fbpx
Wikipedia

Cuban gar

The Cuban gar (Atractosteus tristoechus), also known as the manjuarí, is a fish in the family Lepisosteidae.[4] It is a tropical, freshwater species, although it also inhabits brackish water.[5] It is found in rivers and lakes of western Cuba and the Isla de la Juventud.[5] The flesh of the fish is edible, but the eggs are poisonous for humans.[6]

Cuban gar
Scientific classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Clade: Ginglymodi
Order: Lepisosteiformes
Family: Lepisosteidae
Genus: Atractosteus
Species:
A. tristoechus
Binomial name
Atractosteus tristoechus
Bloch & Schneider 1801
Synonyms[2][3]
  • Esox tristoechus Bloch & Schneider 1801
  • Lepisosteus tristoechus (Bloch & Schneider 1801)
  • Lepidosteus manjuari Poey 1853

Cuban gar spawn seasonally in the floodplains of large rivers.[7]

Behavior edit

Cuban gar typically hunt alone and avoid other members of their species. The exception to this is during spawning season, when larger parties of around 20 gar form to hunt. Sometimes, the groups break up into smaller groups, and two to eight males accompany a female. Atractosteus gar species generally have sex ratios skewed towards males (in the cases of tropical gar or alligator gar), although research has yet to show this trend in the Cuban gar.[8][9][10]

Morphology edit

Adult Cuban gars are typically around 1 m (3.3 ft) in length, but can grow as large as 2 m (6.6 ft). There is no known variance in length relative to sex. This places it as the second largest extant species of gar, after the alligator gar.[7]

The Cuban gar, along with other species of gar, is also notable for its high tolerance of high ammonia and nitrate levels in water,[11] its ability to breathe some atmospheric air in absence of sufficiently oxygenated water,[12] and its disease resistance.[13]

Larval development edit

After hatching, Cuban gar larvae undergo three stages of organogenesis and development: attached (days 1–3), transitional (days 4–10), and free-swimming (days 11–18).[14] During the attached stage, the larvae develop rudimentary intestines, stomachs, pancreases, and esophagi that help the larvae transition from feeding off the egg yolk to normal feeding, which begins during the transitional phase. The transitional phase is marked by further development of these organs and a lack of obvious yolk.

During this phase, teeth also develop. Once separation occurs between the stomach and intestines—increased organ size and complexity, and completely exotrophic behavior has arisen—the larvae are considered “free swimming”.[14] While they are larvae, Cuban gar grow from around 1.5 cm (0.6 in) in length in the attached phase, to 4 cm (1.6 in) in length in the free-swimming phase.[citation needed]

Ecology edit

Like other species of gars, Cuban gar are top-level predators in freshwater ecosystems.[15] Adults feed on freshwater fishes and birds. Young are prey to the introduced largemouth bass (Micropterus salmoides). As an animal with a high trophic level, the gar has lost much of its population due to overfishing and habitat loss. Attempts to restore natural fish populations using them in aquaculture are currently in progress,[15] but these ideas have yet to reach implementation.

Cuban gar are currently under research for use in broodstocking, both due to the threatened status of gar species and due to the potentially valuable role of gar in reducing the pressure of fisheries on natural aquatic ecosystems.[16] No implementation of Cuban gar broodstocking for ecological protection has yet occurred, however.

References edit

  1. ^ Lyons, T.J., Ulmo-Díaz, G., García-Machado, E. & Ponce de León, J. 2021. Atractosteus tristoechus. The IUCN Red List of Threatened Species 2021: e.T46104013A124286091. https://dx.doi.org/10.2305/IUCN.UK.2021-1.RLTS.T46104013A124286091.en. Downloaded on 13 April 2021.
  2. ^ Froese, R.; Pauly, D. (2017). "Lepisosteidae". FishBase version (02/2017). Retrieved 18 May 2017.
  3. ^ "Lepisosteidae" (PDF). Deeplyfish- fishes of the world. Retrieved 18 May 2017.
  4. ^ "Atractosteus tristoechus". Integrated Taxonomic Information System. Retrieved 15 January 2023.
  5. ^ a b "Atractosteus tristoechus (Bloch & Schneider, 1801)". Fish Base. Retrieved 12 Sep 2012.
  6. ^ Lee, D.S., S.P. Platania and G.H. Burgess, 1983. Atlas of North American freshwater fishes, 1983 supplement. Occasional Papers of the North Carolina Biological Survey no. 1983-6. North Carolina State Museum of Natural History, Raleigh, N.C. 67 p.
  7. ^ a b Dean B. (1895) The early development of gar-pike and sturgeon. Journal of Morphology 11, 1–53.
  8. ^ Holloway A. (1954) Notes on the Life History and Management of the Shortnose and Lognose Gars in Florida Waters. Journal of Wildlife Management 18, 440–449.
  9. ^ Reséndez A. & Salvadores M. (1983) Contribución al Conocimiento de la Biología de Pejelagarto Atractosteustropicus (Gill) y la Tenguayaca Peteniasplendida(Günther) del Estado de Tabasco. Biotica 8, 413–426.
  10. ^ Morales G. (1987) Reproducción y Desarrollo Embriológico del Catán (LepisosteusspatulaLacepede): Primeros Resultados. In: Secrtería de Pesca, pp. 41–70. Manual Técnico para el aprovechamiento de existencias silvestres, México, D.F.
  11. ^ Boudreaux P., Ferrara A. & Fontenot Q. (2007a) Chloride inhibition of nitrite uptake for non-teleost Actinopterygiian fishes. Comparative Biochemistry and Physiology – Part A 147, 420–423.
  12. ^ Hill L., Renfro J. & Reynolds R. (1972) Effects of dissolved oxygen tensions upon the rate of young spotted har, Lepisosteusoculatus(Lepisosteidae). The Southwestern Naturalist 17, 273–278.
  13. ^ León R., Aguiar R. & Hernández I. (1978) Estudio sobre la biología y el cultivo artificial del manjuarí (Atractosteus tristoechus) Blosh y Schneider. Dirección Ramal de Acuicultura, Investigación No. 85, 25pp.
  14. ^ a b Comabella Y, Mendoza R, Aguilera C, Carrillo O, Hurtado A, García-Galano T (2006). "Digestive enzyme activity during early larval development of the Cuban gar Atractosteus tristoechus". Fish Physiology and Biochemistry. 32 (2): 147–157. doi:10.1007/s10695-006-0007-4.
  15. ^ a b Mendoza Alfaro, R., González, C. A. and Ferrara, A. M. (2008), Gar biology and culture: status and prospects. Aquaculture Research, 39: 748–763. doi:10.1111/j.1365-2109.2008.01927.x
  16. ^ Mendoza R., Aguilera C., Rodríguez G. & Márquez G. (2000) Estrategias para la domesticación de especies en acuacultura: El catán (Atractosteusspatula). In: Redes Nacionales de Investigación en Acuacultura, Memorias de la V Reunion (ed. by Ramírez-FloresÁlvarez Torres & Torres-RodríguezY Mora-Cervantes), pp. 95–102. Instituto Nacional de Pesca-SEMARNAP, Distrito Federal, México.

cuban, atractosteus, tristoechus, also, known, manjuarí, fish, family, lepisosteidae, tropical, freshwater, species, although, also, inhabits, brackish, water, found, rivers, lakes, western, cuba, isla, juventud, flesh, fish, edible, eggs, poisonous, humans, c. The Cuban gar Atractosteus tristoechus also known as the manjuari is a fish in the family Lepisosteidae 4 It is a tropical freshwater species although it also inhabits brackish water 5 It is found in rivers and lakes of western Cuba and the Isla de la Juventud 5 The flesh of the fish is edible but the eggs are poisonous for humans 6 Cuban garConservation statusCritically Endangered IUCN 3 1 1 Scientific classificationDomain EukaryotaKingdom AnimaliaPhylum ChordataClass ActinopterygiiClade GinglymodiOrder LepisosteiformesFamily LepisosteidaeGenus AtractosteusSpecies A tristoechusBinomial nameAtractosteus tristoechusBloch amp Schneider 1801Synonyms 2 3 Esox tristoechus Bloch amp Schneider 1801 Lepisosteus tristoechus Bloch amp Schneider 1801 Lepidosteus manjuari Poey 1853Wikimedia Commons has media related to Atractosteus tristoechus Cuban gar spawn seasonally in the floodplains of large rivers 7 Contents 1 Behavior 2 Morphology 2 1 Larval development 3 Ecology 4 ReferencesBehavior editCuban gar typically hunt alone and avoid other members of their species The exception to this is during spawning season when larger parties of around 20 gar form to hunt Sometimes the groups break up into smaller groups and two to eight males accompany a female Atractosteus gar species generally have sex ratios skewed towards males in the cases of tropical gar or alligator gar although research has yet to show this trend in the Cuban gar 8 9 10 Morphology editAdult Cuban gars are typically around 1 m 3 3 ft in length but can grow as large as 2 m 6 6 ft There is no known variance in length relative to sex This places it as the second largest extant species of gar after the alligator gar 7 The Cuban gar along with other species of gar is also notable for its high tolerance of high ammonia and nitrate levels in water 11 its ability to breathe some atmospheric air in absence of sufficiently oxygenated water 12 and its disease resistance 13 Larval development edit After hatching Cuban gar larvae undergo three stages of organogenesis and development attached days 1 3 transitional days 4 10 and free swimming days 11 18 14 During the attached stage the larvae develop rudimentary intestines stomachs pancreases and esophagi that help the larvae transition from feeding off the egg yolk to normal feeding which begins during the transitional phase The transitional phase is marked by further development of these organs and a lack of obvious yolk During this phase teeth also develop Once separation occurs between the stomach and intestines increased organ size and complexity and completely exotrophic behavior has arisen the larvae are considered free swimming 14 While they are larvae Cuban gar grow from around 1 5 cm 0 6 in in length in the attached phase to 4 cm 1 6 in in length in the free swimming phase citation needed Ecology editLike other species of gars Cuban gar are top level predators in freshwater ecosystems 15 Adults feed on freshwater fishes and birds Young are prey to the introduced largemouth bass Micropterus salmoides As an animal with a high trophic level the gar has lost much of its population due to overfishing and habitat loss Attempts to restore natural fish populations using them in aquaculture are currently in progress 15 but these ideas have yet to reach implementation Cuban gar are currently under research for use in broodstocking both due to the threatened status of gar species and due to the potentially valuable role of gar in reducing the pressure of fisheries on natural aquatic ecosystems 16 No implementation of Cuban gar broodstocking for ecological protection has yet occurred however References edit Lyons T J Ulmo Diaz G Garcia Machado E amp Ponce de Leon J 2021 Atractosteus tristoechus The IUCN Red List of Threatened Species 2021 e T46104013A124286091 https dx doi org 10 2305 IUCN UK 2021 1 RLTS T46104013A124286091 en Downloaded on 13 April 2021 Froese R Pauly D 2017 Lepisosteidae FishBase version 02 2017 Retrieved 18 May 2017 Lepisosteidae PDF Deeplyfish fishes of the world Retrieved 18 May 2017 Atractosteus tristoechus Integrated Taxonomic Information System Retrieved 15 January 2023 a b Atractosteus tristoechus Bloch amp Schneider 1801 Fish Base Retrieved 12 Sep 2012 Lee D S S P Platania and G H Burgess 1983 Atlas of North American freshwater fishes 1983 supplement Occasional Papers of the North Carolina Biological Survey no 1983 6 North Carolina State Museum of Natural History Raleigh N C 67 p a b Dean B 1895 The early development of gar pike and sturgeon Journal of Morphology 11 1 53 Holloway A 1954 Notes on the Life History and Management of the Shortnose and Lognose Gars in Florida Waters Journal of Wildlife Management 18 440 449 Resendez A amp Salvadores M 1983 Contribucion al Conocimiento de la Biologia de Pejelagarto Atractosteustropicus Gill y la Tenguayaca Peteniasplendida Gunther del Estado de Tabasco Biotica 8 413 426 Morales G 1987 Reproduccion y Desarrollo Embriologico del Catan LepisosteusspatulaLacepede Primeros Resultados In Secrteria de Pesca pp 41 70 Manual Tecnico para el aprovechamiento de existencias silvestres Mexico D F Boudreaux P Ferrara A amp Fontenot Q 2007a Chloride inhibition of nitrite uptake for non teleost Actinopterygiian fishes Comparative Biochemistry and Physiology Part A 147 420 423 Hill L Renfro J amp Reynolds R 1972 Effects of dissolved oxygen tensions upon the rate of young spotted har Lepisosteusoculatus Lepisosteidae The Southwestern Naturalist 17 273 278 Leon R Aguiar R amp Hernandez I 1978 Estudio sobre la biologia y el cultivo artificial del manjuari Atractosteus tristoechus Blosh y Schneider Direccion Ramal de Acuicultura Investigacion No 85 25pp a b Comabella Y Mendoza R Aguilera C Carrillo O Hurtado A Garcia Galano T 2006 Digestive enzyme activity during early larval development of the Cuban gar Atractosteus tristoechus Fish Physiology and Biochemistry 32 2 147 157 doi 10 1007 s10695 006 0007 4 a b Mendoza Alfaro R Gonzalez C A and Ferrara A M 2008 Gar biology and culture status and prospects Aquaculture Research 39 748 763 doi 10 1111 j 1365 2109 2008 01927 x Mendoza R Aguilera C Rodriguez G amp Marquez G 2000 Estrategias para la domesticacion de especies en acuacultura El catan Atractosteusspatula In Redes Nacionales de Investigacion en Acuacultura Memorias de la V Reunion ed by Ramirez FloresAlvarez Torres amp Torres RodriguezY Mora Cervantes pp 95 102 Instituto Nacional de Pesca SEMARNAP Distrito Federal Mexico Retrieved from https en wikipedia org w index php title Cuban gar amp oldid 1155083105, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.