fbpx
Wikipedia

DNA damage-inducible transcript 3

DNA damage-inducible transcript 3, also known as C/EBP homologous protein (CHOP), is a pro-apoptotic transcription factor that is encoded by the DDIT3 gene. [5][6] It is a member of the CCAAT/enhancer-binding protein (C/EBP) family of DNA-binding transcription factors. [6] The protein functions as a dominant-negative inhibitor by forming heterodimers with other C/EBP members, preventing their DNA binding activity. The protein is implicated in adipogenesis and erythropoiesis and has an important role in the cell's stress response. [6]

DDIT3
Identifiers
AliasesDDIT3, CEBPZ, CHOP, CHOP-10, CHOP10, GADD153, DNA damage-inducible transcript 3, DNA damage inducible transcript 3, C/EBPzeta, AltDDIT3
External IDsOMIM: 126337 MGI: 109247 HomoloGene: 3012 GeneCards: DDIT3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001290183
NM_007837

RefSeq (protein)

NP_001277112
NP_031863

Location (UCSC)Chr 12: 57.52 – 57.52 MbChr 10: 127.13 – 127.13 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Structure edit

C/EBP proteins are known to have a conserved C-terminal structure, basic leucine zipper domain(bZIP), that is necessary for the formation of DNA-binding capable homodimers or heterodimers with other proteins or members of the C/EBP protein family. [7] CHOP is a relatively small (29kDa) protein that differs from most C/EBP proteins in several amino acid substitutions, which impacts its DNA-binding ability. [8]

 
CHOP protein structure created with PyMOL

Regulation and function edit

Due to a variety of upstream and downstream regulatory interactions, CHOP plays an important role in ER stress-induced apoptosis caused by a variety of stimuli such as pathogenic microbial or viral infections, amino acid starvation, mitochondrial stress, neurological diseases, and neoplastic diseases.

Under normal physiological conditions, CHOP is ubiquitously present at very low levels. [9] However, under overwhelming ER stress conditions, the expression of CHOP rises sharply along with the activation of apoptotic pathways in a wide variety of cells. [8] Those processes are mainly regulated by three factors: protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol requiring protein 1 (IRE1α) [10][11]

Upstream regulatory pathways edit

During ER stress, CHOP is mainly induced via activation of the integrated stress response pathways through the subsequent downstream phosphorylation of a translation initiation factor, eukaryotic initiation factor 2α (eIF2α), and induction of a transcription factor, activation transcription factor 4 (ATF4),[12] which converges on the promoters of target genes, including CHOP.

Integrated stress response, and thus CHOP expression, can be induced by

Under ER stress, activated transmembrane protein ATF6 translocates to the nucleus and interacts with ATF/cAMP response elements and ER stress-response elements,[17] binding the promoters and inducing transcription of several genes involved in unfolded protein response (including CHOP, XBP1 and others).[18][19] Thus, ATF6 activates the transcription of both CHOP and XBP-1, while XBP-1 can also upregulate the expression of CHOP.[20]

ER stress also stimulates transmembrane protein IRE1α activity.[21] Upon activation, IRE1α splices the XBP-1 mRNA introns to produce a mature and active XBP-1 protein,[22] that upregulates CHOP expression[23][24][25] IRE1α also stimulates the activation of the apoptotic-signaling kinase-1 (ASK1), which then activates the downstream kinases, Jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK),[26] which participate in apoptosis induction along with CHOP.[27] The P38 MAP kinase family phosphorylates Ser78 and Ser81 of CHOP, which induces cell apoptosis.[28] Moreover, research studies found that the JNK inhibitors can suppress CHOP upregulation, indicating that JNK activation is also involved in the modulation of CHOP levels.[29]

Downstream pathways edit

Apoptosis induction via Mitochondria-Dependent Pathway edit

As a transcription factor, CHOP can regulate the expression of many anti-apoptotic and pro-apoptotic genes, including genes encoding the BCL2-family proteins, GADD34 and TRB-3.[30][31] In the CHOP-induced apoptotic pathway, CHOP regulates the expression of BCL2 protein family, that includes anti-apoptotic proteins (BCL2, BCL-XL, MCL-1, and BCL-W) and pro-apoptotic proteins (BAK, BAX, BOK, BIM, PUMA and others).[32][33]

Under ER stress, CHOP can function as either a transcriptional activator or repressor. It forms heterodimers with other C/EBP family transcription factors via bZIP-domain interactions to inhibit the expression of genes responsive to C/EBP family transcription factors, while enhancing the expression of other genes containing a specific 12–14 bp DNA cis-acting element.[34] CHOP can downregulate the expressions of anti-apoptotic BCL2 proteins, and upregulate the expression of proapoptotic proteins (BIM, BAK and BAX expression).[35][36] BAX-BAK oligomerization causes cytochrome c and apoptosis-inducing factor (AIF) release from mitochondria, eventually causing cell death.[37]

TRB3 pseudokinase is upregulated by the ER stress-inducible transcriptional factor, ATF4-CHOP.[38] CHOP interacts with TRB3, which contributes to the induction of apoptosis.[39][40][41] The expression of TRB3 has a pro-apoptotic capacity.[42][43] Therefore, CHOP also regulates apoptosis by upregulating the expression of the TRB3 gene.

Apoptosis induction via Death-Receptor Pathway edit

Death receptor-mediated apoptosis occurs via activation of death ligands (Fas, TNF, and TRAIL) and death receptors. Upon activation, the receptor protein, Fas-associated death domain protein, forms a death-inducing signaling complex, which activates the downstream caspase cascade to induce apoptosis.[44]

 
A summary of CHOP upstream and downstream pathways

The PERK-ATF4-CHOP pathway can induce apoptosis by binding to the death receptors and upregulating the expression of death receptor 4 (DR4) and DR5. CHOP also interacts with the phosphorylated transcription factor JUN to form a complex that binds to the promoter region of DR4 in lung cancer cells.[44] The N-terminal domain of CHOP interacts with phosphorylated JUN to form a complex that regulates the expression of DR4 and DR5.[44] CHOP also upregulates the expression of DR5 by binding to the 5′-region of the DR5 gene.[45]

Under prolonged ER stress conditions, activation of the PERK-CHOP pathway will permit DR5 protein levels to rise, which accelerates the formation of the death-inducing signaling complex (DISC) and activates caspase-8,[46] leading to apoptosis[47]

Apoptosis induction through other downstream pathways edit

In addition, CHOP also mediates apoptosis through increasing the expression of the ERO1α (ER reductase)[10] gene, which catalyzes the production of H2O2 in the ER. The highly oxidized state of the ER results in H2O2 leakage into the cytoplasm, inducing the production of reactive oxygen species (ROS) and a series of apoptotic and inflammatory reactions.[10][48][49][50]

The overexpression of CHOP can lead to cell cycle arrest and result in cell apoptosis. At the same time, CHOP-induced apoptosis can also trigger cell death by inhibiting the expression of cell cycle regulatory protein, p21. The p21 protein inhibits the G1 phase of the cell cycle as well as regulates the activity of pre-apoptotic factors. Identified CHOP-p21 relationship may play a role in changing the cell state from adapting to ER stress towards pre-apoptotic activity.[51]

Under most conditions, CHOP can directly bind to the promoters of downstream related genes. However, under specific conditions, CHOP can cooperate with other transcription factors to affect apoptosis. Recent studies have shown that Bcl-2-associated athanogene 5 (Bag5) is over-expressed in prostate cancer and inhibits ER stress-induced apoptosis. Overexpression of Bag5 results in decreased CHOP and BAX expression, and increased Bcl-2 gene expression.[52] Bag5 overexpression inhibited ER stress-induced apoptosis in the unfolded protein response by suppressing PERK-eIF2-ATF4 and enhancing the IRE1-Xbp1 activity.[53]

In general, the downstream targets of CHOP regulate the activation of apoptotic pathways, however, the molecular interaction mechanisms behind those processes remain to be discovered.

Interactions edit

DNA damage-inducible transcript 3 has been shown to interact with [proteins]:

Clinical significance edit

Role in fatty liver and hyperinsulinemia edit

 
CHOP mediates beta cell ER remodeling

Chop gene deletion has been demonstrated protective against diet induced metabolic syndromes in mice.[60][61] Mice with germline Chop gene knockout have better glycemic control despite unchanged obesity. A plausible explanation for the observed dissociation between obesity and insulin resistance is that CHOP promotes insulin hypersecretion from pancreatic β cells.[62]

Furthermore, Chop depletion by a GLP1-ASO delievery system[63] was shown to have therapeutic effects of insulin reduction and fatty liver correction,[64] in preclinical mouse models.[62]

Role in microbial infection edit

CHOP-induced apoptosis pathways had been identified in cells infected by

Since CHOP has an important role of apoptosis induction during infection, it is an important target for further research that will help deepen the current understanding of pathogenesis and potentially provide an opportunity for invention of new therapeutic approaches. For example, small molecule inhibitors of CHOP expression may act as therapeutic options to prevent ER stress and microbial infections. Research had shown that small molecule inhibitors of PERK-eIF2α pathway limit PCV2 virus replication.[65]

Role in other diseases edit

The regulation of CHOP expression plays an important role in metabolic diseases and in some cancers through its function in mediating apoptosis. The regulation of CHOP expression could be a potential approach to affecting cancer cells through the induction of apoptosis.[51][29][44][74] In the intestinal epithelium, CHOP has been demonstrated to be downregulated under inflammatory conditions (in inflammatory bowel diseases and experimental models of colitis). In this context, CHOP seems to rather regulate the cell cycle than apoptotic processes.[75]

Mutations or fusions of CHOP (e.g. with FUS to form FUS-CHOP) can cause Myxoid liposarcoma.[49]

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000175197 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000025408 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Papathanasiou MA, Kerr NC, Robbins JH, McBride OW, Alamo I, Barrett SF, et al. (February 1991). "Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C". Molecular and Cellular Biology. 11 (2): 1009–16. doi:10.1128/MCB.11.2.1009. PMC 359769. PMID 1990262.
  6. ^ a b c "Entrez Gene: DDIT3 DNA-damage-inducible transcript 3".
  7. ^ Ubeda M, Wang XZ, Zinszner H, Wu I, Habener JF, Ron D (April 1996). "Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element". Molecular and Cellular Biology. 16 (4): 1479–89. doi:10.1128/MCB.16.4.1479. PMC 231132. PMID 8657121.
  8. ^ a b Yao Y, Lu Q, Hu Z, Yu Y, Chen Q, Wang QK (July 2017). "A non-canonical pathway regulates ER stress signaling and blocks ER stress-induced apoptosis and heart failure". Nature Communications. 8 (1): 133. Bibcode:2017NatCo...8..133Y. doi:10.1038/s41467-017-00171-w. PMC 5527107. PMID 28743963.
  9. ^ Ron D, Habener JF (March 1992). "CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription". Genes & Development. 6 (3): 439–53. doi:10.1101/gad.6.3.439. PMID 1547942.
  10. ^ a b c Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR, Tabas I (September 2009). "Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis". The Journal of Cell Biology. 186 (6): 783–92. doi:10.1083/jcb.200904060. PMC 2753154. PMID 19752026.
  11. ^ Oyadomari S, Mori M (April 2004). "Roles of CHOP/GADD153 in endoplasmic reticulum stress". Cell Death and Differentiation. 11 (4): 381–9. doi:10.1038/sj.cdd.4401373. PMID 14685163.
  12. ^ Yoshida H (February 2007). "ER stress and diseases". The FEBS Journal. 274 (3): 630–58. doi:10.1111/j.1742-4658.2007.05639.x. PMID 17288551. S2CID 25715028.
  13. ^ Ayaub EA, Kolb PS, Mohammed-Ali Z, Tat V, Murphy J, Bellaye PS, Shimbori C, Boivin FJ, Lai R, Lynn EG, Lhoták Š, Bridgewater D, Kolb MR, Inman MD, Dickhout JG, Austin RC, Ask K (August 2016). "GRP78 and CHOP modulate macrophage apoptosis and the development of bleomycin-induced pulmonary fibrosis". The Journal of Pathology. 239 (4): 411–25. doi:10.1002/path.4738. PMID 27135434.
  14. ^ Lucke-Wold BP, Turner RC, Logsdon AF, Nguyen L, Bailes JE, Lee JM, et al. (March 2016). "Endoplasmic reticulum stress implicated in chronic traumatic encephalopathy". Journal of Neurosurgery. 124 (3): 687–702. doi:10.3171/2015.3.JNS141802. PMID 26381255.
  15. ^ Kropski JA, Blackwell TS (January 2018). "Endoplasmic reticulum stress in the pathogenesis of fibrotic disease". The Journal of Clinical Investigation. 128 (1): 64–73. doi:10.1172/JCI93560. PMC 5749533. PMID 29293089.
  16. ^ Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA, Majsterek I (2016). "The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress". Current Molecular Medicine. 16 (6): 533–44. doi:10.2174/1566524016666160523143937. PMC 5008685. PMID 27211800.
  17. ^ Sano R, Reed JC (December 2013). "ER stress-induced cell death mechanisms". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1833 (12): 3460–3470. doi:10.1016/j.bbamcr.2013.06.028. PMC 3834229. PMID 23850759.
  18. ^ Senkal CE, Ponnusamy S, Bielawski J, Hannun YA, Ogretmen B (January 2010). "Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways". FASEB Journal. 24 (1): 296–308. doi:10.1096/fj.09-135087. PMC 2797032. PMID 19723703.
  19. ^ Xu W, Gao L, Li T, Zheng J, Shao A, Zhang J (September 2018). "Apelin-13 Alleviates Early Brain Injury after Subarachnoid Hemorrhage via Suppression of Endoplasmic Reticulum Stress-mediated Apoptosis and Blood-Brain Barrier Disruption: Possible Involvement of ATF6/CHOP Pathway". Neuroscience. 388: 284–296. doi:10.1016/j.neuroscience.2018.07.023. PMID 30036660. S2CID 51711178.
  20. ^ Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K (September 2000). "ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response". Molecular and Cellular Biology. 20 (18): 6755–67. doi:10.1128/mcb.20.18.6755-6767.2000. PMC 86199. PMID 10958673.
  21. ^ Han D, Lerner AG, Vande Walle L, Upton JP, Xu W, Hagen A, et al. (August 2009). "IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates". Cell. 138 (3): 562–75. doi:10.1016/j.cell.2009.07.017. PMC 2762408. PMID 19665977.
  22. ^ Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (December 2001). "XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor". Cell. 107 (7): 881–91. doi:10.1016/s0092-8674(01)00611-0. PMID 11779464. S2CID 9460062.
  23. ^ Hetz C, Martinon F, Rodriguez D, Glimcher LH (October 2011). "The unfolded protein response: integrating stress signals through the stress sensor IRE1α". Physiological Reviews. 91 (4): 1219–43. doi:10.1152/physrev.00001.2011. hdl:10533/135654. PMID 22013210. S2CID 33644823.
  24. ^ Yang Y, Liu L, Naik I, Braunstein Z, Zhong J, Ren B (2017). "Transcription Factor C/EBP Homologous Protein in Health and Diseases". Frontiers in Immunology. 8: 1612. doi:10.3389/fimmu.2017.01612. PMC 5712004. PMID 29230213.
  25. ^ Kim I, Xu W, Reed JC (December 2008). "Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities". Nature Reviews. Drug Discovery. 7 (12): 1013–30. doi:10.1038/nrd2755. PMID 19043451. S2CID 7652866.
  26. ^ Wang XZ, Ron D (May 1996). "Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase". Science. 272 (5266): 1347–9. Bibcode:1996Sci...272.1347W. doi:10.1126/science.272.5266.1347. PMID 8650547. S2CID 20439571.
  27. ^ Ron D, Hubbard SR (January 2008). "How IRE1 reacts to ER stress". Cell. 132 (1): 24–6. doi:10.1016/j.cell.2007.12.017. PMID 18191217. S2CID 15705605.
  28. ^ Sari FR, Widyantoro B, Thandavarayan RA, Harima M, Lakshmanan AP, Zhang S, et al. (2011). "Attenuation of CHOP-mediated myocardial apoptosis in pressure-overloaded dominant negative p38α mitogen-activated protein kinase mice". Cellular Physiology and Biochemistry. 27 (5): 487–96. doi:10.1159/000329970. PMID 21691066.
  29. ^ a b Guo X, Meng Y, Sheng X, Guan Y, Zhang F, Han Z, et al. (January 2017). "Tunicamycin enhances human colon cancer cells to TRAIL-induced apoptosis by JNK-CHOP-mediated DR5 upregulation and the inhibition of the EGFR pathway". Anti-Cancer Drugs. 28 (1): 66–74. doi:10.1097/CAD.0000000000000431. PMID 27603596. S2CID 3570039.
  30. ^ Bromati CR, Lellis-Santos C, Yamanaka TS, Nogueira TC, Leonelli M, Caperuto LC, et al. (January 2011). "UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/CHOP stimulation of TRB3 expression". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 300 (1): R92-100. doi:10.1152/ajpregu.00169.2010. PMID 21068199.
  31. ^ Campos G, Schmidt-Heck W, Ghallab A, Rochlitz K, Pütter L, Medinas DB, et al. (June 2014). "The transcription factor CHOP, a central component of the transcriptional regulatory network induced upon CCl4 intoxication in mouse liver, is not a critical mediator of hepatotoxicity". Archives of Toxicology. 88 (6): 1267–80. doi:10.1007/s00204-014-1240-8. hdl:10533/127482. PMID 24748426. S2CID 17713296.
  32. ^ Ghosh AP, Klocke BJ, Ballestas ME, Roth KA (2012-06-28). "CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress". PLOS ONE. 7 (6): e39586. Bibcode:2012PLoSO...739586G. doi:10.1371/journal.pone.0039586. PMC 3386252. PMID 22761832.
  33. ^ Galehdar Z, Swan P, Fuerth B, Callaghan SM, Park DS, Cregan SP (December 2010). "Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated induction of the Bcl-2 homology 3-only member PUMA". The Journal of Neuroscience. 30 (50): 16938–48. doi:10.1523/JNEUROSCI.1598-10.2010. PMC 6634926. PMID 21159964.
  34. ^ Ubeda M, Wang XZ, Zinszner H, Wu I, Habener JF, Ron D (April 1996). "Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element". Molecular and Cellular Biology. 16 (4): 1479–89. doi:10.1128/mcb.16.4.1479. PMC 231132. PMID 8657121.
  35. ^ Iurlaro R, Muñoz-Pinedo C (July 2016). "Cell death induced by endoplasmic reticulum stress". The FEBS Journal. 283 (14): 2640–52. doi:10.1111/febs.13598. PMID 26587781.
  36. ^ Tsukano H, Gotoh T, Endo M, Miyata K, Tazume H, Kadomatsu T, et al. (October 2010). "The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques". Arteriosclerosis, Thrombosis, and Vascular Biology. 30 (10): 1925–32. doi:10.1161/ATVBAHA.110.206094. PMID 20651282.
  37. ^ Tuzlak S, Kaufmann T, Villunger A (October 2016). "Interrogating the relevance of mitochondrial apoptosis for vertebrate development and postnatal tissue homeostasis". Genes & Development. 30 (19): 2133–2151. doi:10.1101/gad.289298.116. PMC 5088563. PMID 27798841.
  38. ^ Morse E, Schroth J, You YH, Pizzo DP, Okada S, Ramachandrarao S, et al. (November 2010). "TRB3 is stimulated in diabetic kidneys, regulated by the ER stress marker CHOP, and is a suppressor of podocyte MCP-1". American Journal of Physiology. Renal Physiology. 299 (5): F965-72. doi:10.1152/ajprenal.00236.2010. PMC 2980398. PMID 20660016.
  39. ^ Kopecka J, Salaroglio IC, Righi L, Libener R, Orecchia S, Grosso F, et al. (June 2018). "Loss of C/EBP-β LIP drives cisplatin resistance in malignant pleural mesothelioma". Lung Cancer. 120: 34–45. doi:10.1016/j.lungcan.2018.03.022. hdl:2318/1665635. PMID 29748013. S2CID 13709561.
  40. ^ Zhang P, Sun Q, Zhao C, Ling S, Li Q, Chang YZ, Li Y (March 2014). "HDAC4 protects cells from ER stress induced apoptosis through interaction with ATF4". Cellular Signalling. 26 (3): 556–63. doi:10.1016/j.cellsig.2013.11.026. PMID 24308964. S2CID 19428363.
  41. ^ Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H (March 2005). "TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death". The EMBO Journal. 24 (6): 1243–55. doi:10.1038/sj.emboj.7600596. PMC 556400. PMID 15775988.
  42. ^ Du K, Herzig S, Kulkarni RN, Montminy M (June 2003). "TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver". Science. 300 (5625): 1574–7. Bibcode:2003Sci...300.1574D. doi:10.1126/science.1079817. PMID 12791994. S2CID 43360696.
  43. ^ Li Y, Zhu D, Hou L, Hu B, Xu M, Meng X (January 2018). "TRB3 reverses chemotherapy resistance and mediates crosstalk between endoplasmic reticulum stress and AKT signaling pathways in MHCC97H human hepatocellular carcinoma cells". Oncology Letters. 15 (1): 1343–1349. doi:10.3892/ol.2017.7361. PMC 5769383. PMID 29391905.
  44. ^ a b c d Li T, Su L, Lei Y, Liu X, Zhang Y, Liu X (April 2015). "DDIT3 and KAT2A Proteins Regulate TNFRSF10A and TNFRSF10B Expression in Endoplasmic Reticulum Stress-mediated Apoptosis in Human Lung Cancer Cells". The Journal of Biological Chemistry. 290 (17): 11108–18. doi:10.1074/jbc.M115.645333. PMC 4409269. PMID 25770212.
  45. ^ Chen P, Hu T, Liang Y, Li P, Chen X, Zhang J, et al. (August 2016). "Neddylation Inhibition Activates the Extrinsic Apoptosis Pathway through ATF4-CHOP-DR5 Axis in Human Esophageal Cancer Cells" (PDF). Clinical Cancer Research. 22 (16): 4145–57. doi:10.1158/1078-0432.CCR-15-2254. PMID 26983464.
  46. ^ Lu M, Lawrence DA, Marsters S, Acosta-Alvear D, Kimmig P, Mendez AS, et al. (July 2014). "Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis". Science. 345 (6192): 98–101. Bibcode:2014Sci...345...98L. doi:10.1126/science.1254312. PMC 4284148. PMID 24994655.
  47. ^ Elmore S (June 2007). "Apoptosis: a review of programmed cell death". Toxicologic Pathology. 35 (4): 495–516. doi:10.1080/01926230701320337. PMC 2117903. PMID 17562483.
  48. ^ Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, et al. (December 2004). "CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum". Genes & Development. 18 (24): 3066–77. doi:10.1101/gad.1250704. PMC 535917. PMID 15601821.
  49. ^ a b Panagopoulos I, Höglund M, Mertens F, Mandahl N, Mitelman F, Aman P (February 1996). "Fusion of the EWS and CHOP genes in myxoid liposarcoma". Oncogene. 12 (3): 489–94. PMID 8637704.
  50. ^ Li G, Scull C, Ozcan L, Tabas I (December 2010). "NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis". The Journal of Cell Biology. 191 (6): 1113–25. doi:10.1083/jcb.201006121. PMC 3002036. PMID 21135141.
  51. ^ a b Mkrtchian S (June 2015). "Targeting unfolded protein response in cancer and diabetes". Endocrine-Related Cancer. 22 (3): C1-4. doi:10.1530/ERC-15-0106. PMID 25792543.
  52. ^ Gupta MK, Tahrir FG, Knezevic T, White MK, Gordon J, Cheung JY, et al. (August 2016). "GRP78 Interacting Partner Bag5 Responds to ER Stress and Protects Cardiomyocytes From ER Stress-Induced Apoptosis". Journal of Cellular Biochemistry. 117 (8): 1813–21. doi:10.1002/jcb.25481. PMC 4909508. PMID 26729625.
  53. ^ Bruchmann A, Roller C, Walther TV, Schäfer G, Lehmusvaara S, Visakorpi T, et al. (March 2013). "Bcl-2 associated athanogene 5 (Bag5) is overexpressed in prostate cancer and inhibits ER-stress induced apoptosis". BMC Cancer. 13: 96. doi:10.1186/1471-2407-13-96. PMC 3598994. PMID 23448667.
  54. ^ Chen BP, Wolfgang CD, Hai T (March 1996). "Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10". Molecular and Cellular Biology. 16 (3): 1157–68. doi:10.1128/MCB.16.3.1157. PMC 231098. PMID 8622660.
  55. ^ a b c Ubeda M, Vallejo M, Habener JF (November 1999). "CHOP enhancement of gene transcription by interactions with Jun/Fos AP-1 complex proteins". Molecular and Cellular Biology. 19 (11): 7589–99. doi:10.1128/MCB.19.11.7589. PMC 84780. PMID 10523647.
  56. ^ Hattori T, Ohoka N, Hayashi H, Onozaki K (April 2003). "C/EBP homologous protein (CHOP) up-regulates IL-6 transcription by trapping negative regulating NF-IL6 isoform". FEBS Letters. 541 (1–3): 33–9. doi:10.1016/s0014-5793(03)00283-7. PMID 12706815. S2CID 43792576.
  57. ^ Fawcett TW, Eastman HB, Martindale JL, Holbrook NJ (June 1996). "Physical and functional association between GADD153 and CCAAT/enhancer-binding protein beta during cellular stress". The Journal of Biological Chemistry. 271 (24): 14285–9. doi:10.1074/jbc.271.24.14285. PMID 8662954.
  58. ^ Ubeda M, Habener JF (October 2003). "CHOP transcription factor phosphorylation by casein kinase 2 inhibits transcriptional activation". The Journal of Biological Chemistry. 278 (42): 40514–20. doi:10.1074/jbc.M306404200. PMID 12876286.
  59. ^ Cui K, Coutts M, Stahl J, Sytkowski AJ (March 2000). "Novel interaction between the transcription factor CHOP (GADD153) and the ribosomal protein FTE/S3a modulates erythropoiesis". The Journal of Biological Chemistry. 275 (11): 7591–6. doi:10.1074/jbc.275.11.7591. PMID 10713066.
  60. ^ Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ (October 2008). "Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes". The Journal of Clinical Investigation. 118 (10): 3378–3389. doi:10.1172/JCI34587. ISSN 0021-9738. PMC 2528909. PMID 18776938.
  61. ^ Maris M, Overbergh L, Gysemans C, Waget A, Cardozo AK, Verdrengh E, Cunha JP, Gotoh T, Cnop M, Eizirik DL, Burcelin R (April 2012). "Deletion of C/EBP homologous protein (Chop) in C57Bl/6 mice dissociates obesity from insulin resistance" (PDF). Diabetologia. 55 (4): 1167–1178. doi:10.1007/s00125-011-2427-7. ISSN 0012-186X. PMID 22237685. S2CID 12850216.
  62. ^ a b Yong J, Parekh VS, Reilly SM, Nayak J, Chen Z, Lebeaupin C, Jang I, Zhang J, Prakash TP, Sun H, Murray S (2021-07-28). "Chop/Ddit3 depletion in β cells alleviates ER stress and corrects hepatic steatosis in mice". Science Translational Medicine. 13 (604). doi:10.1126/scitranslmed.aba9796. ISSN 1946-6242. PMC 8557800. PMID 34321322.
  63. ^ WO application 2017192820, Monia, Brett P.; Prakash, Thazha P. & Kinberger, Garth A. et al., "GLP-1 receptor ligand moiety conjugated oligonucleotides and uses thereof", published 2017-11-09, assigned to Ionis Pharmaceuticals Inc. and AstraZeneca AB 
  64. ^ Yong J, Johnson JD, Arvan P, Han J, Kaufman RJ (August 2021). "Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus". Nature Reviews. Endocrinology. 17 (8): 455–467. doi:10.1038/s41574-021-00510-4. ISSN 1759-5037. PMC 8765009. PMID 34163039.
  65. ^ a b Zhou Y, Qi B, Gu Y, Xu F, Du H, Li X, Fang W (February 2016). "Porcine Circovirus 2 Deploys PERK Pathway and GRP78 for Its Enhanced Replication in PK-15 Cells". Viruses. 8 (2): 56. doi:10.3390/v8020056. PMC 4776210. PMID 26907328.
  66. ^ Ma R, Yang L, Niu F, Buch S (January 2016). "HIV Tat-Mediated Induction of Human Brain Microvascular Endothelial Cell Apoptosis Involves Endoplasmic Reticulum Stress and Mitochondrial Dysfunction". Molecular Neurobiology. 53 (1): 132–142. doi:10.1007/s12035-014-8991-3. PMC 4787264. PMID 25409632.
  67. ^ Shah A, Vaidya NK, Bhat HK, Kumar A (January 2016). "HIV-1 gp120 induces type-1 programmed cell death through ER stress employing IRE1α, JNK and AP-1 pathway". Scientific Reports. 6: 18929. Bibcode:2016NatSR...618929S. doi:10.1038/srep18929. PMC 4703964. PMID 26740125.
  68. ^ Liao Y, Fung TS, Huang M, Fang SG, Zhong Y, Liu DX (July 2013). "Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway". Journal of Virology. 87 (14): 8124–34. doi:10.1128/JVI.00626-13. PMC 3700216. PMID 23678184.
  69. ^ Lim YJ, Choi JA, Choi HH, Cho SN, Kim HJ, Jo EK, et al. (2011). "Endoplasmic reticulum stress pathway-mediated apoptosis in macrophages contributes to the survival of Mycobacterium tuberculosis". PLOS ONE. 6 (12): e28531. Bibcode:2011PLoSO...628531L. doi:10.1371/journal.pone.0028531. PMC 3237454. PMID 22194844.
  70. ^ Seimon TA, Kim MJ, Blumenthal A, Koo J, Ehrt S, Wainwright H, et al. (September 2010). "Induction of ER stress in macrophages of tuberculosis granulomas". PLOS ONE. 5 (9): e12772. Bibcode:2010PLoSO...512772S. doi:10.1371/journal.pone.0012772. PMC 2939897. PMID 20856677.
  71. ^ Akazawa Y, Isomoto H, Matsushima K, Kanda T, Minami H, Yamaghchi N, et al. (2013). "Endoplasmic reticulum stress contributes to Helicobacter pylori VacA-induced apoptosis". PLOS ONE. 8 (12): e82322. Bibcode:2013PLoSO...882322A. doi:10.1371/journal.pone.0082322. PMC 3862672. PMID 24349255.
  72. ^ Lee SY, Lee MS, Cherla RP, Tesh VL (March 2008). "Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells". Cellular Microbiology. 10 (3): 770–80. doi:10.1111/j.1462-5822.2007.01083.x. PMID 18005243. S2CID 29450691.
  73. ^ Park JY, Jeong YJ, Park SK, Yoon SJ, Choi S, Jeong DG, et al. (October 2017). "Shiga Toxins Induce Apoptosis and ER Stress in Human Retinal Pigment Epithelial Cells". Toxins. 9 (10): 319. doi:10.3390/toxins9100319. PMC 5666366. PMID 29027919.
  74. ^ Wang HQ, Du ZX, Zhang HY, Gao DX (July 2007). "Different induction of GRP78 and CHOP as a predictor of sensitivity to proteasome inhibitors in thyroid cancer cells". Endocrinology. 148 (7): 3258–70. doi:10.1210/en.2006-1564. PMID 17431003.
  75. ^ Waldschmitt N, Berger E, Rath E, Sartor RB, Weigmann B, Heikenwalder M, et al. (November 2014). "C/EBP homologous protein inhibits tissue repair in response to gut injury and is inversely regulated with chronic inflammation". Mucosal Immunology. 7 (6): 1452–66. doi:10.1038/mi.2014.34. PMID 24850428.

Further reading edit

  • Ramji DP, Foka P (August 2002). "CCAAT/enhancer-binding proteins: structure, function and regulation". The Biochemical Journal. 365 (Pt 3): 561–75. doi:10.1042/BJ20020508. PMC 1222736. PMID 12006103.
  • Oyadomari S, Mori M (April 2004). "Roles of CHOP/GADD153 in endoplasmic reticulum stress". Cell Death and Differentiation. 11 (4): 381–9. doi:10.1038/sj.cdd.4401373. PMID 14685163.
  • Aman P, Ron D, Mandahl N, Fioretos T, Heim S, Arheden K, et al. (November 1992). "Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11)". Genes, Chromosomes & Cancer. 5 (4): 278–85. doi:10.1002/gcc.2870050403. PMID 1283316. S2CID 1998665.
  • Park JS, Luethy JD, Wang MG, Fargnoli J, Fornace AJ, McBride OW, Holbrook NJ (July 1992). "Isolation, characterization and chromosomal localization of the human GADD153 gene". Gene. 116 (2): 259–67. doi:10.1016/0378-1119(92)90523-R. PMID 1339368.
  • Ron D, Habener JF (March 1992). "CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription". Genes & Development. 6 (3): 439–53. doi:10.1101/gad.6.3.439. PMID 1547942.
  • Eneroth M, Mandahl N, Heim S, Willén H, Rydholm A, Alberts KA, Mitelman F (August 1990). "Localization of the chromosomal breakpoints of the t(12;16) in liposarcoma to subbands 12q13.3 and 16p11.2". Cancer Genetics and Cytogenetics. 48 (1): 101–7. doi:10.1016/0165-4608(90)90222-V. PMID 2372777.
  • Rabbitts TH, Forster A, Larson R, Nathan P (June 1993). "Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma". Nature Genetics. 4 (2): 175–80. doi:10.1038/ng0693-175. PMID 7503811. S2CID 5964293.
  • Crozat A, Aman P, Mandahl N, Ron D (June 1993). "Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma". Nature. 363 (6430): 640–4. Bibcode:1993Natur.363..640C. doi:10.1038/363640a0. PMID 8510758. S2CID 4358184.
  • Chen BP, Wolfgang CD, Hai T (March 1996). "Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10". Molecular and Cellular Biology. 16 (3): 1157–68. doi:10.1128/MCB.16.3.1157. PMC 231098. PMID 8622660.
  • Wang XZ, Ron D (May 1996). "Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase". Science. 272 (5266): 1347–9. Bibcode:1996Sci...272.1347W. doi:10.1126/science.272.5266.1347. PMID 8650547. S2CID 20439571.
  • Fawcett TW, Eastman HB, Martindale JL, Holbrook NJ (June 1996). "Physical and functional association between GADD153 and CCAAT/enhancer-binding protein beta during cellular stress". The Journal of Biological Chemistry. 271 (24): 14285–9. doi:10.1074/jbc.271.24.14285. PMID 8662954.
  • Ubeda M, Vallejo M, Habener JF (November 1999). "CHOP enhancement of gene transcription by interactions with Jun/Fos AP-1 complex proteins". Molecular and Cellular Biology. 19 (11): 7589–99. doi:10.1128/MCB.19.11.7589. PMC 84780. PMID 10523647.
  • Cui K, Coutts M, Stahl J, Sytkowski AJ (March 2000). "Novel interaction between the transcription factor CHOP (GADD153) and the ribosomal protein FTE/S3a modulates erythropoiesis". The Journal of Biological Chemistry. 275 (11): 7591–6. doi:10.1074/jbc.275.11.7591. PMID 10713066.
  • Gotoh T, Oyadomari S, Mori K, Mori M (April 2002). "Nitric oxide-induced apoptosis in RAW 264.7 macrophages is mediated by endoplasmic reticulum stress pathway involving ATF6 and CHOP". The Journal of Biological Chemistry. 277 (14): 12343–50. doi:10.1074/jbc.M107988200. PMID 11805088.
  • Satoh T, Toyoda M, Hoshino H, Monden T, Yamada M, Shimizu H, et al. (March 2002). "Activation of peroxisome proliferator-activated receptor-gamma stimulates the growth arrest and DNA-damage inducible 153 gene in non-small cell lung carcinoma cells". Oncogene. 21 (14): 2171–80. doi:10.1038/sj.onc.1205279. PMID 11948400.
  • Qiao D, Im E, Qi W, Martinez JD (June 2002). "Activator protein-1 and CCAAT/enhancer-binding protein mediated GADD153 expression is involved in deoxycholic acid-induced apoptosis". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1583 (1): 108–16. doi:10.1016/s1388-1981(02)00190-7. PMID 12069855.
  • Talukder AH, Wang RA, Kumar R (June 2002). "Expression and transactivating functions of the bZIP transcription factor GADD153 in mammary epithelial cells". Oncogene. 21 (27): 4289–300. doi:10.1038/sj.onc.1205529. PMID 12082616. S2CID 20369894.

External links edit

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

damage, inducible, transcript, also, known, homologous, protein, chop, apoptotic, transcription, factor, that, encoded, ddit3, gene, member, ccaat, enhancer, binding, protein, family, binding, transcription, factors, protein, functions, dominant, negative, inh. DNA damage inducible transcript 3 also known as C EBP homologous protein CHOP is a pro apoptotic transcription factor that is encoded by the DDIT3 gene 5 6 It is a member of the CCAAT enhancer binding protein C EBP family of DNA binding transcription factors 6 The protein functions as a dominant negative inhibitor by forming heterodimers with other C EBP members preventing their DNA binding activity The protein is implicated in adipogenesis and erythropoiesis and has an important role in the cell s stress response 6 DDIT3IdentifiersAliasesDDIT3 CEBPZ CHOP CHOP 10 CHOP10 GADD153 DNA damage inducible transcript 3 DNA damage inducible transcript 3 C EBPzeta AltDDIT3External IDsOMIM 126337 MGI 109247 HomoloGene 3012 GeneCards DDIT3Gene location Human Chr Chromosome 12 human 1 Band12q13 3Start57 516 588 bp 1 End57 521 737 bp 1 Gene location Mouse Chr Chromosome 10 mouse 2 Band10 10 D3Start127 126 643 bp 2 End127 132 157 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed inanterior pituitaryleft lobe of thyroid glandsubstantia nigragastric mucosahypothalamusright lobe of thyroid glandputamencaudate nucleusright lobe of liverrenal cortexTop expressed incalvariamotor neuronsupraoptic nucleusislet of Langerhansseminiferous tubuleankle jointsuperior frontal gyrusright lung lobesoleus muscleolfactory epitheliumMore reference expression dataBioGPSMore reference expression dataGene ontologyMolecular functionDNA binding cAMP response element binding protein binding transcription corepressor activity DNA binding transcription factor activity DNA binding transcription activator activity RNA polymerase II specific transcription factor binding transcription cis regulatory region binding RNA polymerase II cis regulatory region sequence specific DNA binding leucine zipper domain binding protein binding protein heterodimerization activity protein homodimerization activity DNA binding transcription factor activity RNA polymerase II specificCellular componentcytoplasm cytosol late endosome CHOP C EBP complex nucleoplasm transcription factor AP 1 complex protein DNA complex CHOP ATF4 complex CHOP ATF3 complex nucleusBiological processapoptotic process release of sequestered calcium ion into cytosol negative regulation of protein kinase B signaling negative regulation of fat cell differentiation negative regulation of myoblast differentiation regulation of transcription DNA templated positive regulation of endoplasmic reticulum stress induced intrinsic apoptotic signaling pathway positive regulation of transcription from RNA polymerase II promoter in response to endoplasmic reticulum stress negative regulation of DNA binding mRNA transcription by RNA polymerase II positive regulation of neuron death negative regulation of transcription by RNA polymerase II Wnt signaling pathway cell redox homeostasis response to endoplasmic reticulum stress PERK mediated unfolded protein response ER overload response cellular response to DNA damage stimulus transcription DNA templated positive regulation of transcription DNA templated ATF6 mediated unfolded protein response positive regulation of neuron apoptotic process response to unfolded protein intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress negative regulation of RNA polymerase II regulatory region sequence specific DNA binding positive regulation of interleukin 8 production response to starvation negative regulation of determination of dorsal identity cell cycle regulation of DNA templated transcription in response to stress negative regulation of transcription DNA templated negative regulation of canonical Wnt signaling pathway positive regulation of transcription by RNA polymerase II proteasome mediated ubiquitin dependent protein catabolic process blood vessel maturation negative regulation of CREB transcription factor activity endoplasmic reticulum unfolded protein response establishment of protein localization to mitochondrion intrinsic apoptotic signaling pathway in response to nitrosative stress negative regulation of DNA binding transcription factor activity positive regulation of DNA binding transcription factor activity protein complex oligomerization negative regulation of cold induced thermogenesis regulation of autophagy positive regulation of intrinsic apoptotic signaling pathwaySources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez164913198EnsemblENSG00000175197ENSMUSG00000025408UniProtP35638P35639RefSeq mRNA NM 001195053NM 001195054NM 001195055NM 001195056NM 001195057NM 004083NM 001290183NM 007837RefSeq protein NP 001181982NP 001181983NP 001181984NP 001181985NP 001181986NP 004074NP 001277112NP 031863Location UCSC Chr 12 57 52 57 52 MbChr 10 127 13 127 13 MbPubMed search 3 4 WikidataView Edit HumanView Edit Mouse Contents 1 Structure 2 Regulation and function 2 1 Upstream regulatory pathways 2 2 Downstream pathways 2 2 1 Apoptosis induction via Mitochondria Dependent Pathway 2 2 2 Apoptosis induction via Death Receptor Pathway 2 2 3 Apoptosis induction through other downstream pathways 3 Interactions 4 Clinical significance 4 1 Role in fatty liver and hyperinsulinemia 4 2 Role in microbial infection 4 3 Role in other diseases 5 References 6 Further reading 7 External linksStructure editC EBP proteins are known to have a conserved C terminal structure basic leucine zipper domain bZIP that is necessary for the formation of DNA binding capable homodimers or heterodimers with other proteins or members of the C EBP protein family 7 CHOP is a relatively small 29kDa protein that differs from most C EBP proteins in several amino acid substitutions which impacts its DNA binding ability 8 nbsp CHOP protein structure created with PyMOLRegulation and function editDue to a variety of upstream and downstream regulatory interactions CHOP plays an important role in ER stress induced apoptosis caused by a variety of stimuli such as pathogenic microbial or viral infections amino acid starvation mitochondrial stress neurological diseases and neoplastic diseases Under normal physiological conditions CHOP is ubiquitously present at very low levels 9 However under overwhelming ER stress conditions the expression of CHOP rises sharply along with the activation of apoptotic pathways in a wide variety of cells 8 Those processes are mainly regulated by three factors protein kinase RNA like endoplasmic reticulum kinase PERK activating transcription factor 6 ATF6 and inositol requiring protein 1 IRE1a 10 11 Upstream regulatory pathways edit During ER stress CHOP is mainly induced via activation of the integrated stress response pathways through the subsequent downstream phosphorylation of a translation initiation factor eukaryotic initiation factor 2a eIF2a and induction of a transcription factor activation transcription factor 4 ATF4 12 which converges on the promoters of target genes including CHOP Integrated stress response and thus CHOP expression can be induced by amino acid starvation through general control non derepressible 2 GCN2 13 viral infection through the vertebrate specific kinases double stranded RNA activated protein kinase PKR 14 iron deficiency through heme regulated inhibitor kinase HRI 15 stress from the accumulation of unfolded or misfolded proteins in the ER activates the integrated stress response through protein kinase RNA like endoplasmic reticulum kinase PERK 16 Under ER stress activated transmembrane protein ATF6 translocates to the nucleus and interacts with ATF cAMP response elements and ER stress response elements 17 binding the promoters and inducing transcription of several genes involved in unfolded protein response including CHOP XBP1 and others 18 19 Thus ATF6 activates the transcription of both CHOP and XBP 1 while XBP 1 can also upregulate the expression of CHOP 20 ER stress also stimulates transmembrane protein IRE1a activity 21 Upon activation IRE1a splices the XBP 1 mRNA introns to produce a mature and active XBP 1 protein 22 that upregulates CHOP expression 23 24 25 IRE1a also stimulates the activation of the apoptotic signaling kinase 1 ASK1 which then activates the downstream kinases Jun N terminal kinase JNK and p38 mitogen activated protein kinase p38 MAPK 26 which participate in apoptosis induction along with CHOP 27 The P38 MAP kinase family phosphorylates Ser78 and Ser81 of CHOP which induces cell apoptosis 28 Moreover research studies found that the JNK inhibitors can suppress CHOP upregulation indicating that JNK activation is also involved in the modulation of CHOP levels 29 Downstream pathways edit Apoptosis induction via Mitochondria Dependent Pathway edit As a transcription factor CHOP can regulate the expression of many anti apoptotic and pro apoptotic genes including genes encoding the BCL2 family proteins GADD34 and TRB 3 30 31 In the CHOP induced apoptotic pathway CHOP regulates the expression of BCL2 protein family that includes anti apoptotic proteins BCL2 BCL XL MCL 1 and BCL W and pro apoptotic proteins BAK BAX BOK BIM PUMA and others 32 33 Under ER stress CHOP can function as either a transcriptional activator or repressor It forms heterodimers with other C EBP family transcription factors via bZIP domain interactions to inhibit the expression of genes responsive to C EBP family transcription factors while enhancing the expression of other genes containing a specific 12 14 bp DNA cis acting element 34 CHOP can downregulate the expressions of anti apoptotic BCL2 proteins and upregulate the expression of proapoptotic proteins BIM BAK and BAX expression 35 36 BAX BAK oligomerization causes cytochrome c and apoptosis inducing factor AIF release from mitochondria eventually causing cell death 37 TRB3 pseudokinase is upregulated by the ER stress inducible transcriptional factor ATF4 CHOP 38 CHOP interacts with TRB3 which contributes to the induction of apoptosis 39 40 41 The expression of TRB3 has a pro apoptotic capacity 42 43 Therefore CHOP also regulates apoptosis by upregulating the expression of the TRB3 gene Apoptosis induction via Death Receptor Pathway edit Death receptor mediated apoptosis occurs via activation of death ligands Fas TNF and TRAIL and death receptors Upon activation the receptor protein Fas associated death domain protein forms a death inducing signaling complex which activates the downstream caspase cascade to induce apoptosis 44 nbsp A summary of CHOP upstream and downstream pathways The PERK ATF4 CHOP pathway can induce apoptosis by binding to the death receptors and upregulating the expression of death receptor 4 DR4 and DR5 CHOP also interacts with the phosphorylated transcription factor JUN to form a complex that binds to the promoter region of DR4 in lung cancer cells 44 The N terminal domain of CHOP interacts with phosphorylated JUN to form a complex that regulates the expression of DR4 and DR5 44 CHOP also upregulates the expression of DR5 by binding to the 5 region of the DR5 gene 45 Under prolonged ER stress conditions activation of the PERK CHOP pathway will permit DR5 protein levels to rise which accelerates the formation of the death inducing signaling complex DISC and activates caspase 8 46 leading to apoptosis 47 Apoptosis induction through other downstream pathways edit In addition CHOP also mediates apoptosis through increasing the expression of the ERO1a ER reductase 10 gene which catalyzes the production of H2O2 in the ER The highly oxidized state of the ER results in H2O2 leakage into the cytoplasm inducing the production of reactive oxygen species ROS and a series of apoptotic and inflammatory reactions 10 48 49 50 The overexpression of CHOP can lead to cell cycle arrest and result in cell apoptosis At the same time CHOP induced apoptosis can also trigger cell death by inhibiting the expression of cell cycle regulatory protein p21 The p21 protein inhibits the G1 phase of the cell cycle as well as regulates the activity of pre apoptotic factors Identified CHOP p21 relationship may play a role in changing the cell state from adapting to ER stress towards pre apoptotic activity 51 Under most conditions CHOP can directly bind to the promoters of downstream related genes However under specific conditions CHOP can cooperate with other transcription factors to affect apoptosis Recent studies have shown that Bcl 2 associated athanogene 5 Bag5 is over expressed in prostate cancer and inhibits ER stress induced apoptosis Overexpression of Bag5 results in decreased CHOP and BAX expression and increased Bcl 2 gene expression 52 Bag5 overexpression inhibited ER stress induced apoptosis in the unfolded protein response by suppressing PERK eIF2 ATF4 and enhancing the IRE1 Xbp1 activity 53 In general the downstream targets of CHOP regulate the activation of apoptotic pathways however the molecular interaction mechanisms behind those processes remain to be discovered Interactions editDNA damage inducible transcript 3 has been shown to interact with proteins ATF3 54 C Fos 55 C jun 55 and CEBPB 56 57 CSNK2A1 58 JunD 55 and RPS3A 59 Clinical significance editRole in fatty liver and hyperinsulinemia edit nbsp CHOP mediates beta cell ER remodeling Chop gene deletion has been demonstrated protective against diet induced metabolic syndromes in mice 60 61 Mice with germline Chop gene knockout have better glycemic control despite unchanged obesity A plausible explanation for the observed dissociation between obesity and insulin resistance is that CHOP promotes insulin hypersecretion from pancreatic b cells 62 Furthermore Chop depletion by a GLP1 ASO delievery system 63 was shown to have therapeutic effects of insulin reduction and fatty liver correction 64 in preclinical mouse models 62 Role in microbial infection edit CHOP induced apoptosis pathways had been identified in cells infected by Porcine circovirus type 2 PERK eIF2a ATF4 CHOP BCL2 pathway 65 HIV XBP 1 CHOP Caspase 3 9 pathway 66 67 Infectious bronchitis virus PERK eIF2a ATF4 PKR eIF2a ATF4 pathway 68 M tuberculosis PERK eIF2a CHOP pathway 69 70 Helicobacter pylori PERK CHOP or PKR eIF2a ATF4 pathway 71 Escherichia coli CHOP DR5 Caspase 3 8 pathway 72 Shigella dysenteriae p38 CHOP DR5 pathway 73 Since CHOP has an important role of apoptosis induction during infection it is an important target for further research that will help deepen the current understanding of pathogenesis and potentially provide an opportunity for invention of new therapeutic approaches For example small molecule inhibitors of CHOP expression may act as therapeutic options to prevent ER stress and microbial infections Research had shown that small molecule inhibitors of PERK eIF2a pathway limit PCV2 virus replication 65 Role in other diseases edit The regulation of CHOP expression plays an important role in metabolic diseases and in some cancers through its function in mediating apoptosis The regulation of CHOP expression could be a potential approach to affecting cancer cells through the induction of apoptosis 51 29 44 74 In the intestinal epithelium CHOP has been demonstrated to be downregulated under inflammatory conditions in inflammatory bowel diseases and experimental models of colitis In this context CHOP seems to rather regulate the cell cycle than apoptotic processes 75 Mutations or fusions of CHOP e g with FUS to form FUS CHOP can cause Myxoid liposarcoma 49 References edit a b c GRCh38 Ensembl release 89 ENSG00000175197 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000025408 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Papathanasiou MA Kerr NC Robbins JH McBride OW Alamo I Barrett SF et al February 1991 Induction by ionizing radiation of the gadd45 gene in cultured human cells lack of mediation by protein kinase C Molecular and Cellular Biology 11 2 1009 16 doi 10 1128 MCB 11 2 1009 PMC 359769 PMID 1990262 a b c Entrez Gene DDIT3 DNA damage inducible transcript 3 Ubeda M Wang XZ Zinszner H Wu I Habener JF Ron D April 1996 Stress induced binding of the transcriptional factor CHOP to a novel DNA control element Molecular and Cellular Biology 16 4 1479 89 doi 10 1128 MCB 16 4 1479 PMC 231132 PMID 8657121 a b Yao Y Lu Q Hu Z Yu Y Chen Q Wang QK July 2017 A non canonical pathway regulates ER stress signaling and blocks ER stress induced apoptosis and heart failure Nature Communications 8 1 133 Bibcode 2017NatCo 8 133Y doi 10 1038 s41467 017 00171 w PMC 5527107 PMID 28743963 Ron D Habener JF March 1992 CHOP a novel developmentally regulated nuclear protein that dimerizes with transcription factors C EBP and LAP and functions as a dominant negative inhibitor of gene transcription Genes amp Development 6 3 439 53 doi 10 1101 gad 6 3 439 PMID 1547942 a b c Li G Mongillo M Chin KT Harding H Ron D Marks AR Tabas I September 2009 Role of ERO1 alpha mediated stimulation of inositol 1 4 5 triphosphate receptor activity in endoplasmic reticulum stress induced apoptosis The Journal of Cell Biology 186 6 783 92 doi 10 1083 jcb 200904060 PMC 2753154 PMID 19752026 Oyadomari S Mori M April 2004 Roles of CHOP GADD153 in endoplasmic reticulum stress Cell Death and Differentiation 11 4 381 9 doi 10 1038 sj cdd 4401373 PMID 14685163 Yoshida H February 2007 ER stress and diseases The FEBS Journal 274 3 630 58 doi 10 1111 j 1742 4658 2007 05639 x PMID 17288551 S2CID 25715028 Ayaub EA Kolb PS Mohammed Ali Z Tat V Murphy J Bellaye PS Shimbori C Boivin FJ Lai R Lynn EG Lhotak S Bridgewater D Kolb MR Inman MD Dickhout JG Austin RC Ask K August 2016 GRP78 and CHOP modulate macrophage apoptosis and the development of bleomycin induced pulmonary fibrosis The Journal of Pathology 239 4 411 25 doi 10 1002 path 4738 PMID 27135434 Lucke Wold BP Turner RC Logsdon AF Nguyen L Bailes JE Lee JM et al March 2016 Endoplasmic reticulum stress implicated in chronic traumatic encephalopathy Journal of Neurosurgery 124 3 687 702 doi 10 3171 2015 3 JNS141802 PMID 26381255 Kropski JA Blackwell TS January 2018 Endoplasmic reticulum stress in the pathogenesis of fibrotic disease The Journal of Clinical Investigation 128 1 64 73 doi 10 1172 JCI93560 PMC 5749533 PMID 29293089 Rozpedek W Pytel D Mucha B Leszczynska H Diehl JA Majsterek I 2016 The Role of the PERK eIF2a ATF4 CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress Current Molecular Medicine 16 6 533 44 doi 10 2174 1566524016666160523143937 PMC 5008685 PMID 27211800 Sano R Reed JC December 2013 ER stress induced cell death mechanisms Biochimica et Biophysica Acta BBA Molecular Cell Research 1833 12 3460 3470 doi 10 1016 j bbamcr 2013 06 028 PMC 3834229 PMID 23850759 Senkal CE Ponnusamy S Bielawski J Hannun YA Ogretmen B January 2010 Antiapoptotic roles of ceramide synthase 6 generated C16 ceramide via selective regulation of the ATF6 CHOP arm of ER stress response pathways FASEB Journal 24 1 296 308 doi 10 1096 fj 09 135087 PMC 2797032 PMID 19723703 Xu W Gao L Li T Zheng J Shao A Zhang J September 2018 Apelin 13 Alleviates Early Brain Injury after Subarachnoid Hemorrhage via Suppression of Endoplasmic Reticulum Stress mediated Apoptosis and Blood Brain Barrier Disruption Possible Involvement of ATF6 CHOP Pathway Neuroscience 388 284 296 doi 10 1016 j neuroscience 2018 07 023 PMID 30036660 S2CID 51711178 Yoshida H Okada T Haze K Yanagi H Yura T Negishi M Mori K September 2000 ATF6 activated by proteolysis binds in the presence of NF Y CBF directly to the cis acting element responsible for the mammalian unfolded protein response Molecular and Cellular Biology 20 18 6755 67 doi 10 1128 mcb 20 18 6755 6767 2000 PMC 86199 PMID 10958673 Han D Lerner AG Vande Walle L Upton JP Xu W Hagen A et al August 2009 IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates Cell 138 3 562 75 doi 10 1016 j cell 2009 07 017 PMC 2762408 PMID 19665977 Yoshida H Matsui T Yamamoto A Okada T Mori K December 2001 XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor Cell 107 7 881 91 doi 10 1016 s0092 8674 01 00611 0 PMID 11779464 S2CID 9460062 Hetz C Martinon F Rodriguez D Glimcher LH October 2011 The unfolded protein response integrating stress signals through the stress sensor IRE1a Physiological Reviews 91 4 1219 43 doi 10 1152 physrev 00001 2011 hdl 10533 135654 PMID 22013210 S2CID 33644823 Yang Y Liu L Naik I Braunstein Z Zhong J Ren B 2017 Transcription Factor C EBP Homologous Protein in Health and Diseases Frontiers in Immunology 8 1612 doi 10 3389 fimmu 2017 01612 PMC 5712004 PMID 29230213 Kim I Xu W Reed JC December 2008 Cell death and endoplasmic reticulum stress disease relevance and therapeutic opportunities Nature Reviews Drug Discovery 7 12 1013 30 doi 10 1038 nrd2755 PMID 19043451 S2CID 7652866 Wang XZ Ron D May 1996 Stress induced phosphorylation and activation of the transcription factor CHOP GADD153 by p38 MAP Kinase Science 272 5266 1347 9 Bibcode 1996Sci 272 1347W doi 10 1126 science 272 5266 1347 PMID 8650547 S2CID 20439571 Ron D Hubbard SR January 2008 How IRE1 reacts to ER stress Cell 132 1 24 6 doi 10 1016 j cell 2007 12 017 PMID 18191217 S2CID 15705605 Sari FR Widyantoro B Thandavarayan RA Harima M Lakshmanan AP Zhang S et al 2011 Attenuation of CHOP mediated myocardial apoptosis in pressure overloaded dominant negative p38a mitogen activated protein kinase mice Cellular Physiology and Biochemistry 27 5 487 96 doi 10 1159 000329970 PMID 21691066 a b Guo X Meng Y Sheng X Guan Y Zhang F Han Z et al January 2017 Tunicamycin enhances human colon cancer cells to TRAIL induced apoptosis by JNK CHOP mediated DR5 upregulation and the inhibition of the EGFR pathway Anti Cancer Drugs 28 1 66 74 doi 10 1097 CAD 0000000000000431 PMID 27603596 S2CID 3570039 Bromati CR Lellis Santos C Yamanaka TS Nogueira TC Leonelli M Caperuto LC et al January 2011 UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4 CHOP stimulation of TRB3 expression American Journal of Physiology Regulatory Integrative and Comparative Physiology 300 1 R92 100 doi 10 1152 ajpregu 00169 2010 PMID 21068199 Campos G Schmidt Heck W Ghallab A Rochlitz K Putter L Medinas DB et al June 2014 The transcription factor CHOP a central component of the transcriptional regulatory network induced upon CCl4 intoxication in mouse liver is not a critical mediator of hepatotoxicity Archives of Toxicology 88 6 1267 80 doi 10 1007 s00204 014 1240 8 hdl 10533 127482 PMID 24748426 S2CID 17713296 Ghosh AP Klocke BJ Ballestas ME Roth KA 2012 06 28 CHOP potentially co operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress PLOS ONE 7 6 e39586 Bibcode 2012PLoSO 739586G doi 10 1371 journal pone 0039586 PMC 3386252 PMID 22761832 Galehdar Z Swan P Fuerth B Callaghan SM Park DS Cregan SP December 2010 Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4 CHOP mediated induction of the Bcl 2 homology 3 only member PUMA The Journal of Neuroscience 30 50 16938 48 doi 10 1523 JNEUROSCI 1598 10 2010 PMC 6634926 PMID 21159964 Ubeda M Wang XZ Zinszner H Wu I Habener JF Ron D April 1996 Stress induced binding of the transcriptional factor CHOP to a novel DNA control element Molecular and Cellular Biology 16 4 1479 89 doi 10 1128 mcb 16 4 1479 PMC 231132 PMID 8657121 Iurlaro R Munoz Pinedo C July 2016 Cell death induced by endoplasmic reticulum stress The FEBS Journal 283 14 2640 52 doi 10 1111 febs 13598 PMID 26587781 Tsukano H Gotoh T Endo M Miyata K Tazume H Kadomatsu T et al October 2010 The endoplasmic reticulum stress C EBP homologous protein pathway mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques Arteriosclerosis Thrombosis and Vascular Biology 30 10 1925 32 doi 10 1161 ATVBAHA 110 206094 PMID 20651282 Tuzlak S Kaufmann T Villunger A October 2016 Interrogating the relevance of mitochondrial apoptosis for vertebrate development and postnatal tissue homeostasis Genes amp Development 30 19 2133 2151 doi 10 1101 gad 289298 116 PMC 5088563 PMID 27798841 Morse E Schroth J You YH Pizzo DP Okada S Ramachandrarao S et al November 2010 TRB3 is stimulated in diabetic kidneys regulated by the ER stress marker CHOP and is a suppressor of podocyte MCP 1 American Journal of Physiology Renal Physiology 299 5 F965 72 doi 10 1152 ajprenal 00236 2010 PMC 2980398 PMID 20660016 Kopecka J Salaroglio IC Righi L Libener R Orecchia S Grosso F et al June 2018 Loss of C EBP b LIP drives cisplatin resistance in malignant pleural mesothelioma Lung Cancer 120 34 45 doi 10 1016 j lungcan 2018 03 022 hdl 2318 1665635 PMID 29748013 S2CID 13709561 Zhang P Sun Q Zhao C Ling S Li Q Chang YZ Li Y March 2014 HDAC4 protects cells from ER stress induced apoptosis through interaction with ATF4 Cellular Signalling 26 3 556 63 doi 10 1016 j cellsig 2013 11 026 PMID 24308964 S2CID 19428363 Ohoka N Yoshii S Hattori T Onozaki K Hayashi H March 2005 TRB3 a novel ER stress inducible gene is induced via ATF4 CHOP pathway and is involved in cell death The EMBO Journal 24 6 1243 55 doi 10 1038 sj emboj 7600596 PMC 556400 PMID 15775988 Du K Herzig S Kulkarni RN Montminy M June 2003 TRB3 a tribbles homolog that inhibits Akt PKB activation by insulin in liver Science 300 5625 1574 7 Bibcode 2003Sci 300 1574D doi 10 1126 science 1079817 PMID 12791994 S2CID 43360696 Li Y Zhu D Hou L Hu B Xu M Meng X January 2018 TRB3 reverses chemotherapy resistance and mediates crosstalk between endoplasmic reticulum stress and AKT signaling pathways in MHCC97H human hepatocellular carcinoma cells Oncology Letters 15 1 1343 1349 doi 10 3892 ol 2017 7361 PMC 5769383 PMID 29391905 a b c d Li T Su L Lei Y Liu X Zhang Y Liu X April 2015 DDIT3 and KAT2A Proteins Regulate TNFRSF10A and TNFRSF10B Expression in Endoplasmic Reticulum Stress mediated Apoptosis in Human Lung Cancer Cells The Journal of Biological Chemistry 290 17 11108 18 doi 10 1074 jbc M115 645333 PMC 4409269 PMID 25770212 Chen P Hu T Liang Y Li P Chen X Zhang J et al August 2016 Neddylation Inhibition Activates the Extrinsic Apoptosis Pathway through ATF4 CHOP DR5 Axis in Human Esophageal Cancer Cells PDF Clinical Cancer Research 22 16 4145 57 doi 10 1158 1078 0432 CCR 15 2254 PMID 26983464 Lu M Lawrence DA Marsters S Acosta Alvear D Kimmig P Mendez AS et al July 2014 Opposing unfolded protein response signals converge on death receptor 5 to control apoptosis Science 345 6192 98 101 Bibcode 2014Sci 345 98L doi 10 1126 science 1254312 PMC 4284148 PMID 24994655 Elmore S June 2007 Apoptosis a review of programmed cell death Toxicologic Pathology 35 4 495 516 doi 10 1080 01926230701320337 PMC 2117903 PMID 17562483 Marciniak SJ Yun CY Oyadomari S Novoa I Zhang Y Jungreis R et al December 2004 CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum Genes amp Development 18 24 3066 77 doi 10 1101 gad 1250704 PMC 535917 PMID 15601821 a b Panagopoulos I Hoglund M Mertens F Mandahl N Mitelman F Aman P February 1996 Fusion of the EWS and CHOP genes in myxoid liposarcoma Oncogene 12 3 489 94 PMID 8637704 Li G Scull C Ozcan L Tabas I December 2010 NADPH oxidase links endoplasmic reticulum stress oxidative stress and PKR activation to induce apoptosis The Journal of Cell Biology 191 6 1113 25 doi 10 1083 jcb 201006121 PMC 3002036 PMID 21135141 a b Mkrtchian S June 2015 Targeting unfolded protein response in cancer and diabetes Endocrine Related Cancer 22 3 C1 4 doi 10 1530 ERC 15 0106 PMID 25792543 Gupta MK Tahrir FG Knezevic T White MK Gordon J Cheung JY et al August 2016 GRP78 Interacting Partner Bag5 Responds to ER Stress and Protects Cardiomyocytes From ER Stress Induced Apoptosis Journal of Cellular Biochemistry 117 8 1813 21 doi 10 1002 jcb 25481 PMC 4909508 PMID 26729625 Bruchmann A Roller C Walther TV Schafer G Lehmusvaara S Visakorpi T et al March 2013 Bcl 2 associated athanogene 5 Bag5 is overexpressed in prostate cancer and inhibits ER stress induced apoptosis BMC Cancer 13 96 doi 10 1186 1471 2407 13 96 PMC 3598994 PMID 23448667 Chen BP Wolfgang CD Hai T March 1996 Analysis of ATF3 a transcription factor induced by physiological stresses and modulated by gadd153 Chop10 Molecular and Cellular Biology 16 3 1157 68 doi 10 1128 MCB 16 3 1157 PMC 231098 PMID 8622660 a b c Ubeda M Vallejo M Habener JF November 1999 CHOP enhancement of gene transcription by interactions with Jun Fos AP 1 complex proteins Molecular and Cellular Biology 19 11 7589 99 doi 10 1128 MCB 19 11 7589 PMC 84780 PMID 10523647 Hattori T Ohoka N Hayashi H Onozaki K April 2003 C EBP homologous protein CHOP up regulates IL 6 transcription by trapping negative regulating NF IL6 isoform FEBS Letters 541 1 3 33 9 doi 10 1016 s0014 5793 03 00283 7 PMID 12706815 S2CID 43792576 Fawcett TW Eastman HB Martindale JL Holbrook NJ June 1996 Physical and functional association between GADD153 and CCAAT enhancer binding protein beta during cellular stress The Journal of Biological Chemistry 271 24 14285 9 doi 10 1074 jbc 271 24 14285 PMID 8662954 Ubeda M Habener JF October 2003 CHOP transcription factor phosphorylation by casein kinase 2 inhibits transcriptional activation The Journal of Biological Chemistry 278 42 40514 20 doi 10 1074 jbc M306404200 PMID 12876286 Cui K Coutts M Stahl J Sytkowski AJ March 2000 Novel interaction between the transcription factor CHOP GADD153 and the ribosomal protein FTE S3a modulates erythropoiesis The Journal of Biological Chemistry 275 11 7591 6 doi 10 1074 jbc 275 11 7591 PMID 10713066 Song B Scheuner D Ron D Pennathur S Kaufman RJ October 2008 Chop deletion reduces oxidative stress improves beta cell function and promotes cell survival in multiple mouse models of diabetes The Journal of Clinical Investigation 118 10 3378 3389 doi 10 1172 JCI34587 ISSN 0021 9738 PMC 2528909 PMID 18776938 Maris M Overbergh L Gysemans C Waget A Cardozo AK Verdrengh E Cunha JP Gotoh T Cnop M Eizirik DL Burcelin R April 2012 Deletion of C EBP homologous protein Chop in C57Bl 6 mice dissociates obesity from insulin resistance PDF Diabetologia 55 4 1167 1178 doi 10 1007 s00125 011 2427 7 ISSN 0012 186X PMID 22237685 S2CID 12850216 a b Yong J Parekh VS Reilly SM Nayak J Chen Z Lebeaupin C Jang I Zhang J Prakash TP Sun H Murray S 2021 07 28 Chop Ddit3 depletion in b cells alleviates ER stress and corrects hepatic steatosis in mice Science Translational Medicine 13 604 doi 10 1126 scitranslmed aba9796 ISSN 1946 6242 PMC 8557800 PMID 34321322 WO application 2017192820 Monia Brett P Prakash Thazha P amp Kinberger Garth A et al GLP 1 receptor ligand moiety conjugated oligonucleotides and uses thereof published 2017 11 09 assigned to Ionis Pharmaceuticals Inc and AstraZeneca AB Yong J Johnson JD Arvan P Han J Kaufman RJ August 2021 Therapeutic opportunities for pancreatic b cell ER stress in diabetes mellitus Nature Reviews Endocrinology 17 8 455 467 doi 10 1038 s41574 021 00510 4 ISSN 1759 5037 PMC 8765009 PMID 34163039 a b Zhou Y Qi B Gu Y Xu F Du H Li X Fang W February 2016 Porcine Circovirus 2 Deploys PERK Pathway and GRP78 for Its Enhanced Replication in PK 15 Cells Viruses 8 2 56 doi 10 3390 v8020056 PMC 4776210 PMID 26907328 Ma R Yang L Niu F Buch S January 2016 HIV Tat Mediated Induction of Human Brain Microvascular Endothelial Cell Apoptosis Involves Endoplasmic Reticulum Stress and Mitochondrial Dysfunction Molecular Neurobiology 53 1 132 142 doi 10 1007 s12035 014 8991 3 PMC 4787264 PMID 25409632 Shah A Vaidya NK Bhat HK Kumar A January 2016 HIV 1 gp120 induces type 1 programmed cell death through ER stress employing IRE1a JNK and AP 1 pathway Scientific Reports 6 18929 Bibcode 2016NatSR 618929S doi 10 1038 srep18929 PMC 4703964 PMID 26740125 Liao Y Fung TS Huang M Fang SG Zhong Y Liu DX July 2013 Upregulation of CHOP GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal regulated kinase pathway Journal of Virology 87 14 8124 34 doi 10 1128 JVI 00626 13 PMC 3700216 PMID 23678184 Lim YJ Choi JA Choi HH Cho SN Kim HJ Jo EK et al 2011 Endoplasmic reticulum stress pathway mediated apoptosis in macrophages contributes to the survival of Mycobacterium tuberculosis PLOS ONE 6 12 e28531 Bibcode 2011PLoSO 628531L doi 10 1371 journal pone 0028531 PMC 3237454 PMID 22194844 Seimon TA Kim MJ Blumenthal A Koo J Ehrt S Wainwright H et al September 2010 Induction of ER stress in macrophages of tuberculosis granulomas PLOS ONE 5 9 e12772 Bibcode 2010PLoSO 512772S doi 10 1371 journal pone 0012772 PMC 2939897 PMID 20856677 Akazawa Y Isomoto H Matsushima K Kanda T Minami H Yamaghchi N et al 2013 Endoplasmic reticulum stress contributes to Helicobacter pylori VacA induced apoptosis PLOS ONE 8 12 e82322 Bibcode 2013PLoSO 882322A doi 10 1371 journal pone 0082322 PMC 3862672 PMID 24349255 Lee SY Lee MS Cherla RP Tesh VL March 2008 Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells Cellular Microbiology 10 3 770 80 doi 10 1111 j 1462 5822 2007 01083 x PMID 18005243 S2CID 29450691 Park JY Jeong YJ Park SK Yoon SJ Choi S Jeong DG et al October 2017 Shiga Toxins Induce Apoptosis and ER Stress in Human Retinal Pigment Epithelial Cells Toxins 9 10 319 doi 10 3390 toxins9100319 PMC 5666366 PMID 29027919 Wang HQ Du ZX Zhang HY Gao DX July 2007 Different induction of GRP78 and CHOP as a predictor of sensitivity to proteasome inhibitors in thyroid cancer cells Endocrinology 148 7 3258 70 doi 10 1210 en 2006 1564 PMID 17431003 Waldschmitt N Berger E Rath E Sartor RB Weigmann B Heikenwalder M et al November 2014 C EBP homologous protein inhibits tissue repair in response to gut injury and is inversely regulated with chronic inflammation Mucosal Immunology 7 6 1452 66 doi 10 1038 mi 2014 34 PMID 24850428 Further reading editRamji DP Foka P August 2002 CCAAT enhancer binding proteins structure function and regulation The Biochemical Journal 365 Pt 3 561 75 doi 10 1042 BJ20020508 PMC 1222736 PMID 12006103 Oyadomari S Mori M April 2004 Roles of CHOP GADD153 in endoplasmic reticulum stress Cell Death and Differentiation 11 4 381 9 doi 10 1038 sj cdd 4401373 PMID 14685163 Aman P Ron D Mandahl N Fioretos T Heim S Arheden K et al November 1992 Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t 12 16 q13 p11 Genes Chromosomes amp Cancer 5 4 278 85 doi 10 1002 gcc 2870050403 PMID 1283316 S2CID 1998665 Park JS Luethy JD Wang MG Fargnoli J Fornace AJ McBride OW Holbrook NJ July 1992 Isolation characterization and chromosomal localization of the human GADD153 gene Gene 116 2 259 67 doi 10 1016 0378 1119 92 90523 R PMID 1339368 Ron D Habener JF March 1992 CHOP a novel developmentally regulated nuclear protein that dimerizes with transcription factors C EBP and LAP and functions as a dominant negative inhibitor of gene transcription Genes amp Development 6 3 439 53 doi 10 1101 gad 6 3 439 PMID 1547942 Eneroth M Mandahl N Heim S Willen H Rydholm A Alberts KA Mitelman F August 1990 Localization of the chromosomal breakpoints of the t 12 16 in liposarcoma to subbands 12q13 3 and 16p11 2 Cancer Genetics and Cytogenetics 48 1 101 7 doi 10 1016 0165 4608 90 90222 V PMID 2372777 Rabbitts TH Forster A Larson R Nathan P June 1993 Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t 12 16 in malignant liposarcoma Nature Genetics 4 2 175 80 doi 10 1038 ng0693 175 PMID 7503811 S2CID 5964293 Crozat A Aman P Mandahl N Ron D June 1993 Fusion of CHOP to a novel RNA binding protein in human myxoid liposarcoma Nature 363 6430 640 4 Bibcode 1993Natur 363 640C doi 10 1038 363640a0 PMID 8510758 S2CID 4358184 Chen BP Wolfgang CD Hai T March 1996 Analysis of ATF3 a transcription factor induced by physiological stresses and modulated by gadd153 Chop10 Molecular and Cellular Biology 16 3 1157 68 doi 10 1128 MCB 16 3 1157 PMC 231098 PMID 8622660 Wang XZ Ron D May 1996 Stress induced phosphorylation and activation of the transcription factor CHOP GADD153 by p38 MAP Kinase Science 272 5266 1347 9 Bibcode 1996Sci 272 1347W doi 10 1126 science 272 5266 1347 PMID 8650547 S2CID 20439571 Fawcett TW Eastman HB Martindale JL Holbrook NJ June 1996 Physical and functional association between GADD153 and CCAAT enhancer binding protein beta during cellular stress The Journal of Biological Chemistry 271 24 14285 9 doi 10 1074 jbc 271 24 14285 PMID 8662954 Ubeda M Vallejo M Habener JF November 1999 CHOP enhancement of gene transcription by interactions with Jun Fos AP 1 complex proteins Molecular and Cellular Biology 19 11 7589 99 doi 10 1128 MCB 19 11 7589 PMC 84780 PMID 10523647 Cui K Coutts M Stahl J Sytkowski AJ March 2000 Novel interaction between the transcription factor CHOP GADD153 and the ribosomal protein FTE S3a modulates erythropoiesis The Journal of Biological Chemistry 275 11 7591 6 doi 10 1074 jbc 275 11 7591 PMID 10713066 Gotoh T Oyadomari S Mori K Mori M April 2002 Nitric oxide induced apoptosis in RAW 264 7 macrophages is mediated by endoplasmic reticulum stress pathway involving ATF6 and CHOP The Journal of Biological Chemistry 277 14 12343 50 doi 10 1074 jbc M107988200 PMID 11805088 Satoh T Toyoda M Hoshino H Monden T Yamada M Shimizu H et al March 2002 Activation of peroxisome proliferator activated receptor gamma stimulates the growth arrest and DNA damage inducible 153 gene in non small cell lung carcinoma cells Oncogene 21 14 2171 80 doi 10 1038 sj onc 1205279 PMID 11948400 Qiao D Im E Qi W Martinez JD June 2002 Activator protein 1 and CCAAT enhancer binding protein mediated GADD153 expression is involved in deoxycholic acid induced apoptosis Biochimica et Biophysica Acta BBA Molecular and Cell Biology of Lipids 1583 1 108 16 doi 10 1016 s1388 1981 02 00190 7 PMID 12069855 Talukder AH Wang RA Kumar R June 2002 Expression and transactivating functions of the bZIP transcription factor GADD153 in mammary epithelial cells Oncogene 21 27 4289 300 doi 10 1038 sj onc 1205529 PMID 12082616 S2CID 20369894 External links editDDIT3 protein human at the U S National Library of Medicine Medical Subject Headings MeSH This article incorporates text from the United States National Library of Medicine which is in the public domain Retrieved from https en wikipedia org w index php title DNA damage inducible transcript 3 amp oldid 1220531751, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.