fbpx
Wikipedia

Compton scattering

Compton scattering (also called the Compton effect) discovered by Arthur Holly Compton, is the scattering of a high frequency photon after an interaction with a charged particle, usually an electron. If it results in a decrease in energy (increase in wavelength) of the photon (which may be an X-ray or gamma ray photon), it is called the Compton effect. Part of the energy of the photon is transferred to the recoiling electron. Inverse Compton scattering occurs when a charged particle transfers part of its energy to a photon.

Introduction

 
Fig. 1: Schematic diagram of Compton's experiment. Compton scattering occurs in the graphite target on the left. The slit passes X-ray photons scattered at a selected angle. The energy of a scattered photon is measured using Bragg scattering in the crystal on the right in conjunction with ionization chamber; the chamber could measure total energy deposited over time, not the energy of single scattered photons.

Compton scattering is an example of elastic scattering[1] of light by a free charged particle, where the wavelength of the scattered light is different from that of the incident radiation. In Compton's original experiment (see Fig. 1), the energy of the X ray photon (≈17 keV) was significantly larger than the binding energy of the atomic electron, so the electrons could be treated as being free after scattering. The amount by which the light's wavelength changes is called the Compton shift. Although nucleus Compton scattering exists,[2] Compton scattering usually refers to the interaction involving only the electrons of an atom. The Compton effect was observed by Arthur Holly Compton in 1923 at Washington University in St. Louis and further verified by his graduate student Y. H. Woo in the years following. Compton earned the 1927 Nobel Prize in Physics for the discovery.

The effect is significant because it demonstrates that light cannot be explained purely as a wave phenomenon.[3] Thomson scattering, the classical theory of an electromagnetic wave scattered by charged particles, cannot explain shifts in wavelength at low intensity: classically, light of sufficient intensity for the electric field to accelerate a charged particle to a relativistic speed will cause radiation-pressure recoil and an associated Doppler shift of the scattered light,[4] but the effect would become arbitrarily small at sufficiently low light intensities regardless of wavelength. Thus, if we are to explain low-intensity Compton scattering, light must behave as if it consists of particles. Or the assumption that the electron can be treated as free is invalid resulting in the effectively infinite electron mass equal to the nuclear mass (see e.g. the comment below on elastic scattering of X-rays being from that effect). Compton's experiment convinced physicists that light can be treated as a stream of particle-like objects (quanta called photons), whose energy is proportional to the light wave's frequency.

As shown in Fig. 2, the interaction between an electron and a photon results in the electron being given part of the energy (making it recoil), and a photon of the remaining energy being emitted in a different direction from the original, so that the overall momentum of the system is also conserved. If the scattered photon still has enough energy, the process may be repeated. In this scenario, the electron is treated as free or loosely bound. Experimental verification of momentum conservation in individual Compton scattering processes by Bothe and Geiger as well as by Compton and Simon has been important in disproving the BKS theory.

Compton scattering is one of four competing processes when photons interact with matter. At energies of a few eV to a few keV, corresponding to visible light through soft X-rays, a photon can be completely absorbed and its energy can eject an electron from its host atom, a process known as the photoelectric effect. High-energy photons of 1.022 MeV and above may bombard the nucleus and cause an electron and a positron to be formed, a process called pair production; even-higher-energy photons (beyond a threshold energy of at least 1.670 MeV, depending on the nuclei involved), can eject a nucleon or alpha particle from the nucleus in a process called photodisintegration. Compton scattering is the most important interaction in the intervening energy region, at photon energies greater than those typical of the photoelectric effect but less than the pair-production threshold.

Description of the phenomenon

 
Fig. 2: A photon of wavelength   comes in from the left, collides with a target at rest, and a new photon of wavelength   emerges at an angle  . The target recoils, carrying away an angle-dependent amount of the incident energy.

By the early 20th century, research into the interaction of X-rays with matter was well under way. It was observed that when X-rays of a known wavelength interact with atoms, the X-rays are scattered through an angle   and emerge at a different wavelength related to  . Although classical electromagnetism predicted that the wavelength of scattered rays should be equal to the initial wavelength,[5] multiple experiments had found that the wavelength of the scattered rays was longer (corresponding to lower energy) than the initial wavelength.[5]

In 1923, Compton published a paper in the Physical Review that explained the X-ray shift by attributing particle-like momentum to light quanta (Einstein had proposed light quanta in 1905 in explaining the photo-electric effect, but Compton did not build on Einstein's work). The energy of light quanta depends only on the frequency of the light. In his paper, Compton derived the mathematical relationship between the shift in wavelength and the scattering angle of the X-rays by assuming that each scattered X-ray photon interacted with only one electron. His paper concludes by reporting on experiments which verified his derived relation:

 
where
  •   is the initial wavelength,
  •   is the wavelength after scattering,
  •   is the Planck constant,
  •   is the electron rest mass,
  •   is the speed of light, and
  •   is the scattering angle.

The quantity h/mec is known as the Compton wavelength of the electron; it is equal to 2.43×10−12 m. The wavelength shift λ′λ is at least zero (for θ = 0°) and at most twice the Compton wavelength of the electron (for θ = 180°).

Compton found that some X-rays experienced no wavelength shift despite being scattered through large angles; in each of these cases the photon failed to eject an electron.[5] Thus the magnitude of the shift is related not to the Compton wavelength of the electron, but to the Compton wavelength of the entire atom, which can be upwards of 10000 times smaller. This is known as "coherent" scattering off the entire atom since the atom remains intact, gaining no internal excitation.

In Compton's original experiments the wavelength shift given above was the directly-measurable observable. In modern experiments it is conventional to measure the energies, not the wavelengths, of the scattered photons. For a given incident energy  , the outgoing final-state photon energy,  , is given by

 

Derivation of the scattering formula

 
Fig. 3: Energies of a photon at 500 keV and an electron after Compton scattering.

A photon γ with wavelength λ collides with an electron e in an atom, which is treated as being at rest. The collision causes the electron to recoil, and a new photon γ' with wavelength λ' emerges at angle θ from the photon's incoming path. Let e' denote the electron after the collision. Compton allowed for the possibility that the interaction would sometimes accelerate the electron to speeds sufficiently close to the velocity of light as to require the application of Einstein's special relativity theory to properly describe its energy and momentum.

At the conclusion of Compton's 1923 paper, he reported results of experiments confirming the predictions of his scattering formula, thus supporting the assumption that photons carry momentum as well as quantized energy. At the start of his derivation, he had postulated an expression for the momentum of a photon from equating Einstein's already established mass-energy relationship of   to the quantized photon energies of  , which Einstein had separately postulated. If  , the equivalent photon mass must be  . The photon's momentum is then simply this effective mass times the photon's frame-invariant velocity c. For a photon, its momentum  , and thus hf can be substituted for pc for all photon momentum terms which arise in course of the derivation below. The derivation which appears in Compton's paper is more terse, but follows the same logic in the same sequence as the following derivation.

The conservation of energy   merely equates the sum of energies before and after scattering.

 

Compton postulated that photons carry momentum;[5] thus from the conservation of momentum, the momenta of the particles should be similarly related by

 

in which ( ) is omitted on the assumption it is effectively zero.

The photon energies are related to the frequencies by

 
 

where h is Planck's constant.

Before the scattering event, the electron is treated as sufficiently close to being at rest that its total energy consists entirely of the mass-energy equivalence of its (rest) mass  ,

 

After scattering, the possibility that the electron might be accelerated to a significant fraction of the speed of light, requires that its total energy be represented using the relativistic energy–momentum relation

 

Substituting these quantities into the expression for the conservation of energy gives

 

This expression can be used to find the magnitude of the momentum of the scattered electron,

 

 

 

 

 

(1)

Note that this magnitude of the momentum gained by the electron (formerly zero) exceeds the energy/c lost by the photon,
 

Equation (1) relates the various energies associated with the collision. The electron's momentum change involves a relativistic change in the energy of the electron, so it is not simply related to the change in energy occurring in classical physics. The change of the magnitude of the momentum of the photon is not just related to the change of its energy; it also involves a change in direction.

Solving the conservation of momentum expression for the scattered electron's momentum gives

 

Making use of the scalar product yields the square of its magnitude,

 

In anticipation of   being replaced with  , multiply both sides by  ,

 

After replacing the photon momentum terms with  , we get a second expression for the magnitude of the momentum of the scattered electron,

 

 

 

 

 

(2)

Equating the alternate expressions for this momentum gives

 

which, after evaluating the square and canceling and rearranging terms, further yields

 

Dividing both sides by   yields

 

Finally, since = f ' λ' = c,

 

 

 

 

 

(3)

It can further be seen that the angle φ of the outgoing electron with the direction of the incoming photon is specified by

 

 

 

 

 

(4)

Applications

Compton scattering

Compton scattering is of prime importance to radiobiology, as it is the most probable interaction of gamma rays and high energy X-rays with atoms in living beings and is applied in radiation therapy.[6][7]

Compton scattering is an important effect in gamma spectroscopy which gives rise to the Compton edge, as it is possible for the gamma rays to scatter out of the detectors used. Compton suppression is used to detect stray scatter gamma rays to counteract this effect.

Magnetic Compton scattering

Magnetic Compton scattering is an extension of the previously mentioned technique which involves the magnetisation of a crystal sample hit with high energy, circularly polarised photons. By measuring the scattered photons' energy and reversing the magnetisation of the sample, two different Compton profiles are generated (one for spin up momenta and one for spin down momenta). Taking the difference between these two profiles gives the magnetic Compton profile (MCP), given by   - a one-dimensional projection of the electron spin density.

 
where   is the number of spin-unpaired electrons in the system,   and   are the three-dimensional electron momentum distributions for the majority spin and minority spin electrons respectively.

Since this scattering process is incoherent (there is no phase relationship between the scattered photons), the MCP is representative of the bulk properties of the sample and is a probe of the ground state. This means that the MCP is ideal for comparison with theoretical techniques such as density functional theory. The area under the MCP is directly proportional to the spin moment of the system and so, when combined with total moment measurements methods (such as SQUID magnetometry), can be used to isolate both the spin and orbital contributions to the total moment of a system. The shape of the MCP also yields insight into the origin of the magnetism in the system.[8]

Inverse Compton scattering

Inverse Compton scattering is important in astrophysics. In X-ray astronomy, the accretion disk surrounding a black hole is presumed to produce a thermal spectrum. The lower energy photons produced from this spectrum are scattered to higher energies by relativistic electrons in the surrounding corona. This is surmised to cause the power law component in the X-ray spectra (0.2–10 keV) of accreting black holes.[9]

The effect is also observed when photons from the cosmic microwave background (CMB) move through the hot gas surrounding a galaxy cluster. The CMB photons are scattered to higher energies by the electrons in this gas, resulting in the Sunyaev–Zel'dovich effect. Observations of the Sunyaev–Zel'dovich effect provide a nearly redshift-independent means of detecting galaxy clusters.

Some synchrotron radiation facilities scatter laser light off the stored electron beam. This Compton backscattering produces high energy photons in the MeV to GeV range[10][11] subsequently used for nuclear physics experiments.

Non-linear inverse Compton scattering

Non-linear inverse Compton scattering (NICS) is the scattering of multiple low-energy photons, given by an intense electromagnetic field, in a high-energy photon (X-ray or gamma ray) during the interaction with a charged particle, such as an electron.[12] It is also called non-linear Compton scattering and multiphoton Compton scattering. It is the non-linear version of inverse Compton scattering in which the conditions for multiphoton absorption by the charged particle are reached due to a very intense electromagnetic field, for example the one produced by a laser.[13]

Non-linear inverse Compton scattering is an interesting phenomenon for all applications requiring high-energy photons since NICS is capable of producing photons with energy comparable to the charged particle rest energy and higher.[14] As a consequence NICS photons can be used to trigger other phenomena such as pair production, Compton scattering, nuclear reactions, and can be used to probe non-linear quantum effects and non-linear QED.[12]

See also

References

  1. ^ Elastic or inelastic scattering? The incident photon loses energy in the lab frame, which centuries of practice had identified with inelastic scattering—even though, in the c.m. frame, the respective masses remaining the same, no new species are created and kinetic energy is conserved, the mark of an elastic collision. As a result, HEP and nuclear physicists prefer to emphasize elasticity, while atomic and molecular physicists use "inelastic".
  2. ^ P. Christillin (1986). "Nuclear Compton scattering". J. Phys. G: Nucl. Phys. 12 (9): 837–851. Bibcode:1986JPhG...12..837C. doi:10.1088/0305-4616/12/9/008. S2CID 250783416.
  3. ^ Griffiths, David (1987). Introduction to Elementary Particles. Wiley. pp. 15, 91. ISBN 0-471-60386-4.
  4. ^ C. Moore (1995). "Observation of the Transition from Thomson to Compton Scattering in Optical Multiphoton Interactions with Electrons" (PDF).
  5. ^ a b c d Taylor, J.R.; Zafiratos, C.D.; Dubson, M.A. (2004). Modern Physics for Scientists and Engineers (2nd ed.). Prentice Hall. pp. 136–9. ISBN 0-13-805715-X.
  6. ^ Camphausen KA, Lawrence RC. "Principles of Radiation Therapy" 2009-05-15 at the Wayback Machine in Pazdur R, Wagman LD, Camphausen KA, Hoskins WJ (Eds) Cancer Management: A Multidisciplinary Approach 2013-10-04 at the Wayback Machine. 11 ed. 2008.
  7. ^ Ridwan, S. M., El-Tayyeb, F., Hainfeld, J. F., & Smilowitz, H. M. (2020). Distributions of intravenous injected iodine nanoparticles in orthotopic U87 human glioma xenografts over time and tumor therapy. Nanomedicine, 15(24), 2369–2383. https://doi.org/10.2217/nnm-2020-0178
  8. ^ Malcolm Cooper (14 October 2004). X-Ray Compton Scattering. OUP Oxford. ISBN 978-0-19-850168-8. Retrieved 4 March 2013.
  9. ^ Dr. Tortosa, Alessia. "Comptonization mechanisms in hot coronae in AGN. The NuSTAR view" (PDF). DIPARTIMENTO DI MATEMATICA E FISICA.
  10. ^ "GRAAL home page". Lnf.infn.it. Retrieved 2011-11-08.
  11. ^ "Duke University TUNL HIGS Facility". Retrieved 2021-01-31.
  12. ^ a b Di Piazza, A.; Müller, C.; Hatsagortsyan, K. Z.; Keitel, C. H. (2012-08-16). "Extremely high-intensity laser interactions with fundamental quantum systems". Reviews of Modern Physics. 84 (3): 1177–1228. arXiv:1111.3886. Bibcode:2012RvMP...84.1177D. doi:10.1103/RevModPhys.84.1177. ISSN 0034-6861. S2CID 118536606.
  13. ^ Meyerhofer, D.D. (1997). "High-intensity-laser-electron scattering". IEEE Journal of Quantum Electronics. 33 (11): 1935–1941. Bibcode:1997IJQE...33.1935M. doi:10.1109/3.641308.
  14. ^ Ritus, V. I. (1985). "Quantum effects of the interaction of elementary particles with an intense electromagnetic field". Journal of Soviet Laser Research. 6 (5): 497–617. doi:10.1007/BF01120220. ISSN 0270-2010. S2CID 121183948.

Further reading

  • S. Chen; H. Avakian; V. Burkert; L. Vandenaweele; P. Eugenio; the CLAS collaboration; Ambrozewicz; Anghinolfi; Asryan; Bagdasaryan; Baillie; Ball; Baltzell; Barrow; Batourine; Battaglieri; Beard; Bedlinskiy; Bektasoglu; Bellis; Benmouna; Berman; Biselli; Bonner; Bouchigny; Boiarinov; Bosted; Bradford; Branford; et al. (2006). "Measurement of Deeply Virtual Compton Scattering with a Polarized Proton Target". Physical Review Letters. 97 (7): 072002. arXiv:hep-ex/0605012. Bibcode:2006PhRvL..97g2002C. doi:10.1103/PhysRevLett.97.072002. PMID 17026221. S2CID 15326395.
  • Compton, Arthur H. (May 1923). "A Quantum Theory of the Scattering of X-Rays by Light Elements". Physical Review. 21 (5): 483–502. Bibcode:1923PhRv...21..483C. doi:10.1103/PhysRev.21.483. (the original 1923 paper on the APS website)
  • Stuewer, Roger H. (1975), The Compton Effect: Turning Point in Physics (New York: Science History Publications)

External links

  • Compton Scattering – Georgia State University
  • Compton Scattering Data – Georgia State University
  • Derivation of Compton shift equation
  • Compton Scattering – Animation made by BIGS

compton, scattering, also, called, compton, effect, discovered, arthur, holly, compton, scattering, high, frequency, photon, after, interaction, with, charged, particle, usually, electron, results, decrease, energy, increase, wavelength, photon, which, gamma, . Compton scattering also called the Compton effect discovered by Arthur Holly Compton is the scattering of a high frequency photon after an interaction with a charged particle usually an electron If it results in a decrease in energy increase in wavelength of the photon which may be an X ray or gamma ray photon it is called the Compton effect Part of the energy of the photon is transferred to the recoiling electron Inverse Compton scattering occurs when a charged particle transfers part of its energy to a photon Contents 1 Introduction 2 Description of the phenomenon 2 1 Derivation of the scattering formula 3 Applications 3 1 Compton scattering 3 2 Magnetic Compton scattering 3 3 Inverse Compton scattering 3 4 Non linear inverse Compton scattering 4 See also 5 References 6 Further reading 7 External linksIntroduction Edit Fig 1 Schematic diagram of Compton s experiment Compton scattering occurs in the graphite target on the left The slit passes X ray photons scattered at a selected angle The energy of a scattered photon is measured using Bragg scattering in the crystal on the right in conjunction with ionization chamber the chamber could measure total energy deposited over time not the energy of single scattered photons Compton scattering is an example of elastic scattering 1 of light by a free charged particle where the wavelength of the scattered light is different from that of the incident radiation In Compton s original experiment see Fig 1 the energy of the X ray photon 17 keV was significantly larger than the binding energy of the atomic electron so the electrons could be treated as being free after scattering The amount by which the light s wavelength changes is called the Compton shift Although nucleus Compton scattering exists 2 Compton scattering usually refers to the interaction involving only the electrons of an atom The Compton effect was observed by Arthur Holly Compton in 1923 at Washington University in St Louis and further verified by his graduate student Y H Woo in the years following Compton earned the 1927 Nobel Prize in Physics for the discovery The effect is significant because it demonstrates that light cannot be explained purely as a wave phenomenon 3 Thomson scattering the classical theory of an electromagnetic wave scattered by charged particles cannot explain shifts in wavelength at low intensity classically light of sufficient intensity for the electric field to accelerate a charged particle to a relativistic speed will cause radiation pressure recoil and an associated Doppler shift of the scattered light 4 but the effect would become arbitrarily small at sufficiently low light intensities regardless of wavelength Thus if we are to explain low intensity Compton scattering light must behave as if it consists of particles Or the assumption that the electron can be treated as free is invalid resulting in the effectively infinite electron mass equal to the nuclear mass see e g the comment below on elastic scattering of X rays being from that effect Compton s experiment convinced physicists that light can be treated as a stream of particle like objects quanta called photons whose energy is proportional to the light wave s frequency As shown in Fig 2 the interaction between an electron and a photon results in the electron being given part of the energy making it recoil and a photon of the remaining energy being emitted in a different direction from the original so that the overall momentum of the system is also conserved If the scattered photon still has enough energy the process may be repeated In this scenario the electron is treated as free or loosely bound Experimental verification of momentum conservation in individual Compton scattering processes by Bothe and Geiger as well as by Compton and Simon has been important in disproving the BKS theory Compton scattering is one of four competing processes when photons interact with matter At energies of a few eV to a few keV corresponding to visible light through soft X rays a photon can be completely absorbed and its energy can eject an electron from its host atom a process known as the photoelectric effect High energy photons of 1 022 MeV and above may bombard the nucleus and cause an electron and a positron to be formed a process called pair production even higher energy photons beyond a threshold energy of at least 1 670 MeV depending on the nuclei involved can eject a nucleon or alpha particle from the nucleus in a process called photodisintegration Compton scattering is the most important interaction in the intervening energy region at photon energies greater than those typical of the photoelectric effect but less than the pair production threshold Description of the phenomenon Edit Fig 2 A photon of wavelength l displaystyle lambda comes in from the left collides with a target at rest and a new photon of wavelength l displaystyle lambda emerges at an angle 8 displaystyle theta The target recoils carrying away an angle dependent amount of the incident energy By the early 20th century research into the interaction of X rays with matter was well under way It was observed that when X rays of a known wavelength interact with atoms the X rays are scattered through an angle 8 displaystyle theta and emerge at a different wavelength related to 8 displaystyle theta Although classical electromagnetism predicted that the wavelength of scattered rays should be equal to the initial wavelength 5 multiple experiments had found that the wavelength of the scattered rays was longer corresponding to lower energy than the initial wavelength 5 In 1923 Compton published a paper in the Physical Review that explained the X ray shift by attributing particle like momentum to light quanta Einstein had proposed light quanta in 1905 in explaining the photo electric effect but Compton did not build on Einstein s work The energy of light quanta depends only on the frequency of the light In his paper Compton derived the mathematical relationship between the shift in wavelength and the scattering angle of the X rays by assuming that each scattered X ray photon interacted with only one electron His paper concludes by reporting on experiments which verified his derived relation l l h m e c 1 cos 8 displaystyle lambda lambda frac h m e c 1 cos theta where l displaystyle lambda is the initial wavelength l displaystyle lambda is the wavelength after scattering h displaystyle h is the Planck constant m e displaystyle m e is the electron rest mass c displaystyle c is the speed of light and 8 displaystyle theta is the scattering angle The quantity h mec is known as the Compton wavelength of the electron it is equal to 2 43 10 12 m The wavelength shift l l is at least zero for 8 0 and at most twice the Compton wavelength of the electron for 8 180 Compton found that some X rays experienced no wavelength shift despite being scattered through large angles in each of these cases the photon failed to eject an electron 5 Thus the magnitude of the shift is related not to the Compton wavelength of the electron but to the Compton wavelength of the entire atom which can be upwards of 10000 times smaller This is known as coherent scattering off the entire atom since the atom remains intact gaining no internal excitation In Compton s original experiments the wavelength shift given above was the directly measurable observable In modern experiments it is conventional to measure the energies not the wavelengths of the scattered photons For a given incident energy E g h c l displaystyle E gamma hc lambda the outgoing final state photon energy E g displaystyle E gamma prime is given byE g E g 1 E g m e c 2 1 cos 8 displaystyle E gamma prime frac E gamma 1 E gamma m e c 2 1 cos theta Derivation of the scattering formula Edit Fig 3 Energies of a photon at 500 keV and an electron after Compton scattering A photon g with wavelength l collides with an electron e in an atom which is treated as being at rest The collision causes the electron to recoil and a new photon g with wavelength l emerges at angle 8 from the photon s incoming path Let e denote the electron after the collision Compton allowed for the possibility that the interaction would sometimes accelerate the electron to speeds sufficiently close to the velocity of light as to require the application of Einstein s special relativity theory to properly describe its energy and momentum At the conclusion of Compton s 1923 paper he reported results of experiments confirming the predictions of his scattering formula thus supporting the assumption that photons carry momentum as well as quantized energy At the start of his derivation he had postulated an expression for the momentum of a photon from equating Einstein s already established mass energy relationship of E m c 2 displaystyle E mc 2 to the quantized photon energies of h f displaystyle hf which Einstein had separately postulated If m c 2 h f displaystyle mc 2 hf the equivalent photon mass must be h f c 2 displaystyle hf c 2 The photon s momentum is then simply this effective mass times the photon s frame invariant velocity c For a photon its momentum p h f c displaystyle p hf c and thus hf can be substituted for pc for all photon momentum terms which arise in course of the derivation below The derivation which appears in Compton s paper is more terse but follows the same logic in the same sequence as the following derivation The conservation of energy E displaystyle E merely equates the sum of energies before and after scattering E g E e E g E e displaystyle E gamma E e E gamma E e Compton postulated that photons carry momentum 5 thus from the conservation of momentum the momenta of the particles should be similarly related by p g p g p e displaystyle mathbf p gamma mathbf p gamma mathbf p e in which p e displaystyle p e is omitted on the assumption it is effectively zero The photon energies are related to the frequencies by E g h f displaystyle E gamma hf E g h f displaystyle E gamma hf where h is Planck s constant Before the scattering event the electron is treated as sufficiently close to being at rest that its total energy consists entirely of the mass energy equivalence of its rest mass m e displaystyle m e E e m e c 2 displaystyle E e m e c 2 After scattering the possibility that the electron might be accelerated to a significant fraction of the speed of light requires that its total energy be represented using the relativistic energy momentum relation E e p e c 2 m e c 2 2 displaystyle E e sqrt p e c 2 m e c 2 2 Substituting these quantities into the expression for the conservation of energy gives h f m e c 2 h f p e c 2 m e c 2 2 displaystyle hf m e c 2 hf sqrt p e c 2 m e c 2 2 This expression can be used to find the magnitude of the momentum of the scattered electron p e 2 c 2 h f h f m e c 2 2 m e 2 c 4 displaystyle p e 2 c 2 hf hf m e c 2 2 m e 2 c 4 1 Note that this magnitude of the momentum gained by the electron formerly zero exceeds the energy c lost by the photon 1 c h f h f m e c 2 2 m e 2 c 4 gt h f h f c displaystyle frac 1 c sqrt hf hf m e c 2 2 m e 2 c 4 gt frac hf hf c Equation 1 relates the various energies associated with the collision The electron s momentum change involves a relativistic change in the energy of the electron so it is not simply related to the change in energy occurring in classical physics The change of the magnitude of the momentum of the photon is not just related to the change of its energy it also involves a change in direction Solving the conservation of momentum expression for the scattered electron s momentum gives p e p g p g displaystyle mathbf p e mathbf p gamma mathbf p gamma Making use of the scalar product yields the square of its magnitude p e 2 p e p e p g p g p g p g p g 2 p g 2 2 p g p g cos 8 displaystyle begin aligned p e 2 amp mathbf p e cdot mathbf p e mathbf p gamma mathbf p gamma cdot mathbf p gamma mathbf p gamma amp p gamma 2 p gamma 2 2p gamma p gamma cos theta end aligned In anticipation of p g c displaystyle p gamma c being replaced with h f displaystyle hf multiply both sides by c 2 displaystyle c 2 p e 2 c 2 p g 2 c 2 p g 2 c 2 2 c 2 p g p g cos 8 displaystyle p e 2 c 2 p gamma 2 c 2 p gamma 2 c 2 2c 2 p gamma p gamma cos theta After replacing the photon momentum terms with h f c displaystyle hf c we get a second expression for the magnitude of the momentum of the scattered electron p e 2 c 2 h f 2 h f 2 2 h f h f cos 8 displaystyle p e 2 c 2 hf 2 hf 2 2 hf hf cos theta 2 Equating the alternate expressions for this momentum gives h f h f m e c 2 2 m e 2 c 4 h f 2 h f 2 2 h 2 f f cos 8 displaystyle hf hf m e c 2 2 m e 2 c 4 left hf right 2 left hf right 2 2h 2 ff cos theta which after evaluating the square and canceling and rearranging terms further yields 2 h f m e c 2 2 h f m e c 2 2 h 2 f f 1 cos 8 displaystyle 2hfm e c 2 2hf m e c 2 2h 2 ff left 1 cos theta right Dividing both sides by 2 h f f m e c displaystyle 2hff m e c yields c f c f h m e c 1 cos 8 displaystyle frac c f frac c f frac h m e c left 1 cos theta right Finally since fl f l c l l h m e c 1 cos 8 displaystyle lambda lambda frac h m e c 1 cos theta 3 It can further be seen that the angle f of the outgoing electron with the direction of the incoming photon is specified by cot f 1 h f m e c 2 tan 8 2 displaystyle cot varphi left 1 frac hf m e c 2 right tan theta 2 4 Applications EditCompton scattering Edit Compton scattering is of prime importance to radiobiology as it is the most probable interaction of gamma rays and high energy X rays with atoms in living beings and is applied in radiation therapy 6 7 Compton scattering is an important effect in gamma spectroscopy which gives rise to the Compton edge as it is possible for the gamma rays to scatter out of the detectors used Compton suppression is used to detect stray scatter gamma rays to counteract this effect Magnetic Compton scattering Edit Magnetic Compton scattering is an extension of the previously mentioned technique which involves the magnetisation of a crystal sample hit with high energy circularly polarised photons By measuring the scattered photons energy and reversing the magnetisation of the sample two different Compton profiles are generated one for spin up momenta and one for spin down momenta Taking the difference between these two profiles gives the magnetic Compton profile MCP given by J mag p z displaystyle J text mag mathbf p z a one dimensional projection of the electron spin density J mag p z 1 m n p n p d p x d p y displaystyle J text mag mathbf p z frac 1 mu iint infty infty n uparrow mathbf p n downarrow mathbf p d mathbf p x d mathbf p y where m displaystyle mu is the number of spin unpaired electrons in the system n p displaystyle n uparrow mathbf p and n p displaystyle n downarrow mathbf p are the three dimensional electron momentum distributions for the majority spin and minority spin electrons respectively Since this scattering process is incoherent there is no phase relationship between the scattered photons the MCP is representative of the bulk properties of the sample and is a probe of the ground state This means that the MCP is ideal for comparison with theoretical techniques such as density functional theory The area under the MCP is directly proportional to the spin moment of the system and so when combined with total moment measurements methods such as SQUID magnetometry can be used to isolate both the spin and orbital contributions to the total moment of a system The shape of the MCP also yields insight into the origin of the magnetism in the system 8 Inverse Compton scattering Edit Inverse Compton scattering is important in astrophysics In X ray astronomy the accretion disk surrounding a black hole is presumed to produce a thermal spectrum The lower energy photons produced from this spectrum are scattered to higher energies by relativistic electrons in the surrounding corona This is surmised to cause the power law component in the X ray spectra 0 2 10 keV of accreting black holes 9 The effect is also observed when photons from the cosmic microwave background CMB move through the hot gas surrounding a galaxy cluster The CMB photons are scattered to higher energies by the electrons in this gas resulting in the Sunyaev Zel dovich effect Observations of the Sunyaev Zel dovich effect provide a nearly redshift independent means of detecting galaxy clusters Some synchrotron radiation facilities scatter laser light off the stored electron beam This Compton backscattering produces high energy photons in the MeV to GeV range 10 11 subsequently used for nuclear physics experiments Non linear inverse Compton scattering Edit Non linear inverse Compton scattering NICS is the scattering of multiple low energy photons given by an intense electromagnetic field in a high energy photon X ray or gamma ray during the interaction with a charged particle such as an electron 12 It is also called non linear Compton scattering and multiphoton Compton scattering It is the non linear version of inverse Compton scattering in which the conditions for multiphoton absorption by the charged particle are reached due to a very intense electromagnetic field for example the one produced by a laser 13 Non linear inverse Compton scattering is an interesting phenomenon for all applications requiring high energy photons since NICS is capable of producing photons with energy comparable to the charged particle rest energy and higher 14 As a consequence NICS photons can be used to trigger other phenomena such as pair production Compton scattering nuclear reactions and can be used to probe non linear quantum effects and non linear QED 12 See also EditCompton Gamma Ray Observatory Klein Nishina formula Pair production Peter Debye Photoelectric effect Radiation pressure Resonant inelastic X ray scattering Thomson scattering Timeline of cosmic microwave background astronomy Non linear inverse Compton scatteringReferences Edit Elastic or inelastic scattering The incident photon loses energy in the lab frame which centuries of practice had identified with inelastic scattering even though in the c m frame the respective masses remaining the same no new species are created and kinetic energy is conserved the mark of an elastic collision As a result HEP and nuclear physicists prefer to emphasize elasticity while atomic and molecular physicists use inelastic P Christillin 1986 Nuclear Compton scattering J Phys G Nucl Phys 12 9 837 851 Bibcode 1986JPhG 12 837C doi 10 1088 0305 4616 12 9 008 S2CID 250783416 Griffiths David 1987 Introduction to Elementary Particles Wiley pp 15 91 ISBN 0 471 60386 4 C Moore 1995 Observation of the Transition from Thomson to Compton Scattering in Optical Multiphoton Interactions with Electrons PDF a b c d Taylor J R Zafiratos C D Dubson M A 2004 Modern Physics for Scientists and Engineers 2nd ed Prentice Hall pp 136 9 ISBN 0 13 805715 X Camphausen KA Lawrence RC Principles of Radiation Therapy Archived 2009 05 15 at the Wayback Machine in Pazdur R Wagman LD Camphausen KA Hoskins WJ Eds Cancer Management A Multidisciplinary Approach Archived 2013 10 04 at the Wayback Machine 11 ed 2008 Ridwan S M El Tayyeb F Hainfeld J F amp Smilowitz H M 2020 Distributions of intravenous injected iodine nanoparticles in orthotopic U87 human glioma xenografts over time and tumor therapy Nanomedicine 15 24 2369 2383 https doi org 10 2217 nnm 2020 0178 Malcolm Cooper 14 October 2004 X Ray Compton Scattering OUP Oxford ISBN 978 0 19 850168 8 Retrieved 4 March 2013 Dr Tortosa Alessia Comptonization mechanisms in hot coronae in AGN The NuSTAR view PDF DIPARTIMENTO DI MATEMATICA E FISICA GRAAL home page Lnf infn it Retrieved 2011 11 08 Duke University TUNL HIGS Facility Retrieved 2021 01 31 a b Di Piazza A Muller C Hatsagortsyan K Z Keitel C H 2012 08 16 Extremely high intensity laser interactions with fundamental quantum systems Reviews of Modern Physics 84 3 1177 1228 arXiv 1111 3886 Bibcode 2012RvMP 84 1177D doi 10 1103 RevModPhys 84 1177 ISSN 0034 6861 S2CID 118536606 Meyerhofer D D 1997 High intensity laser electron scattering IEEE Journal of Quantum Electronics 33 11 1935 1941 Bibcode 1997IJQE 33 1935M doi 10 1109 3 641308 Ritus V I 1985 Quantum effects of the interaction of elementary particles with an intense electromagnetic field Journal of Soviet Laser Research 6 5 497 617 doi 10 1007 BF01120220 ISSN 0270 2010 S2CID 121183948 Further reading EditS Chen H Avakian V Burkert L Vandenaweele P Eugenio the CLAS collaboration Ambrozewicz Anghinolfi Asryan Bagdasaryan Baillie Ball Baltzell Barrow Batourine Battaglieri Beard Bedlinskiy Bektasoglu Bellis Benmouna Berman Biselli Bonner Bouchigny Boiarinov Bosted Bradford Branford et al 2006 Measurement of Deeply Virtual Compton Scattering with a Polarized Proton Target Physical Review Letters 97 7 072002 arXiv hep ex 0605012 Bibcode 2006PhRvL 97g2002C doi 10 1103 PhysRevLett 97 072002 PMID 17026221 S2CID 15326395 Compton Arthur H May 1923 A Quantum Theory of the Scattering of X Rays by Light Elements Physical Review 21 5 483 502 Bibcode 1923PhRv 21 483C doi 10 1103 PhysRev 21 483 the original 1923 paper on the APS website Stuewer Roger H 1975 The Compton Effect Turning Point in Physics New York Science History Publications External links EditCompton Scattering Georgia State University Compton Scattering Data Georgia State University Derivation of Compton shift equation Compton Scattering Animation made by BIGS Portals Physics Astronomy Stars Spaceflight Outer space Solar System Retrieved from https en wikipedia org w index php title Compton scattering amp oldid 1140142910, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.