at arXiv:1106.0151.

External links edit

  • gsl_sf_dawson in the GNU Scientific Library
  • libcerf, numeric C library for complex error functions, provides a function voigt(x, sigma, gamma) with approximately 13–14 digits precision. It is based on the Faddeeva function as implemented in the MIT Faddeeva Package
  • Dawson's Integral (at Mathworld)
  • Error functions

dawson, function, mathematics, dawson, integral, named, after, dawson, sided, fourier, laplace, sine, transform, gaussian, function, plot, dawson, integral, function, complex, plane, from, with, colors, created, with, mathematica, function, complexplot3d, cont. In mathematics the Dawson function or Dawson integral 1 named after H G Dawson 2 is the one sided Fourier Laplace sine transform of the Gaussian function Plot of the Dawson integral function F z in the complex plane from 2 2i to 2 2i with colors created with Mathematica 13 1 function ComplexPlot3D Contents 1 Definition 2 Relation to Hilbert transform of Gaussian 3 See also 4 References 5 External linksDefinition edit nbsp The Dawson function F x D x displaystyle F x D x nbsp around the origin nbsp The Dawson function D x displaystyle D x nbsp around the origin The Dawson function is defined as either D x e x 2 0 x e t 2 d t displaystyle D x e x 2 int 0 x e t 2 dt nbsp also denoted as F x displaystyle F x nbsp or D x displaystyle D x nbsp or alternatively D x e x 2 0 x e t 2 d t displaystyle D x e x 2 int 0 x e t 2 dt nbsp The Dawson function is the one sided Fourier Laplace sine transform of the Gaussian function D x 1 2 0 e t 2 4 sin x t d t displaystyle D x frac 1 2 int 0 infty e t 2 4 sin xt dt nbsp It is closely related to the error function erf as D x p 2 e x 2 erfi x i p 2 e x 2 erf i x displaystyle D x sqrt pi over 2 e x 2 operatorname erfi x i sqrt pi over 2 e x 2 operatorname erf ix nbsp where erfi is the imaginary error function erfi x i erf ix Similarly D x p 2 e x 2 erf x displaystyle D x frac sqrt pi 2 e x 2 operatorname erf x nbsp in terms of the real error function erf In terms of either erfi or the Faddeeva function w z displaystyle w z nbsp the Dawson function can be extended to the entire complex plane 3 F z p 2 e z 2 erfi z i p 2 e z 2 w z displaystyle F z sqrt pi over 2 e z 2 operatorname erfi z frac i sqrt pi 2 left e z 2 w z right nbsp which simplifies to D x F x p 2 Im w x displaystyle D x F x frac sqrt pi 2 operatorname Im w x nbsp D x i F i x p 2 e x 2 w i x displaystyle D x iF ix frac sqrt pi 2 left e x 2 w ix right nbsp for real x displaystyle x nbsp For x displaystyle x nbsp near zero F x x For x displaystyle x nbsp large F x 1 2x More specifically near the origin it has the series expansionF x k 0 1 k 2 k 2 k 1 x 2 k 1 x 2 3 x 3 4 15 x 5 displaystyle F x sum k 0 infty frac 1 k 2 k 2k 1 x 2k 1 x frac 2 3 x 3 frac 4 15 x 5 cdots nbsp while for large x displaystyle x nbsp it has the asymptotic expansion F x 1 2 x 1 4 x 3 3 8 x 5 displaystyle F x frac 1 2x frac 1 4x 3 frac 3 8x 5 cdots nbsp More precisely F x k 0 N 2 k 1 2 k 1 x 2 k 1 C N x 2 N 3 displaystyle left F x sum k 0 N frac 2k 1 2 k 1 x 2k 1 right leq frac C N x 2N 3 nbsp where n displaystyle n nbsp is the double factorial F x displaystyle F x nbsp satisfies the differential equationd F d x 2 x F 1 displaystyle frac dF dx 2xF 1 nbsp with the initial condition F 0 0 displaystyle F 0 0 nbsp Consequently it has extrema for F x 1 2 x displaystyle F x frac 1 2x nbsp resulting in x 0 92413887 OEIS A133841 F x 0 54104422 OEIS A133842 Inflection points follow forF x x 2 x 2 1 displaystyle F x frac x 2x 2 1 nbsp resulting in x 1 50197526 OEIS A133843 F x 0 42768661 OEIS A245262 Apart from the trivial inflection point at x 0 displaystyle x 0 nbsp F x 0 displaystyle F x 0 nbsp Relation to Hilbert transform of Gaussian editThe Hilbert transform of the Gaussian is defined asH y p 1 P V e x 2 y x d x displaystyle H y pi 1 operatorname P V int infty infty frac e x 2 y x dx nbsp P V denotes the Cauchy principal value and we restrict ourselves to real y displaystyle y nbsp H y displaystyle H y nbsp can be related to the Dawson function as follows Inside a principal value integral we can treat 1 u displaystyle 1 u nbsp as a generalized function or distribution and use the Fourier representation1 u 0 d k sin k u 0 d k Im e i k u displaystyle 1 over u int 0 infty dk sin ku int 0 infty dk operatorname Im e iku nbsp With 1 u 1 y x displaystyle 1 u 1 y x nbsp we use the exponential representation of sin k u displaystyle sin ku nbsp and complete the square with respect to x displaystyle x nbsp to findp H y Im 0 d k exp k 2 4 i k y d x exp x i k 2 2 displaystyle pi H y operatorname Im int 0 infty dk exp k 2 4 iky int infty infty dx exp x ik 2 2 nbsp We can shift the integral over x displaystyle x nbsp to the real axis and it gives p 1 2 displaystyle pi 1 2 nbsp Thusp 1 2 H y Im 0 d k exp k 2 4 i k y displaystyle pi 1 2 H y operatorname Im int 0 infty dk exp k 2 4 iky nbsp We complete the square with respect to k displaystyle k nbsp and obtainp 1 2 H y e y 2 Im 0 d k exp k 2 i y 2 displaystyle pi 1 2 H y e y 2 operatorname Im int 0 infty dk exp k 2 iy 2 nbsp We change variables to u i k 2 y displaystyle u ik 2 y nbsp p 1 2 H y 2 e y 2 Im i y i y d u e u 2 displaystyle pi 1 2 H y 2e y 2 operatorname Im i int y i infty y du e u 2 nbsp The integral can be performed as a contour integral around a rectangle in the complex plane Taking the imaginary part of the result givesH y 2 p 1 2 F y displaystyle H y 2 pi 1 2 F y nbsp where F y displaystyle F y nbsp is the Dawson function as defined above The Hilbert transform of x 2 n e x 2 displaystyle x 2n e x 2 nbsp is also related to the Dawson function We see this with the technique of differentiating inside the integral sign LetH n p 1 P V x 2 n e x 2 y x d x displaystyle H n pi 1 operatorname P V int infty infty frac x 2n e x 2 y x dx nbsp IntroduceH a p 1 P V e a x 2 y x d x displaystyle H a pi 1 operatorname P V int infty infty e ax 2 over y x dx nbsp The n displaystyle n nbsp th derivative is n H a a n 1 n p 1 P V x 2 n e a x 2 y x d x displaystyle partial n H a over partial a n 1 n pi 1 operatorname P V int infty infty frac x 2n e ax 2 y x dx nbsp We thus findH n 1 n n H a a n a 1 displaystyle left H n 1 n frac partial n H a partial a n right a 1 nbsp The derivatives are performed first then the result evaluated at a 1 displaystyle a 1 nbsp A change of variable also gives H a 2 p 1 2 F y a displaystyle H a 2 pi 1 2 F y sqrt a nbsp Since F y 1 2 y F y displaystyle F y 1 2yF y nbsp we can write H n P 1 y P 2 y F y displaystyle H n P 1 y P 2 y F y nbsp where P 1 displaystyle P 1 nbsp and P 2 displaystyle P 2 nbsp are polynomials For example H 1 p 1 2 y 2 p 1 2 y 2 F y displaystyle H 1 pi 1 2 y 2 pi 1 2 y 2 F y nbsp Alternatively H n displaystyle H n nbsp can be calculated using the recurrence relation for n 0 displaystyle n geq 0 nbsp H n 1 y y 2 H n y 2 n 1 p 2 n y displaystyle H n 1 y y 2 H n y frac 2n 1 sqrt pi 2 n y nbsp See also editList of mathematical functionsReferences edit Temme N M 2010 Error Functions Dawson s and Fresnel Integrals in Olver Frank W J Lozier Daniel M Boisvert Ronald F Clark Charles W eds NIST Handbook of Mathematical Functions Cambridge University Press ISBN 978 0 521 19225 5 MR 2723248 Dawson H G 1897 On the Numerical Value of 0 h exp x 2 d x displaystyle textstyle int 0 h exp x 2 dx nbsp Proceedings of the London Mathematical Society s1 29 1 519 522 doi 10 1112 plms s1 29 1 519 Mofreh R Zaghloul and Ahmed N Ali Algorithm 916 Computing the Faddeyeva and Voigt Functions ACM Trans Math Soft 38 2 15 2011 Preprint available at arXiv 1106 0151 External links editgsl sf dawson in the GNU Scientific Library libcerf numeric C library for complex error functions provides a function voigt x sigma gamma with approximately 13 14 digits precision It is based on the Faddeeva function as implemented in the MIT Faddeeva Package Dawson s Integral at Mathworld Error functions Retrieved from https en wikipedia org w index php title Dawson function amp oldid 1209757448, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.