fbpx
Wikipedia

Cumulus cloud

Cumulus clouds are clouds which have flat bases and are often described as "puffy", "cotton-like" or "fluffy" in appearance. Their name derives from the Latin cumulo-, meaning heap or pile.[1] Cumulus clouds are low-level clouds, generally less than 2,000 m (6,600 ft) in altitude unless they are the more vertical cumulus congestus form. Cumulus clouds may appear by themselves, in lines, or in clusters.

Cumulus
Small cumulus humilis clouds that can have noticeable vertical development and clearly defined edges.
AbbreviationCu
Symbol
GenusCumulus (heap)
Species
Variety
  • Radiatuse
Altitude200–2,000 m
(1,000–7,000 ft)
ClassificationFamily C (Low-level)
AppearanceLow-altitude, fluffy heaps of clouds with cotton-like appearance.
PrecipitationUncommon Rain, Snow or Snow pellets

Cumulus clouds are often precursors of other types of clouds, such as cumulonimbus, when influenced by weather factors such as instability, moisture, and temperature gradient. Normally, cumulus clouds produce little or no precipitation, but they can grow into the precipitation-bearing congests or cumulonimbus clouds. Cumulus clouds can be formed from water vapour, supercooled water droplets, or ice crystals, depending upon the ambient temperature. They come in many distinct subforms and generally cool the earth by reflecting the incoming solar radiation. Cumulus clouds are part of the larger category of free-convective cumuliform clouds, which include cumulonimbus clouds. The latter genus-type is sometimes categorized separately as cumulonimbiform due to its more complex structure that often includes a cirriform or anvil top.[2] There are also cumuliform clouds of limited convection that comprise stratocumulus (low-étage), altocumulus (middle-étage) and cirrocumulus (high-étage).[3] These last three genus-types are sometimes classified separately as stratocumuliform.[2]

Formation

Cumulus clouds forming over the Congo River basin

Cumulus clouds form via atmospheric convection as air warmed by the surface begins to rise. As the air rises, the temperature drops (following the lapse rate), causing the relative humidity (RH) to rise. If convection reaches a certain level the RH reaches one hundred percent, and the "wet-adiabatic" phase begins. At this point a positive feedback ensues: since the RH is above 100%, water vapor condenses, releasing latent heat, warming the air and spurring further convection.

In this phase, water vapor condenses on various nuclei present in the air, forming the cumulus cloud. This creates the characteristic flat-bottomed puffy shape associated with cumulus clouds.[4][5] The height of the cloud (from its bottom to its top) depends on the temperature profile of the atmosphere and of the presence of any inversions.[6] During the convection, surrounding air is entrained (mixed) with the thermal and the total mass of the ascending air increases.[7] Rain forms in a cumulus cloud via a process involving two non-discrete stages. The first stage occurs after the droplets coalesce onto the various nuclei. Langmuir writes that surface tension in the water droplets provides a slightly higher pressure on the droplet, raising the vapor pressure by a small amount. The increased pressure results in those droplets evaporating and the resulting water vapor condensing on the larger droplets. Due to the extremely small size of the evaporating water droplets, this process becomes largely meaningless after the larger droplets have grown to around 20 to 30 micrometres, and the second stage takes over.[7] In the accretion phase, the raindrop begins to fall, and other droplets collide and combine with it to increase the size of the raindrop. Langmuir was able to develop a formula[note 1] which predicted that the droplet radius would grow unboundedly within a discrete time period.[8]

Description

 
Cumulus clouds seen from above

The liquid water density within a cumulus cloud has been found to change with height above the cloud base rather than being approximately constant throughout the cloud. In one particular study, the concentration was found to be zero at cloud base. As altitude increased, the concentration rapidly increased to the maximum concentration near the middle of the cloud. The maximum concentration was found to be anything up to 1.25 grams of water per kilogram of air. The concentration slowly dropped off as altitude increased to the height of the top of the cloud, where it immediately dropped to zero again.[9]

 
Lines of Cumulus clouds over Brittany

Cumulus clouds can form in lines stretching over 480 kilometres (300 mi) long called cloud streets. These cloud streets cover vast areas and may be broken or continuous. They form when wind shear causes horizontal circulation in the atmosphere, producing the long, tubular cloud streets.[10] They generally form during high-pressure systems, such as after a cold front.[11]

The height at which the cloud forms depends on the amount of moisture in the thermal that forms the cloud. Humid air will generally result in a lower cloud base. In temperate areas, the base of the cumulus clouds is usually below 550 metres (1,800 ft) above ground level, but it can range up to 2,400 metres (7,900 ft) in altitude. In arid and mountainous areas, the cloud base can be in excess of 6,100 metres (20,000 ft).[12]

 
Some cumulus mediocris clouds

Cumulus clouds can be composed of ice crystals, water droplets, supercooled water droplets, or a mixture of them.[1] The water droplets form when water vapor condenses on the nuclei, and they may then coalesce into larger and larger droplets.

One study found that in temperate regions, the cloud bases studied ranged from 500 to 1,500 metres (1,600 to 4,900 ft) above ground level. These clouds were normally above 25 °C (77 °F), and the concentration of droplets ranged from 23 to 1,300 droplets per cubic centimetre (380 to 21,300 per cubic inch). This data was taken from growing isolated cumulus clouds that were not precipitating.[13] The droplets were very small, ranging down to around 5 micrometres in diameter. Although smaller droplets may have been present, the measurements were not sensitive enough to detect them.[14] The smallest droplets were found in the lower portions of the clouds, with the percentage of large droplets (around 20 to 30 micrometres) rising dramatically in the upper regions of the cloud. The droplet size distribution was slightly bimodal in nature, with peaks at the small and large droplet sizes and a slight trough in the intermediate size range. The skew was roughly neutral.[15] Furthermore, large droplet size is roughly inversely proportional to the droplet concentration per unit volume of air.[16]

In places, cumulus clouds can have "holes" where there are no water droplets. These can occur when winds tear the cloud and incorporate the environmental air or when strong downdrafts evaporate the water.[17][18]

Subforms

Cumulus clouds come in four distinct species, cumulus humilis, mediocris, congestus, and fractus. These species may be arranged into the variety, cumulus radiatus; and may be accompanied by up to seven supplementary features, cumulus pileus, velum, virga, praecipitatio, arcus, pannus, and tuba.[19][20]

The species Cumulus fractus is ragged in appearance and can form in clear air as a precursor to cumulus humilis and larger cumulus species-types; or it can form in precipitation as the supplementary feature pannus (also called scud) which can also include stratus fractus of bad weather.[21][22] Cumulus humilis clouds look like puffy, flattened shapes. Cumulus mediocris clouds look similar, except that they have some vertical development. Cumulus congestus clouds have a cauliflower-like structure and tower high into the atmosphere, hence their alternate name "towering cumulus".[23] The variety Cumulus radiatus forms in radial bands called cloud streets and can comprise any of the four species of cumulus.[24]

Cumulus supplementary features are most commonly seen with the species congestus. Cumulus virga clouds are cumulus clouds producing virga (precipitation that evaporates while aloft), and cumulus praecipitatio produce precipitation that reaches the Earth's surface.[25] Cumulus pannus comprise shredded clouds that normally appear beneath the parent cumulus cloud during precipitation. Cumulus arcus clouds have a gust front,[26] and cumulus tuba clouds have funnel clouds or tornadoes.[27] Cumulus pileus clouds refer to cumulus clouds that have grown so rapidly as to force the formation of pileus over the top of the cloud.[28] Cumulus velum clouds have an ice crystal veil over the growing top of the cloud.[19] There are also cumulus cataractagenitus. These are formed by waterfalls.[29]

Forecast

Cumulus humilis clouds usually indicate fair weather.[23] Cumulus mediocris clouds are similar, except that they have some vertical development, which implies that they can grow into cumulus congestus or even cumulonimbus clouds, which can produce heavy rain, lightning, severe winds, hail, and even tornadoes.[4][23][30] Cumulus congestus clouds, which appear as towers, will often grow into cumulonimbus storm clouds. They can produce precipitation.[23] Glider pilots often pay close attention to cumulus clouds, as they can be indicators of rising air drafts or thermals underneath that can suck the plane high into the sky—a phenomenon known as cloud suck.[31]

Effects on climate

 
Cumulus congestus clouds compared against a cumulonimbus cloud in the background

Due to reflectivity, clouds cool the earth by around 12 °C (22 °F), an effect largely caused by stratocumulus clouds. However, at the same time, they heat the earth by around 7 °C (13 °F) by reflecting emitted radiation, an effect largely caused by cirrus clouds. This averages out to a net loss of 5 °C (9.0 °F).[32] Cumulus clouds, on the other hand, have a variable effect on heating the earth's surface.[33] The more vertical cumulus congestus species and cumulonimbus genus of clouds grow high into the atmosphere, carrying moisture with them, which can lead to the formation of cirrus clouds. The researchers speculated that this might even produce a positive feedback, where the increasing upper atmospheric moisture further warms the earth, resulting in an increasing number of cumulus congestus clouds carrying more moisture into the upper atmosphere.[34]

Relation to other clouds

Cumulus clouds are a genus of free-convective low-level cloud along with the related limited-convective cloud stratocumulus. These clouds form from ground level to 2,000 metres (6,600 ft) at all latitudes. Stratus clouds are also low-level. In the middle level are the alto- clouds, which consist of the limited-convective stratocumuliform cloud altocumulus and the stratiform cloud altostratus. Mid-level clouds form from 2,000 metres (6,600 ft) to 7,000 metres (23,000 ft) in polar areas, 7,000 metres (23,000 ft) in temperate areas, and 7,600 metres (24,900 ft) in tropical areas. The high-level cloud, cirrocumulus, is a stratocumuliform cloud of limited convection. The other clouds in this level are cirrus and cirrostratus. High clouds form 3,000 to 7,600 metres (9,800 to 24,900 ft) in high latitudes, 5,000 to 12,000 metres (16,000 to 39,000 ft) in temperate latitudes, and 6,100 to 18,000 metres (20,000 to 59,100 ft) in low, tropical latitudes.[12] Cumulonimbus clouds, like cumulus congestus, extend vertically rather than remaining confined to one level.[35]

Cirrocumulus clouds

 
A large field of cirrocumulus clouds

Cirrocumulus clouds form in patches[36] and cannot cast shadows. They commonly appear in regular, rippling patterns[37] or in rows of clouds with clear areas between.[38] Cirrocumulus are, like other members of the cumuliform and stratocumuliform categories, formed via convective processes.[39] Significant growth of these patches indicates high-altitude instability and can signal the approach of poorer weather.[40][41] The ice crystals in the bottoms of cirrocumulus clouds tend to be in the form of hexagonal cylinders. They are not solid, but instead tend to have stepped funnels coming in from the ends. Towards the top of the cloud, these crystals have a tendency to clump together.[42] These clouds do not last long, and they tend to change into cirrus because as the water vapor continues to deposit on the ice crystals, they eventually begin to fall, destroying the upward convection. The cloud then dissipates into cirrus.[43] Cirrocumulus clouds come in four species which are common to all three genus-types that have limited-convective or stratocumuliform characteristics: stratiformis, lenticularis, castellanus, and floccus.[40] They are iridescent when the constituent supercooled water droplets are all about the same size.[41]

Altocumulus clouds

 
Altocumulus clouds

Altocumulus clouds are a mid-level cloud that forms from 2,000 metres (6,600 ft) high to 4,000 metres (13,000 ft) in polar areas, 7,000 metres (23,000 ft) in temperate areas, and 7,600 metres (24,900 ft) in tropical areas.[12] They can have precipitation and are commonly composed of a mixture of ice crystals, supercooled water droplets, and water droplets in temperate latitudes. However, the liquid water concentration was almost always significantly greater than the concentration of ice crystals, and the maximum concentration of liquid water tended to be at the top of the cloud while the ice concentrated itself at the bottom.[44][45] The ice crystals in the base of the altocumulus clouds and in the virga were found to be dendrites or conglomerations of dendrites while needles and plates resided more towards the top.[45] Altocumulus clouds can form via convection or via the forced uplift caused by a warm front.[46]

Stratocumulus clouds

 
Stratocumulus clouds

A stratocumulus cloud is another type of stratocumuliform cloud. Like cumulus clouds, they form at low levels[38] and via convection. However, unlike cumulus clouds, their growth is almost completely retarded by a strong inversion. As a result, they flatten out like stratus clouds, giving them a layered appearance. These clouds are extremely common, covering on average around twenty-three percent of the earth's oceans and twelve percent of the earth's continents. They are less common in tropical areas and commonly form after cold fronts. Additionally, stratocumulus clouds reflect a large amount of the incoming sunlight, producing a net cooling effect.[47] Stratocumulus clouds can produce drizzle, which stabilizes the cloud by warming it and reducing turbulent mixing.[48]

Cumulonimbus clouds

Cumulonimbus clouds are the final form of growing cumulus clouds. They form when cumulus congestus clouds develop a strong updraft that propels their tops higher and higher into the atmosphere until they reach the tropopause at 18,000 metres (59,000 ft) in altitude. Cumulonimbus clouds, commonly called thunderheads, can produce high winds, torrential rain, lightning, gust fronts, waterspouts, funnel clouds, and tornadoes. They commonly have anvil clouds.[23][35][49]

Horseshoe clouds

A short-lived horseshoe cloud may occur when a horseshoe vortex deforms a cumulus cloud.[50]

Extraterrestrial

Some cumuliform and stratocumuliform clouds have been discovered on most other planets in the solar system. On Mars, the Viking Orbiter detected cirrocumulus and stratocumulus clouds forming via convection primarily near the polar icecaps.[51] The Galileo space probe detected massive cumulonimbus clouds near the Great Red Spot on Jupiter.[52] Cumuliform clouds have also been detected on Saturn. In 2008, the Cassini spacecraft determined that cumulus clouds near Saturn's south pole were part of a cyclone over 4,000 kilometres (2,500 mi) in diameter.[53] The Keck Observatory detected whitish cumulus clouds on Uranus.[54] Like Uranus, Neptune has methane cumulus clouds.[55] Venus, however, does not appear to have cumulus clouds.[56]

See also

Notes

  1. ^ The formula was  , with   being the time to infinite radius,   being the viscosity of air,   being the fractional percentage of water droplets accreted per unit volume of air that the drop falls through,   being the concentration of water in the cloud in grams per cubic metre, and   being the initial radius of the droplet.

References

Footnotes

  1. ^ a b . National Oceanic and Atmospheric Administration. Archived from the original on 17 October 2012. Retrieved 18 October 2012.
  2. ^ a b Barrett, E.C.; Grant, C.K. (1976). . NASA. Archived from the original on 2013-10-05. Retrieved 2012-08-22.
  3. ^ Geerts, B (April 2000). "Cumuliform Clouds: Some Examples". Resources in Atmospheric Sciences. University of Wyoming College of Atmospheric Sciences. Retrieved 11 February 2013.
  4. ^ a b . Weather. 16 October 2005. Archived from the original on 28 June 2017. Retrieved 16 October 2012.
  5. ^ Stommel 1947, p. 91
  6. ^ Mossop & Hallett 1974, pp. 632–634
  7. ^ a b Langmuir 1948, p. 175
  8. ^ Langmuir 1948, p. 177
  9. ^ Stommel 1947, p. 94
  10. ^ Weston 1980, p. 433
  11. ^ Weston 1980, pp. 437–438
  12. ^ a b c . JetStream. National Weather Service. Archived from the original on 7 November 2014. Retrieved 21 July 2014.
  13. ^ Warner 1969, p. 1049
  14. ^ Warner 1969, p. 1051
  15. ^ Warner 1969, p. 1052
  16. ^ Warner 1969, p. 1054
  17. ^ Warner 1969, p. 1056
  18. ^ Warner 1969, p. 1058
  19. ^ a b "WMO classification of clouds" (PDF). World Meteorological Organization. (PDF) from the original on 2005-02-26. Retrieved 18 October 2012.
  20. ^ Pretor-Pinney 2007, p. 17
  21. ^ . JetStream - Online School for Weather: Cloud Classifications. National Weather Service. Archived from the original on 18 January 2012. Retrieved 11 February 2013.
  22. ^ Allaby, Michael, ed. (2010). "Pannus". A Dictionary of Ecology (4th ed.). Oxford University Press. doi:10.1093/acref/9780199567669.001.0001. ISBN 978-0-19-956766-9.
  23. ^ a b c d e . The Weather Channel. Archived from the original on 17 October 2012. Retrieved 18 October 2012.
  24. ^ Pretor-Pinney 2007, p. 20
  25. ^ Dunlop 2003, pp. 77–78
  26. ^ Ludlum 2000, p. 473
  27. ^ Dunlop 2003, p. 79
  28. ^ Garrett et al. 2006, p. i
  29. ^ "Cataractagenitus". International Cloud Atlas.
  30. ^ Thompson, Philip; Robert O'Brien (1965). Weather. New York: Time Inc. pp. 86–87.
  31. ^ Pagen 2001, pp. 105–108
  32. ^ "Cloud Climatology". International Satellite Cloud Climatology Program. National Aeronautics and Space Administration. Retrieved 12 July 2011.
  33. ^ . National Science Foundation. Archived from the original on 29 January 2013. Retrieved 23 October 2012.
  34. ^ Del Genfo, Lacis & Ruedy 1991, p. 384
  35. ^ a b "Cumulonimbus Incus". Universities Space Research Association. 5 August 2009. Retrieved 23 October 2012.
  36. ^ Miyazaki et al. 2001, p. 364
  37. ^ Hubbard & Hubbard 2000, p. 340
  38. ^ a b Funk, Ted. (PDF). The Science Corner. National Oceanic and Atmospheric Administration. p. 1. Archived from the original (PDF) on July 20, 2004. Retrieved 19 October 2012.
  39. ^ Parungo 1995, p. 251
  40. ^ a b (PDF). Georgia Institute of Technology. pp. 2, 10–13. Archived from the original (PDF) on 12 May 2011. Retrieved 12 February 2011.
  41. ^ a b Ludlum 2000, p. 448
  42. ^ Parungo 1995, p. 252
  43. ^ Parungo 1995, p. 254
  44. ^ Carey et al. 2008, p. 2490
  45. ^ a b Carey et al. 2008, p. 2491
  46. ^ Carey et al. 2008, p. 2494
  47. ^ Wood 2012, p. 2374
  48. ^ Wood 2012, p. 2398
  49. ^ Ludlum 2000, p. 471
  50. ^ "An incredibly rare 'horseshoe cloud' was spotted in Nevada and it kept the meme-makers busy". Independent.ie. 12 March 2018. Retrieved 12 March 2018.
  51. ^ "NASA SP-441: Viking Orbiter Views of Mars". National Aeronautics and Space Administration. Retrieved 26 January 2013.
  52. ^ "Thunderheads on Jupiter". Jet Propulsion Laboratory. National Aeronautics and Space Administration. Retrieved 26 January 2013.
  53. ^ Minard, Anne (14 October 2008). . National Geographic News. Archived from the original on 23 November 2012. Retrieved 26 January 2013.
  54. ^ Boyle, Rebecca (18 October 2012). "Check Out The Most Richly Detailed Image Ever Taken Of Uranus". Popular Science. Retrieved 26 January 2013.
  55. ^ Irwin 2003, p. 115
  56. ^ Bougher & Phillips 1997, pp. 127–129

Bibliography

  • Bougher, Stephen Wesley; Phillips, Roger (1997). Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment. University of Arizona Press. ISBN 978-0-8165-1830-2.
  • Carey, Lawrence D.; Niu, Jianguo; Yang, Ping; Kankiewicz, J. Adam; Larson, Vincent E.; Haar, Thomas H. Vonder (September 2008). "The Vertical Profile of Liquid and Ice Water Content in Midlatitude Mixed-Phase Altocumulus Clouds". Journal of Applied Meteorology and Climatology. 47 (9): 2487–2495. Bibcode:2008JApMC..47.2487C. doi:10.1175/2008JAMC1885.1.
  • Cho, H. R.; Iribarne, J. V.; Niewiadomski, M.; Melo, O. (20 September 1989). (PDF). Journal of Geophysical Research. 94 (D10): 12, 895–12, 910. Bibcode:1989JGR....9412895C. doi:10.1029/jd094id10p12895. Archived from the original (PDF) on 14 August 2014. Retrieved 28 November 2012.
  • Del Genfo, Anthony D.; Lacis, Andrew A.; Ruedy, Reto A. (30 May 1991). "Simulations of the effect of a warmer climate on atmospheric humidity". Nature. 351 (6325): 382–385. Bibcode:1991Natur.351..382G. doi:10.1038/351382a0. S2CID 4274337.
  • Dunlop, Storm (June 2003). The Weather Identification Handbook. Lyons Press. ISBN 978-1-58574-857-0.
  • Garrett, T. J.; Dean-Day, J.; Liu, C.; Barnett, B.; Mace, G.; Baumgardner, D.; Webster, C.; Bui, T.; Read, W.; Minnis, P. (19 April 2006). "Convective formation of pileus cloud near the tropopause". Atmospheric Chemistry and Physics. 6 (5): 1185–1200. Bibcode:2006ACP.....6.1185G. doi:10.5194/acp-6-1185-2006.
  • Hubbard, Richard; Hubbard, Richard Keith (2000). "Glossary". Boater's Bowditch: The Small Craft American Practical Navigator (2nd ed.). International Marine/Ragged Mountain Press. ISBN 978-0-07-136136-1.
  • Irwin, Patrick (July 2003). Giant Planets of Our Solar System: Atmospheres, Composition, and Structure (1st ed.). Springer. p. 115. ISBN 978-3-540-00681-7.
  • Junge, C. E. (1960). "Sulfur in the Atmosphere". Journal of Geophysical Research. 65 (1): 227–237. Bibcode:1960JGR....65..227J. doi:10.1029/JZ065i001p00227.
  • Langmuir, Irving (October 1948). "The Production of Rain by a Chain Reaction in Cumulus Clouds at Temperatures Above Freezing". Journal of Meteorology. 5 (5): 175–192. Bibcode:1948JAtS....5..175L. doi:10.1175/1520-0469(1948)005<0175:TPORBA>2.0.CO;2.
  • Ludlum, David McWilliams (2000). National Audubon Society Field Guide to Weather. Alfred A. Knopf. ISBN 978-0-679-40851-2. OCLC 56559729.
  • Miyazaki, Ryo; Yoshida, Satoru; Dobashi, Yoshinori; Nishita, Tomoyula (2001). "A method for modeling clouds based on atmospheric fluid dynamics". Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001. p. 363. CiteSeerX 10.1.1.76.7428. doi:10.1109/PCCGA.2001.962893. ISBN 978-0-7695-1227-3. S2CID 6656499.
  • Mossop, S. C.; Hallett, J. (November 1974). "Ice Crystal Concentration in Cumulus Clouds: Influence of the Drop Spectrum". Science Magazine. 186 (4164): 632–634. Bibcode:1974Sci...186..632M. doi:10.1126/science.186.4164.632. PMID 17833720. S2CID 19285155.
  • Pagen, Dennis (2001). The Art of Paragliding. Black Mountain Books. pp. 105–108. ISBN 978-0-936310-14-5.
  • Parungo, F. (May 1995). "Ice Crystals in High Clouds and Contrails". Atmospheric Research. 38 (1): 249–262. Bibcode:1995AtmRe..38..249P. doi:10.1016/0169-8095(94)00096-V. OCLC 90987092.
  • Pretor-Pinney, Gavin (June 2007). The Cloudspotter's Guide: The Science, History, and Culture of Clouds. Penguin Group. ISBN 978-1-101-20331-6.
  • Stommel, Harry (June 1947). "Entrainment of Air Into a Cumulus Cloud". Journal of Meteorology. 4 (3): 91–94. Bibcode:1947JAtS....4...91S. doi:10.1175/1520-0469(1947)004<0091:EOAIAC>2.0.CO;2.
  • Warner, J. (September 1969). "The Micro structure of Cumulus Cloud. Part I. General Features of the Droplet Spectrum". Journal of the Atmospheric Sciences. 26 (5): 1049–1059. Bibcode:1969JAtS...26.1049W. doi:10.1175/1520-0469(1969)026<1049:TMOCCP>2.0.CO;2.
  • Weston, K. J. (October 1980). "An Observational Study of Convective Cloud Streets". Tell Us. 32 (35): 433–438. Bibcode:1980Tell...32..433W. doi:10.1111/j.2153-3490.1980.tb00970.x.
  • Wood, Robert (August 2012). "Stratocumulus Clouds". Monthly Weather Review. 140 (8): 2373–2423. Bibcode:2012MWRv..140.2373W. doi:10.1175/MWR-D-11-00121.1.

External links

  • AMS Glossary of Meteorology

cumulus, cloud, cumulus, redirects, here, other, uses, cumulus, disambiguation, clouds, which, have, flat, bases, often, described, puffy, cotton, like, fluffy, appearance, their, name, derives, from, latin, cumulo, meaning, heap, pile, level, clouds, generall. Cumulus redirects here For other uses see Cumulus disambiguation Cumulus clouds are clouds which have flat bases and are often described as puffy cotton like or fluffy in appearance Their name derives from the Latin cumulo meaning heap or pile 1 Cumulus clouds are low level clouds generally less than 2 000 m 6 600 ft in altitude unless they are the more vertical cumulus congestus form Cumulus clouds may appear by themselves in lines or in clusters CumulusSmall cumulus humilis clouds that can have noticeable vertical development and clearly defined edges AbbreviationCuSymbolGenusCumulus heap SpeciesFractus Humilis Mediocris CongestusVarietyRadiatuseAltitude200 2 000 m 1 000 7 000 ft ClassificationFamily C Low level AppearanceLow altitude fluffy heaps of clouds with cotton like appearance PrecipitationUncommon Rain Snow or Snow pelletsCumulus clouds are often precursors of other types of clouds such as cumulonimbus when influenced by weather factors such as instability moisture and temperature gradient Normally cumulus clouds produce little or no precipitation but they can grow into the precipitation bearing congests or cumulonimbus clouds Cumulus clouds can be formed from water vapour supercooled water droplets or ice crystals depending upon the ambient temperature They come in many distinct subforms and generally cool the earth by reflecting the incoming solar radiation Cumulus clouds are part of the larger category of free convective cumuliform clouds which include cumulonimbus clouds The latter genus type is sometimes categorized separately as cumulonimbiform due to its more complex structure that often includes a cirriform or anvil top 2 There are also cumuliform clouds of limited convection that comprise stratocumulus low etage altocumulus middle etage and cirrocumulus high etage 3 These last three genus types are sometimes classified separately as stratocumuliform 2 Contents 1 Formation 2 Description 2 1 Subforms 3 Forecast 4 Effects on climate 5 Relation to other clouds 5 1 Cirrocumulus clouds 5 2 Altocumulus clouds 5 3 Stratocumulus clouds 5 4 Cumulonimbus clouds 5 5 Horseshoe clouds 6 Extraterrestrial 7 See also 8 Notes 9 References 9 1 Footnotes 9 2 Bibliography 10 External linksFormation Edit source source source source source source source source source source Cumulus clouds forming over the Congo River basin Cumulus clouds form via atmospheric convection as air warmed by the surface begins to rise As the air rises the temperature drops following the lapse rate causing the relative humidity RH to rise If convection reaches a certain level the RH reaches one hundred percent and the wet adiabatic phase begins At this point a positive feedback ensues since the RH is above 100 water vapor condenses releasing latent heat warming the air and spurring further convection In this phase water vapor condenses on various nuclei present in the air forming the cumulus cloud This creates the characteristic flat bottomed puffy shape associated with cumulus clouds 4 5 The height of the cloud from its bottom to its top depends on the temperature profile of the atmosphere and of the presence of any inversions 6 During the convection surrounding air is entrained mixed with the thermal and the total mass of the ascending air increases 7 Rain forms in a cumulus cloud via a process involving two non discrete stages The first stage occurs after the droplets coalesce onto the various nuclei Langmuir writes that surface tension in the water droplets provides a slightly higher pressure on the droplet raising the vapor pressure by a small amount The increased pressure results in those droplets evaporating and the resulting water vapor condensing on the larger droplets Due to the extremely small size of the evaporating water droplets this process becomes largely meaningless after the larger droplets have grown to around 20 to 30 micrometres and the second stage takes over 7 In the accretion phase the raindrop begins to fall and other droplets collide and combine with it to increase the size of the raindrop Langmuir was able to develop a formula note 1 which predicted that the droplet radius would grow unboundedly within a discrete time period 8 Description Edit Cumulus clouds seen from above The liquid water density within a cumulus cloud has been found to change with height above the cloud base rather than being approximately constant throughout the cloud In one particular study the concentration was found to be zero at cloud base As altitude increased the concentration rapidly increased to the maximum concentration near the middle of the cloud The maximum concentration was found to be anything up to 1 25 grams of water per kilogram of air The concentration slowly dropped off as altitude increased to the height of the top of the cloud where it immediately dropped to zero again 9 Lines of Cumulus clouds over Brittany Cumulus clouds can form in lines stretching over 480 kilometres 300 mi long called cloud streets These cloud streets cover vast areas and may be broken or continuous They form when wind shear causes horizontal circulation in the atmosphere producing the long tubular cloud streets 10 They generally form during high pressure systems such as after a cold front 11 The height at which the cloud forms depends on the amount of moisture in the thermal that forms the cloud Humid air will generally result in a lower cloud base In temperate areas the base of the cumulus clouds is usually below 550 metres 1 800 ft above ground level but it can range up to 2 400 metres 7 900 ft in altitude In arid and mountainous areas the cloud base can be in excess of 6 100 metres 20 000 ft 12 Some cumulus mediocris clouds Cumulus clouds can be composed of ice crystals water droplets supercooled water droplets or a mixture of them 1 The water droplets form when water vapor condenses on the nuclei and they may then coalesce into larger and larger droplets One study found that in temperate regions the cloud bases studied ranged from 500 to 1 500 metres 1 600 to 4 900 ft above ground level These clouds were normally above 25 C 77 F and the concentration of droplets ranged from 23 to 1 300 droplets per cubic centimetre 380 to 21 300 per cubic inch This data was taken from growing isolated cumulus clouds that were not precipitating 13 The droplets were very small ranging down to around 5 micrometres in diameter Although smaller droplets may have been present the measurements were not sensitive enough to detect them 14 The smallest droplets were found in the lower portions of the clouds with the percentage of large droplets around 20 to 30 micrometres rising dramatically in the upper regions of the cloud The droplet size distribution was slightly bimodal in nature with peaks at the small and large droplet sizes and a slight trough in the intermediate size range The skew was roughly neutral 15 Furthermore large droplet size is roughly inversely proportional to the droplet concentration per unit volume of air 16 In places cumulus clouds can have holes where there are no water droplets These can occur when winds tear the cloud and incorporate the environmental air or when strong downdrafts evaporate the water 17 18 Subforms Edit Cumulus clouds come in four distinct species cumulus humilis mediocris congestus and fractus These species may be arranged into the variety cumulus radiatus and may be accompanied by up to seven supplementary features cumulus pileus velum virga praecipitatio arcus pannus and tuba 19 20 The species Cumulus fractus is ragged in appearance and can form in clear air as a precursor to cumulus humilis and larger cumulus species types or it can form in precipitation as the supplementary feature pannus also called scud which can also include stratus fractus of bad weather 21 22 Cumulus humilis clouds look like puffy flattened shapes Cumulus mediocris clouds look similar except that they have some vertical development Cumulus congestus clouds have a cauliflower like structure and tower high into the atmosphere hence their alternate name towering cumulus 23 The variety Cumulus radiatus forms in radial bands called cloud streets and can comprise any of the four species of cumulus 24 Cumulus supplementary features are most commonly seen with the species congestus Cumulus virga clouds are cumulus clouds producing virga precipitation that evaporates while aloft and cumulus praecipitatio produce precipitation that reaches the Earth s surface 25 Cumulus pannus comprise shredded clouds that normally appear beneath the parent cumulus cloud during precipitation Cumulus arcus clouds have a gust front 26 and cumulus tuba clouds have funnel clouds or tornadoes 27 Cumulus pileus clouds refer to cumulus clouds that have grown so rapidly as to force the formation of pileus over the top of the cloud 28 Cumulus velum clouds have an ice crystal veil over the growing top of the cloud 19 There are also cumulus cataractagenitus These are formed by waterfalls 29 Forecast EditCumulus humilis clouds usually indicate fair weather 23 Cumulus mediocris clouds are similar except that they have some vertical development which implies that they can grow into cumulus congestus or even cumulonimbus clouds which can produce heavy rain lightning severe winds hail and even tornadoes 4 23 30 Cumulus congestus clouds which appear as towers will often grow into cumulonimbus storm clouds They can produce precipitation 23 Glider pilots often pay close attention to cumulus clouds as they can be indicators of rising air drafts or thermals underneath that can suck the plane high into the sky a phenomenon known as cloud suck 31 Effects on climate Edit Cumulus congestus clouds compared against a cumulonimbus cloud in the background Due to reflectivity clouds cool the earth by around 12 C 22 F an effect largely caused by stratocumulus clouds However at the same time they heat the earth by around 7 C 13 F by reflecting emitted radiation an effect largely caused by cirrus clouds This averages out to a net loss of 5 C 9 0 F 32 Cumulus clouds on the other hand have a variable effect on heating the earth s surface 33 The more vertical cumulus congestus species and cumulonimbus genus of clouds grow high into the atmosphere carrying moisture with them which can lead to the formation of cirrus clouds The researchers speculated that this might even produce a positive feedback where the increasing upper atmospheric moisture further warms the earth resulting in an increasing number of cumulus congestus clouds carrying more moisture into the upper atmosphere 34 Relation to other clouds EditCumulus clouds are a genus of free convective low level cloud along with the related limited convective cloud stratocumulus These clouds form from ground level to 2 000 metres 6 600 ft at all latitudes Stratus clouds are also low level In the middle level are the alto clouds which consist of the limited convective stratocumuliform cloud altocumulus and the stratiform cloud altostratus Mid level clouds form from 2 000 metres 6 600 ft to 7 000 metres 23 000 ft in polar areas 7 000 metres 23 000 ft in temperate areas and 7 600 metres 24 900 ft in tropical areas The high level cloud cirrocumulus is a stratocumuliform cloud of limited convection The other clouds in this level are cirrus and cirrostratus High clouds form 3 000 to 7 600 metres 9 800 to 24 900 ft in high latitudes 5 000 to 12 000 metres 16 000 to 39 000 ft in temperate latitudes and 6 100 to 18 000 metres 20 000 to 59 100 ft in low tropical latitudes 12 Cumulonimbus clouds like cumulus congestus extend vertically rather than remaining confined to one level 35 Cirrocumulus clouds Edit A large field of cirrocumulus clouds Main article Cirrocumulus cloud Cirrocumulus clouds form in patches 36 and cannot cast shadows They commonly appear in regular rippling patterns 37 or in rows of clouds with clear areas between 38 Cirrocumulus are like other members of the cumuliform and stratocumuliform categories formed via convective processes 39 Significant growth of these patches indicates high altitude instability and can signal the approach of poorer weather 40 41 The ice crystals in the bottoms of cirrocumulus clouds tend to be in the form of hexagonal cylinders They are not solid but instead tend to have stepped funnels coming in from the ends Towards the top of the cloud these crystals have a tendency to clump together 42 These clouds do not last long and they tend to change into cirrus because as the water vapor continues to deposit on the ice crystals they eventually begin to fall destroying the upward convection The cloud then dissipates into cirrus 43 Cirrocumulus clouds come in four species which are common to all three genus types that have limited convective or stratocumuliform characteristics stratiformis lenticularis castellanus and floccus 40 They are iridescent when the constituent supercooled water droplets are all about the same size 41 Altocumulus clouds Edit Altocumulus clouds Main article Altocumulus cloud Altocumulus clouds are a mid level cloud that forms from 2 000 metres 6 600 ft high to 4 000 metres 13 000 ft in polar areas 7 000 metres 23 000 ft in temperate areas and 7 600 metres 24 900 ft in tropical areas 12 They can have precipitation and are commonly composed of a mixture of ice crystals supercooled water droplets and water droplets in temperate latitudes However the liquid water concentration was almost always significantly greater than the concentration of ice crystals and the maximum concentration of liquid water tended to be at the top of the cloud while the ice concentrated itself at the bottom 44 45 The ice crystals in the base of the altocumulus clouds and in the virga were found to be dendrites or conglomerations of dendrites while needles and plates resided more towards the top 45 Altocumulus clouds can form via convection or via the forced uplift caused by a warm front 46 Stratocumulus clouds Edit Stratocumulus clouds Main article Stratocumulus cloud A stratocumulus cloud is another type of stratocumuliform cloud Like cumulus clouds they form at low levels 38 and via convection However unlike cumulus clouds their growth is almost completely retarded by a strong inversion As a result they flatten out like stratus clouds giving them a layered appearance These clouds are extremely common covering on average around twenty three percent of the earth s oceans and twelve percent of the earth s continents They are less common in tropical areas and commonly form after cold fronts Additionally stratocumulus clouds reflect a large amount of the incoming sunlight producing a net cooling effect 47 Stratocumulus clouds can produce drizzle which stabilizes the cloud by warming it and reducing turbulent mixing 48 Cumulonimbus clouds Edit Main article Cumulonimbus cloud Cumulonimbus clouds are the final form of growing cumulus clouds They form when cumulus congestus clouds develop a strong updraft that propels their tops higher and higher into the atmosphere until they reach the tropopause at 18 000 metres 59 000 ft in altitude Cumulonimbus clouds commonly called thunderheads can produce high winds torrential rain lightning gust fronts waterspouts funnel clouds and tornadoes They commonly have anvil clouds 23 35 49 Horseshoe clouds Edit Main article Horseshoe cloud A short lived horseshoe cloud may occur when a horseshoe vortex deforms a cumulus cloud 50 Extraterrestrial EditSome cumuliform and stratocumuliform clouds have been discovered on most other planets in the solar system On Mars the Viking Orbiter detected cirrocumulus and stratocumulus clouds forming via convection primarily near the polar icecaps 51 The Galileo space probe detected massive cumulonimbus clouds near the Great Red Spot on Jupiter 52 Cumuliform clouds have also been detected on Saturn In 2008 the Cassini spacecraft determined that cumulus clouds near Saturn s south pole were part of a cyclone over 4 000 kilometres 2 500 mi in diameter 53 The Keck Observatory detected whitish cumulus clouds on Uranus 54 Like Uranus Neptune has methane cumulus clouds 55 Venus however does not appear to have cumulus clouds 56 See also Edit Weather portalList of cloud typesNotes Edit The formula was t 18 h E g w r 0 displaystyle t 18 eta over Egwr 0 with t displaystyle t being the time to infinite radius h displaystyle eta being the viscosity of air E displaystyle E being the fractional percentage of water droplets accreted per unit volume of air that the drop falls through w displaystyle w being the concentration of water in the cloud in grams per cubic metre and r 0 displaystyle r 0 being the initial radius of the droplet References EditFootnotes Edit a b Cloud Classification and Characteristics National Oceanic and Atmospheric Administration Archived from the original on 17 October 2012 Retrieved 18 October 2012 a b Barrett E C Grant C K 1976 The identification of cloud types in LANDSAT MSS images NASA Archived from the original on 2013 10 05 Retrieved 2012 08 22 Geerts B April 2000 Cumuliform Clouds Some Examples Resources in Atmospheric Sciences University of Wyoming College of Atmospheric Sciences Retrieved 11 February 2013 a b Cumulus clouds Weather 16 October 2005 Archived from the original on 28 June 2017 Retrieved 16 October 2012 Stommel 1947 p 91 Mossop amp Hallett 1974 pp 632 634 a b Langmuir 1948 p 175 Langmuir 1948 p 177 Stommel 1947 p 94 Weston 1980 p 433 Weston 1980 pp 437 438 a b c Cloud Classifications JetStream National Weather Service Archived from the original on 7 November 2014 Retrieved 21 July 2014 Warner 1969 p 1049 Warner 1969 p 1051 Warner 1969 p 1052 Warner 1969 p 1054 Warner 1969 p 1056 Warner 1969 p 1058 a b WMO classification of clouds PDF World Meteorological Organization Archived PDF from the original on 2005 02 26 Retrieved 18 October 2012 Pretor Pinney 2007 p 17 L7 Clouds Stratus fractus StFra and or Cumulus fractus CuFra bad weather JetStream Online School for Weather Cloud Classifications National Weather Service Archived from the original on 18 January 2012 Retrieved 11 February 2013 Allaby Michael ed 2010 Pannus A Dictionary of Ecology 4th ed Oxford University Press doi 10 1093 acref 9780199567669 001 0001 ISBN 978 0 19 956766 9 a b c d e Weather Glossary The Weather Channel Archived from the original on 17 October 2012 Retrieved 18 October 2012 Pretor Pinney 2007 p 20 Dunlop 2003 pp 77 78 Ludlum 2000 p 473 Dunlop 2003 p 79 Garrett et al 2006 p i Cataractagenitus International Cloud Atlas Thompson Philip Robert O Brien 1965 Weather New York Time Inc pp 86 87 Pagen 2001 pp 105 108 Cloud Climatology International Satellite Cloud Climatology Program National Aeronautics and Space Administration Retrieved 12 July 2011 Will Clouds Speed or Slow Global Warming National Science Foundation Archived from the original on 29 January 2013 Retrieved 23 October 2012 Del Genfo Lacis amp Ruedy 1991 p 384 a b Cumulonimbus Incus Universities Space Research Association 5 August 2009 Retrieved 23 October 2012 Miyazaki et al 2001 p 364 Hubbard amp Hubbard 2000 p 340 a b Funk Ted Cloud Classifications and Characteristics PDF The Science Corner National Oceanic and Atmospheric Administration p 1 Archived from the original PDF on July 20 2004 Retrieved 19 October 2012 Parungo 1995 p 251 a b Common Cloud Names Shapes and Altitudes PDF Georgia Institute of Technology pp 2 10 13 Archived from the original PDF on 12 May 2011 Retrieved 12 February 2011 a b Ludlum 2000 p 448 Parungo 1995 p 252 Parungo 1995 p 254 Carey et al 2008 p 2490 a b Carey et al 2008 p 2491 Carey et al 2008 p 2494 Wood 2012 p 2374 Wood 2012 p 2398 Ludlum 2000 p 471 An incredibly rare horseshoe cloud was spotted in Nevada and it kept the meme makers busy Independent ie 12 March 2018 Retrieved 12 March 2018 NASA SP 441 Viking Orbiter Views of Mars National Aeronautics and Space Administration Retrieved 26 January 2013 Thunderheads on Jupiter Jet Propulsion Laboratory National Aeronautics and Space Administration Retrieved 26 January 2013 Minard Anne 14 October 2008 Mysterious Cyclones Seen at Both of Saturn s Poles National Geographic News Archived from the original on 23 November 2012 Retrieved 26 January 2013 Boyle Rebecca 18 October 2012 Check Out The Most Richly Detailed Image Ever Taken Of Uranus Popular Science Retrieved 26 January 2013 Irwin 2003 p 115 Bougher amp Phillips 1997 pp 127 129 Bibliography Edit Bougher Stephen Wesley Phillips Roger 1997 Venus II Geology Geophysics Atmosphere and Solar Wind Environment University of Arizona Press ISBN 978 0 8165 1830 2 Carey Lawrence D Niu Jianguo Yang Ping Kankiewicz J Adam Larson Vincent E Haar Thomas H Vonder September 2008 The Vertical Profile of Liquid and Ice Water Content in Midlatitude Mixed Phase Altocumulus Clouds Journal of Applied Meteorology and Climatology 47 9 2487 2495 Bibcode 2008JApMC 47 2487C doi 10 1175 2008JAMC1885 1 Cho H R Iribarne J V Niewiadomski M Melo O 20 September 1989 A Model of the Effect of Cumulus Clouds on the Redistribution and Transformation of Pollutants PDF Journal of Geophysical Research 94 D10 12 895 12 910 Bibcode 1989JGR 9412895C doi 10 1029 jd094id10p12895 Archived from the original PDF on 14 August 2014 Retrieved 28 November 2012 Del Genfo Anthony D Lacis Andrew A Ruedy Reto A 30 May 1991 Simulations of the effect of a warmer climate on atmospheric humidity Nature 351 6325 382 385 Bibcode 1991Natur 351 382G doi 10 1038 351382a0 S2CID 4274337 Dunlop Storm June 2003 The Weather Identification Handbook Lyons Press ISBN 978 1 58574 857 0 Garrett T J Dean Day J Liu C Barnett B Mace G Baumgardner D Webster C Bui T Read W Minnis P 19 April 2006 Convective formation of pileus cloud near the tropopause Atmospheric Chemistry and Physics 6 5 1185 1200 Bibcode 2006ACP 6 1185G doi 10 5194 acp 6 1185 2006 Hubbard Richard Hubbard Richard Keith 2000 Glossary Boater s Bowditch The Small Craft American Practical Navigator 2nd ed International Marine Ragged Mountain Press ISBN 978 0 07 136136 1 Irwin Patrick July 2003 Giant Planets of Our Solar System Atmospheres Composition and Structure 1st ed Springer p 115 ISBN 978 3 540 00681 7 Junge C E 1960 Sulfur in the Atmosphere Journal of Geophysical Research 65 1 227 237 Bibcode 1960JGR 65 227J doi 10 1029 JZ065i001p00227 Langmuir Irving October 1948 The Production of Rain by a Chain Reaction in Cumulus Clouds at Temperatures Above Freezing Journal of Meteorology 5 5 175 192 Bibcode 1948JAtS 5 175L doi 10 1175 1520 0469 1948 005 lt 0175 TPORBA gt 2 0 CO 2 Ludlum David McWilliams 2000 National Audubon Society Field Guide to Weather Alfred A Knopf ISBN 978 0 679 40851 2 OCLC 56559729 Miyazaki Ryo Yoshida Satoru Dobashi Yoshinori Nishita Tomoyula 2001 A method for modeling clouds based on atmospheric fluid dynamics Proceedings Ninth Pacific Conference on Computer Graphics and Applications Pacific Graphics 2001 p 363 CiteSeerX 10 1 1 76 7428 doi 10 1109 PCCGA 2001 962893 ISBN 978 0 7695 1227 3 S2CID 6656499 Mossop S C Hallett J November 1974 Ice Crystal Concentration in Cumulus Clouds Influence of the Drop Spectrum Science Magazine 186 4164 632 634 Bibcode 1974Sci 186 632M doi 10 1126 science 186 4164 632 PMID 17833720 S2CID 19285155 Pagen Dennis 2001 The Art of Paragliding Black Mountain Books pp 105 108 ISBN 978 0 936310 14 5 Parungo F May 1995 Ice Crystals in High Clouds and Contrails Atmospheric Research 38 1 249 262 Bibcode 1995AtmRe 38 249P doi 10 1016 0169 8095 94 00096 V OCLC 90987092 Pretor Pinney Gavin June 2007 The Cloudspotter s Guide The Science History and Culture of Clouds Penguin Group ISBN 978 1 101 20331 6 Stommel Harry June 1947 Entrainment of Air Into a Cumulus Cloud Journal of Meteorology 4 3 91 94 Bibcode 1947JAtS 4 91S doi 10 1175 1520 0469 1947 004 lt 0091 EOAIAC gt 2 0 CO 2 Warner J September 1969 The Micro structure of Cumulus Cloud Part I General Features of the Droplet Spectrum Journal of the Atmospheric Sciences 26 5 1049 1059 Bibcode 1969JAtS 26 1049W doi 10 1175 1520 0469 1969 026 lt 1049 TMOCCP gt 2 0 CO 2 Weston K J October 1980 An Observational Study of Convective Cloud Streets Tell Us 32 35 433 438 Bibcode 1980Tell 32 433W doi 10 1111 j 2153 3490 1980 tb00970 x Wood Robert August 2012 Stratocumulus Clouds Monthly Weather Review 140 8 2373 2423 Bibcode 2012MWRv 140 2373W doi 10 1175 MWR D 11 00121 1 External links Edit Wikimedia Commons has media related to Cumulus clouds AMS Glossary of Meteorology Retrieved from https en wikipedia org w index php title Cumulus cloud amp oldid 1128354820, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.