fbpx
Wikipedia

Cognitive map

A cognitive map is a type of mental representation which serves an individual to acquire, code, store, recall, and decode information about the relative locations and attributes of phenomena in their everyday or metaphorical spatial environment. The concept was introduced by Edward Tolman in 1948.[1] He tried to explain the behavior of rats that appeared to learn the spatial layout of a maze, and subsequently the concept was applied to other animals, including humans.[2] The term was later generalized by some researchers, especially in the field of operations research, to refer to a kind of semantic network representing an individual's personal knowledge or schemas.[3][4][5]

Overview Edit

Cognitive maps have been studied in various fields, such as psychology, education, archaeology, planning, geography, cartography, architecture, landscape architecture, urban planning, management and history.[6] Because of the broad use and study of cognitive maps, it has become a colloquialism for almost any mental representation or model.[6] As a consequence, these mental models are often referred to, variously, as cognitive maps, mental maps, scripts, schemata, and frame of reference.

Cognitive maps are a function of the working brain that humans and animals use for movement in a new environment. They help us in recognizing places, computing directions and distances, and in critical-thinking on shortcuts. They support us in wayfinding in an environment, and act as blueprints for new technology.

Cognitive maps serve the construction and accumulation of spatial knowledge, allowing the "mind's eye" to visualize images in order to reduce cognitive load, enhance recall and learning of information. This type of spatial thinking can also be used as a metaphor for non-spatial tasks, where people performing non-spatial tasks involving memory and imaging use spatial knowledge to aid in processing the task.[7] They include information about the spatial relations that objects have among each other in an environment and they help us in orienting and moving in a setting and in space.

They are internal representation, they are not a fixed image, instead they are a schema, dynamic and flexible, with a degree of personal level. A spatial map needs to be acquired according to a frame of reference. Because it is independent from the observer's point of view, it is based on an allocentric reference system— with an object-to-object relation. It codes configurational information, using a world-centred coding system.

The neural correlates of a cognitive map have been speculated to be the place cell system in the hippocampus[8] and the recently discovered grid cells in the entorhinal cortex.[9]

History Edit

The idea of a cognitive map was first developed by Edward C. Tolman. Tolman, one of the early cognitive psychologists, introduced this idea when doing an experiment involving rats and mazes. In Tolman's experiment, a rat was placed in a cross shaped maze and allowed to explore it. After this initial exploration, the rat was placed at one arm of the cross and food was placed at the next arm to the immediate right. The rat was conditioned to this layout and learned to turn right at the intersection in order to get to the food. When placed at different arms of the cross maze however, the rat still went in the correct direction to obtain the food because of the initial cognitive map it had created of the maze. Rather than just deciding to turn right at the intersection no matter what, the rat was able to determine the correct way to the food no matter where in the maze it was placed.[10]

Unfortunately, further research was slowed due to the behaviorist point of view prevalent in the field of psychology at the time.[11] In later years, O'Keefe and Nadel attributed Tolman's research to the hippocampus, stating that it was the key to the rat's mental representation of its surroundings. This observation furthered research in this area and consequently much of hippocampus activity is explained through cognitive map making.[12]

As time went on, the cognitive map was researched in other prospective fields that found it useful, therefore leading to broader and differentiating definitions and applications. A very prominent researcher, Colin Eden, has specifically mentioned his application of cognitive mapping simply as any representation of thinking models.[13]

Mental map distinction Edit

A cognitive map is a spatial representation of the outside world that is kept within the mind, until an actual manifestation (usually, a drawing) of this perceived knowledge is generated, a mental map. Cognitive mapping is the implicit, mental mapping the explicit part of the same process. In most cases, a cognitive map exists independently of a mental map, an article covering just cognitive maps would remain limited to theoretical considerations.

Mental mapping is typically associated with landmarks, locations, and geography when demonstrated. Creating mental maps depends on the individual and their perceptions whether they are influenced by media, real-life, or other sources. Because of their factual storage mental maps can be useful when giving directions and navigating.[14][15] As stated previously this distinction is hard to identify when posed with almost identical definitions, nevertheless there is a distinction.[16]

In some uses, mental map refers to a practice done by urban theorists by having city dwellers draw a map, from memory, of their city or the place they live. This allows the theorist to get a sense of which parts of the city or dwelling are more substantial or imaginable. This, in turn, lends itself to a decisive idea of how well urban planning has been conducted.[17]

Acquisition of the cognitive maps Edit

The cognitive map is generated from a number of sources, both from the visual system and elsewhere. Much of the cognitive map is created through self-generated movement cues. Inputs from senses like vision, proprioception, olfaction, and hearing are all used to deduce a person's location within their environment as they move through it. This allows for path integration, the creation of a vector that represents one's position and direction within one's environment, specifically in comparison to an earlier reference point. This resulting vector can be passed along to the hippocampal place cells where it is interpreted to provide more information about the environment and one's location within the context of the cognitive map.[18]

Directional cues and positional landmarks are also used to create the cognitive map. Within directional cues, both explicit cues, like markings on a compass, as well as gradients, like shading or magnetic fields, are used as inputs to create the cognitive map. Directional cues can be used both statically, when a person does not move within his environment while interpreting it, and dynamically, when movement through a gradient is used to provide information about the nature of the surrounding environment. Positional landmarks provide information about the environment by comparing the relative position of specific objects, whereas directional cues give information about the shape of the environment itself. These landmarks are processed by the hippocampus together to provide a graph of the environment through relative locations.[18]

Alex Siegel and Sheldon White (1975) proposed a model of acquisition of spatial knowledge based on different levels. The first stage of the process is said to be limited to the landmarks available in a new environment. Then, as a second stage, information about the routes that connect landmarks will be encoded, at the beginning in a non-metric representation form and consequently they will be expanded with metric properties, such as distances, durations and angular deviations. In the third and final step, the observer will be able to use a survey representation of the surroundings, using an allocentric point of view.[19]

All in all, the acquisition of cognitive maps is a gradual construction. This kind of knowledge is multimodal in nature and it is built up by different pieces of information coming from different sources that are integrated step by step.

Neurological basis Edit

Cognitive mapping is believed to largely be a function of the hippocampus. The hippocampus is connected to the rest of the brain in such a way that it is ideal for integrating both spatial and nonspatial information. Connections from the postrhinal cortex and the medial entorhinal cortex provide spatial information to the hippocampus. Connections from the perirhinal cortex and lateral entorhinal cortex provide nonspatial information. The integration of this information in the hippocampus makes the hippocampus a practical location for cognitive mapping, which necessarily involves combining information about an object's location and its other features.[20]

O'Keefe and Nadel were the first to outline a relationship between the hippocampus and cognitive mapping.[8] Many additional studies have shown additional evidence that supports this conclusion.[21] Specifically, pyramidal cells (place cells, boundary cells, and grid cells) have been implicated as the neuronal basis for cognitive maps within the hippocampal system.

Numerous studies by O'Keefe have implicated the involvement of place cells. Individual place cells within the hippocampus correspond to separate locations in the environment with the sum of all cells contributing to a single map of an entire environment. The strength of the connections between the cells represents the distances between them in the actual environment. The same cells can be used for constructing several environments, though individual cells' relationships to each other may differ on a map by map basis.[8] The possible involvement of place cells in cognitive mapping has been seen in a number of mammalian species, including rats and macaque monkeys.[21] Additionally, in a study of rats by Manns and Eichenbaum, pyramidal cells from within the hippocampus were also involved in representing object location and object identity, indicating their involvement in the creation of cognitive maps.[20] However, there has been some dispute as to whether such studies of mammalian species indicate the presence of a cognitive map and not another, simpler method of determining one's environment.[22]

While not located in the hippocampus, grid cells from within the medial entorhinal cortex have also been implicated in the process of path integration, actually playing the role of the path integrator while place cells display the output of the information gained through path integration.[23] The results of path integration are then later used by the hippocampus to generate the cognitive map.[18] The cognitive map likely exists on a circuit involving much more than just the hippocampus, even if it is primarily based there. Other than the medial entorhinal cortex, the presubiculum and parietal cortex have also been implicated in the generation of cognitive maps.[21]

Parallel map theory Edit

There has been some evidence for the idea that the cognitive map is represented in the hippocampus by two separate maps. The first is the bearing map, which represents the environment through self-movement cues and gradient cues. The use of these vector-based cues creates a rough, 2D map of the environment. The second map would be the sketch map that works off of positional cues. The second map integrates specific objects, or landmarks, and their relative locations to create a 2D map of the environment. The cognitive map is thus obtained by the integration of these two separate maps.[18] This leads to an understanding that it is not just one map but three that help us create this mental process. It should be clear that parallel map theory is still growing. The sketch map has foundation in previous neurobiological processes and explanations while the bearing map has very little research to support its evidence.[24]

Cognitive maps in animals Edit

According to O’Keefe and Nadel (1978), not only humans require spatial abilities. Non-humans animals need them as well to find food, shelters, and others animals whether it is mates or predators.[25] To do so, some animals establish relationships between landmarks, allowing them to make spatial inferences and detect positions.[26]

The first experiments on rats in a maze, conducted by Tolman, Ritchie, and Kalish (1946), showed that rats can form mental maps of spatial locations with a good comprehension of them. But these experiments, led again later by other researchers (for example by Eichenbaum, Stewart, & Morris, 1990 and by Singer et al. 2006) have not concluded with such clear results. Some authors tried to bring to light the way rats can take shortcuts. The results have demonstrated that in most cases, rats fail to use a shortcut when reaching for food unless they receive a preexposure to this shortcut route. In that case, rats use that route significantly faster and more often than those who were not preexposed. Moreover, they have difficulties making a spatial inference such as taking a novel shortcut route.[27]

In 1987, Chapuis and Varlet led an experiment on dogs to determine if they were able to infer shortcuts. The conclusion confirmed their hypothesis. Indeed, the results demonstrated that the dogs were able to go from starting point to point A with food and then go directly to point B without returning to the starting point. But for Andrew T.D. Bennett (1996) it can simply mean that the dogs have seen some landmarks near point B such as trees or buildings and headed towards them because they associated them with the food. Later, in 1998, Cheng and Spetch did an experiment on gerbils. When looking for the hidden food (goal), gerbils were using the relationship between the goal and one landmark at a time. Instead of deducing that the food was equidistant from two landmarks, gerbils were searching it by its position from two independent landmarks. This means that even though animals use landmarks to locate positions, they do it in a certain way.[26]

Another experiment, including pigeons this time, showed that they also use landmarks to locate positions. The task was for the pigeons to find hidden food in an arena. A part of the testing was to make sure that they were not using their smell to locate food. These results show and confirm other evidence of links present in those animals between one or multiple landmark(s) and hidden food (Cheng and Spetch, 1998, 2001 ; Spetch and Mondloch, 1993 ; Spetch et al., 1996, 1997).[25]

Criticism Edit

In a review, Andrew T.D. Bennett noted two principal definitions for the “cognitive map” term. The first one, according to Tolman, O’Keefe, and Nadel, implies the capacity to create novel short-cutting thanks to vigorous memorization of the landmarks. The second one, according to Gallistel, considers a cognitive map as “any representation of space held by an animal”.[22] This lack of a proper definition is also shared by Thinus-Blanc (1996) who stated that the definition is not clear enough. Therefore, this makes further experiments difficult to conclude.[25]

However, Bennett argued that there is no clear evidence for cognitive maps in non-human animals (i.e. cognitive map according to Tolman's definition). This argument is based on analyses of studies where it has been found that simpler explanations can account for experimental results. Bennett highlights three simpler alternatives that cannot be ruled out in tests of cognitive maps in non-human animals "These alternatives are (1) that the apparently novel short-cut is not truly novel; (2) that path integration is being used; and (3) that familiar landmarks are being recognised from a new angle, followed by movement towards them."[22] This point of view is also shared by Grieves and Dudchenko (2013) that showed with their experiment on rats (briefly presented above) that these animals are not capable of making spatial inferences using cognitive maps.[27]

Heuristics Edit

Heuristics were found to be used in the manipulation and creation of cognitive maps.[28] These internal representations are used by our memory as a guide in our external environment. It was found that when questioned about maps imaging, distancing, etc., people commonly made distortions to images. These distortions took shape in the regularisation of images (i.e., images are represented as more like pure abstract geometric images, though they are irregular in shape).

There are several ways that humans form and use cognitive maps, with visual intake being an especially key part of mapping: the first is by using landmarks, whereby a person uses a mental image to estimate a relationship, usually distance, between two objects. The second is route-road knowledge, and is generally developed after a person has performed a task and is relaying the information of that task to another person. The third is a survey, whereby a person estimates a distance based on a mental image that, to them, might appear like an actual map. This image is generally created when a person's brain begins making image corrections. These are presented in five ways:

  1. Right-angle bias: when a person straightens out an image, like mapping an intersection, and begins to give everything 90-degree angles, when in reality it may not be that way.
  2. Symmetry heuristic: when people tend to think of shapes, or buildings, as being more symmetrical than they really are.
  3. Rotation heuristic: when a person takes a naturally (realistically) distorted image and straightens it out for their mental image.
  4. Alignment heuristic: similar to the previous, where people align objects mentally to make them straighter than they really are.
  5. Relative-position heuristic: people do not accurately distance landmarks in their mental image based on how well they remember them.

Another method of creating cognitive maps is by means of auditory intake based on verbal descriptions. Using the mapping based from a person's visual intake, another person can create a mental image, such as directions to a certain location.[29]

See also Edit

References Edit

  1. ^ Tolman, Edward C. (July 1948). "Cognitive maps in rats and men". Psychological Review. 55 (4): 189–208. doi:10.1037/h0061626. PMID 18870876. S2CID 42496633.
  2. ^ Ungar, Simon (2005). "Cognitive maps". In Caves, Roger W. (ed.). Encyclopedia of the City. Abingdon; New York: Routledge. p. 79. doi:10.4324/9780203484234. ISBN 9780415252256. OCLC 55948158.
  3. ^ Eden, Colin (July 1988). "Cognitive mapping". European Journal of Operational Research. 36 (1): 1–13. doi:10.1016/0377-2217(88)90002-1. In the practical setting of work in with a team of busy managers cognitive mapping is a tool for building interest from all team members in the problem solving activity. [...] The cycle of problem construction, making sense, defining the problem, and declaring a portfolio of solutions, which I have discussed elsewhere (Eden, 1982) is the framework that guides the process of working with teams. Thus building and working with the cognitive maps of each individual is primarily aimed at helping each team member reflectively 'construct' and 'make sense' of the situation they believe the team is facing. (pp. 7–8)
  4. ^ Fiol, C. Marlene; Huff, Anne Sigismund (May 1992). "Maps for managers: Where are we? Where do we go from here?" (PDF). Journal of Management Studies. 29 (3): 267–285. doi:10.1111/j.1467-6486.1992.tb00665.x. For geographers, a map is a means of depicting the world so that people understand where they are and where they can go. For cognitive researchers, who often use the idea of a 'map' as an analogy, the basic idea is the same. Cognitive maps are graphic representations that locate people in relation to their information environments. Maps provide a frame of reference for what is known and believed. They highlight some information and fail to include other information, either because it is deemed less important, or because it is not known. (p. 267)
  5. ^ Ambrosini, Véronique; Bowman, Cliff (2002). "Mapping successful organizational routines". In Huff, Anne Sigismund; Jenkins, Mark (eds.). Mapping strategic knowledge. London; Thousand Oaks, CA: SAGE Publications. pp. 19–45. ISBN 0761969497. OCLC 47900801. pp. 21–22: We shall not explain here what cognitive maps are about as this has been done extensively elsewhere (Huff, 1990). Let us just say that cognitive maps are the representation of an individual's personal knowledge, of an individual's own experience (Weick and Bougon, 1986), and they are ways of representing individuals' views of reality (Eden et al., 1981). There are various types of cognitive maps (Huff, 1990).
  6. ^ a b World Leaders in Research-Based User Experience. "Cognitive Maps, Mind Maps, and Concept Maps: Definitions". Nielsen Norman Group. Retrieved 2020-04-06.
  7. ^ Kitchin, Robert M. (1994). "Cognitive maps: what are they and why study them?" (PDF). Journal of Environmental Psychology. 14 (1): 1–19. doi:10.1016/S0272-4944(05)80194-X.
  8. ^ a b c O'Keefe, John; Nadel, Lynn (1978). . Oxford; New York: Clarendon Press; Oxford University Press. ISBN 0198572069. OCLC 4430731. Archived from the original on 2019-09-27. Retrieved 2006-09-27.
  9. ^ Sargolini, Francesca; Fyhn, Marianne; Hafting, Torkel; McNaughton, Bruce L.; Witter, Menno P.; Moser, May-Britt; Moser, Edvard I. (May 2006). "Conjunctive representation of position, direction, and velocity in entorhinal cortex". Science. 312 (5774): 758–762. Bibcode:2006Sci...312..758S. doi:10.1126/science.1125572. PMID 16675704.
  10. ^ Goldstein, E. Bruce (2011). Cognitive psychology: connecting mind, research, and everyday experience (3rd ed.). Belmont, CA: Wadsworth Cengage Learning. pp. 11–12. ISBN 9780840033550. OCLC 658234658.
  11. ^ Glickman, Stephen E. (1992), "Some thoughts on the evolution of comparative psychology.", in Koch, Sigmund; Leary, David E. (eds.), A century of psychology as science, American Psychological Association, pp. 738–782, doi:10.1037/10117-048, ISBN 978-1-55798-171-4, retrieved 2020-03-18
  12. ^ Nadel, Lynn (2008-03-20). The Hippocampus and Context Revisited. Oxford University Press. doi:10.1093/acprof:oso/9780195323245.001.0001. ISBN 978-0-19-986926-8.
  13. ^ Eden, Colin (1992). "On the Nature of Cognitive Maps". Journal of Management Studies. 29 (3): 261–265. doi:10.1111/j.1467-6486.1992.tb00664.x. ISSN 1467-6486.
  14. ^ a b Society, National Geographic. "National Geography Standard 2". nationalgeographic.org. Retrieved 2020-04-06.
  15. ^ M. A., Geography; B. A., Geography. "Mental Maps: You Don't Need a GPS to Get Where You Want to Go". ThoughtCo. Retrieved 2020-04-06.
  16. ^ Schenk, Frithjof Benjamin. "Mental Maps: The Cognitive Mapping of the Continent as an Object of Research of European History Mental Maps". EGO(http://www.ieg-ego.eu). Retrieved 2020-04-06.
  17. ^ Lloyd, Robert (March 1989). "Cognitive Maps: Encoding and Decoding Information". Annals of the Association of American Geographers. 79 (1): 101–124. doi:10.1111/j.1467-8306.1989.tb00253.x. JSTOR 2563857.
  18. ^ a b c d Jacobs, Lucia F.; Schenk, Françoise (April 2003). "Unpacking the cognitive map: the parallel map theory of hippocampal function". Psychological Review. 110 (2): 285–315. doi:10.1037/0033-295X.110.2.285. PMID 12747525.
  19. ^ Siegel, Alexander W.; Allik, Judith P.; Herman, James F. (March 1976). "The Primacy Effect in Young Children: Verbal Fact or Spatial Artifact?". Child Development. 47 (1): 242. doi:10.2307/1128306. ISSN 0009-3920. JSTOR 1128306.
  20. ^ a b Manns, Joseph R.; Eichenbaum, Howard (October 2009). "A cognitive map for object memory in the hippocampus". Learning & Memory. 16 (10): 616–624. doi:10.1101/lm.1484509. PMC 2769165. PMID 19794187.
  21. ^ a b c Moser, Edvard I.; Kropff, Emilio; Moser, May-Britt (2008). "Place cells, grid cells, and the brain's spatial representation system". Annual Review of Neuroscience. 31: 69–89. doi:10.1146/annurev.neuro.31.061307.090723. PMID 18284371.
  22. ^ a b c Bennett, Andrew T. D. (January 1996). "Do animals have cognitive maps?". The Journal of Experimental Biology. 199 (Pt 1): 219–224. doi:10.1242/jeb.199.1.219. PMID 8576693.
  23. ^ McNaughton, Bruce L.; Battaglia, Francesco P.; Jensen, Ole; Moser, Edvard I.; Moser, May-Britt (August 2006). "Path integration and the neural basis of the 'cognitive map'". Nature Reviews Neuroscience. 7 (8): 663–678. doi:10.1038/nrn1932. PMID 16858394. S2CID 16928213.
  24. ^ Jacobs, Lucia F. (2003). "The Evolution of the Cognitive Map" (PDF). Brain, Behavior and Evolution. 62 (2): 128–139. doi:10.1159/000072443. PMID 12937351. S2CID 16102408.
  25. ^ a b c Blasidell Aaron, Cook Robert (2004). "Integration of spatial maps in pigeons". fr.booksc.org. Retrieved 2022-04-24.
  26. ^ a b Olthof, Anneke; Sutton, Jennifer E.; Slumskie, Shawna V.; D'Addetta, JoAnne; Roberts, William A. (1999). "In search of the cognitive map: Can rats learn an abstract pattern of rewarded arms on the radial maze?". fr.booksc.org. Retrieved 2022-04-24.{{cite web}}: CS1 maint: multiple names: authors list (link)
  27. ^ a b Grieves, Roderick M.; Dudchenko, Paul A. (2013-05-01). "Cognitive maps and spatial inference in animals: Rats fail to take a novel shortcut, but can take a previously experienced one". Learning and Motivation. 44 (2): 81–92. doi:10.1016/j.lmot.2012.08.001. ISSN 0023-9690.
  28. ^ McNaughton, Bruce L.; Battaglia, Francesco P.; Jensen, Ole; Moser, Edvard I; Moser, May-Britt (August 2006). "Path integration and the neural basis of the 'cognitive map'". Nature Reviews Neuroscience. 7 (8): 663–678. doi:10.1038/nrn1932. ISSN 1471-003X. PMID 16858394. S2CID 16928213.
  29. ^ Sternberg, Robert J.; Sternberg, Karin (2012). Cognitive Psychology (6th ed.). Belmont, CA: Wadsworth, Cengage Learning. pp. 310–315. ISBN 978-1-111-34476-4.
  30. ^ Montello, D. R. (2009). "Cognitive Geography" (PDF). ucsb.edu.
  31. ^ Papageorgiou, Elpiniki; Stylios, Chrysostomos; Groumpos, Peter (2003). "Fuzzy Cognitive Map Learning Based on Nonlinear Hebbian Rule". In Gedeon, Tamás Domonkos; Fung, Lance Chun Che (eds.). AI 2003: Advances in Artificial Intelligence. Lecture Notes in Artificial Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 256–268. doi:10.1007/978-3-540-24581-0_22. ISBN 978-3-540-20646-0. ISSN 0302-9743.
  32. ^ Sperling, G. (2001-01-01), "Motion Perception Models", in Smelser, Neil J.; Baltes, Paul B. (eds.), International Encyclopedia of the Social & Behavioral Sciences, Pergamon, pp. 10093–10099, ISBN 978-0-08-043076-8, retrieved 2020-04-06
  33. ^ "Repertory Grids". kellysociety.org. Retrieved 2020-04-06.

External links Edit

  •   Media related to Cognitive maps at Wikimedia Commons

cognitive, confused, with, mind, mental, mental, model, cognitive, type, mental, representation, which, serves, individual, acquire, code, store, recall, decode, information, about, relative, locations, attributes, phenomena, their, everyday, metaphorical, spa. Not to be confused with Mind map Mental map or Mental model A cognitive map is a type of mental representation which serves an individual to acquire code store recall and decode information about the relative locations and attributes of phenomena in their everyday or metaphorical spatial environment The concept was introduced by Edward Tolman in 1948 1 He tried to explain the behavior of rats that appeared to learn the spatial layout of a maze and subsequently the concept was applied to other animals including humans 2 The term was later generalized by some researchers especially in the field of operations research to refer to a kind of semantic network representing an individual s personal knowledge or schemas 3 4 5 Contents 1 Overview 2 History 3 Mental map distinction 4 Acquisition of the cognitive maps 5 Neurological basis 5 1 Parallel map theory 6 Cognitive maps in animals 7 Criticism 8 Heuristics 9 See also 10 References 11 External linksOverview EditCognitive maps have been studied in various fields such as psychology education archaeology planning geography cartography architecture landscape architecture urban planning management and history 6 Because of the broad use and study of cognitive maps it has become a colloquialism for almost any mental representation or model 6 As a consequence these mental models are often referred to variously as cognitive maps mental maps scripts schemata and frame of reference Cognitive maps are a function of the working brain that humans and animals use for movement in a new environment They help us in recognizing places computing directions and distances and in critical thinking on shortcuts They support us in wayfinding in an environment and act as blueprints for new technology Cognitive maps serve the construction and accumulation of spatial knowledge allowing the mind s eye to visualize images in order to reduce cognitive load enhance recall and learning of information This type of spatial thinking can also be used as a metaphor for non spatial tasks where people performing non spatial tasks involving memory and imaging use spatial knowledge to aid in processing the task 7 They include information about the spatial relations that objects have among each other in an environment and they help us in orienting and moving in a setting and in space They are internal representation they are not a fixed image instead they are a schema dynamic and flexible with a degree of personal level A spatial map needs to be acquired according to a frame of reference Because it is independent from the observer s point of view it is based on an allocentric reference system with an object to object relation It codes configurational information using a world centred coding system The neural correlates of a cognitive map have been speculated to be the place cell system in the hippocampus 8 and the recently discovered grid cells in the entorhinal cortex 9 History EditThe idea of a cognitive map was first developed by Edward C Tolman Tolman one of the early cognitive psychologists introduced this idea when doing an experiment involving rats and mazes In Tolman s experiment a rat was placed in a cross shaped maze and allowed to explore it After this initial exploration the rat was placed at one arm of the cross and food was placed at the next arm to the immediate right The rat was conditioned to this layout and learned to turn right at the intersection in order to get to the food When placed at different arms of the cross maze however the rat still went in the correct direction to obtain the food because of the initial cognitive map it had created of the maze Rather than just deciding to turn right at the intersection no matter what the rat was able to determine the correct way to the food no matter where in the maze it was placed 10 Unfortunately further research was slowed due to the behaviorist point of view prevalent in the field of psychology at the time 11 In later years O Keefe and Nadel attributed Tolman s research to the hippocampus stating that it was the key to the rat s mental representation of its surroundings This observation furthered research in this area and consequently much of hippocampus activity is explained through cognitive map making 12 As time went on the cognitive map was researched in other prospective fields that found it useful therefore leading to broader and differentiating definitions and applications A very prominent researcher Colin Eden has specifically mentioned his application of cognitive mapping simply as any representation of thinking models 13 Mental map distinction EditA cognitive map is a spatial representation of the outside world that is kept within the mind until an actual manifestation usually a drawing of this perceived knowledge is generated a mental map Cognitive mapping is the implicit mental mapping the explicit part of the same process In most cases a cognitive map exists independently of a mental map an article covering just cognitive maps would remain limited to theoretical considerations Mental mapping is typically associated with landmarks locations and geography when demonstrated Creating mental maps depends on the individual and their perceptions whether they are influenced by media real life or other sources Because of their factual storage mental maps can be useful when giving directions and navigating 14 15 As stated previously this distinction is hard to identify when posed with almost identical definitions nevertheless there is a distinction 16 In some uses mental map refers to a practice done by urban theorists by having city dwellers draw a map from memory of their city or the place they live This allows the theorist to get a sense of which parts of the city or dwelling are more substantial or imaginable This in turn lends itself to a decisive idea of how well urban planning has been conducted 17 Acquisition of the cognitive maps EditThe cognitive map is generated from a number of sources both from the visual system and elsewhere Much of the cognitive map is created through self generated movement cues Inputs from senses like vision proprioception olfaction and hearing are all used to deduce a person s location within their environment as they move through it This allows for path integration the creation of a vector that represents one s position and direction within one s environment specifically in comparison to an earlier reference point This resulting vector can be passed along to the hippocampal place cells where it is interpreted to provide more information about the environment and one s location within the context of the cognitive map 18 Directional cues and positional landmarks are also used to create the cognitive map Within directional cues both explicit cues like markings on a compass as well as gradients like shading or magnetic fields are used as inputs to create the cognitive map Directional cues can be used both statically when a person does not move within his environment while interpreting it and dynamically when movement through a gradient is used to provide information about the nature of the surrounding environment Positional landmarks provide information about the environment by comparing the relative position of specific objects whereas directional cues give information about the shape of the environment itself These landmarks are processed by the hippocampus together to provide a graph of the environment through relative locations 18 Alex Siegel and Sheldon White 1975 proposed a model of acquisition of spatial knowledge based on different levels The first stage of the process is said to be limited to the landmarks available in a new environment Then as a second stage information about the routes that connect landmarks will be encoded at the beginning in a non metric representation form and consequently they will be expanded with metric properties such as distances durations and angular deviations In the third and final step the observer will be able to use a survey representation of the surroundings using an allocentric point of view 19 All in all the acquisition of cognitive maps is a gradual construction This kind of knowledge is multimodal in nature and it is built up by different pieces of information coming from different sources that are integrated step by step Neurological basis EditCognitive mapping is believed to largely be a function of the hippocampus The hippocampus is connected to the rest of the brain in such a way that it is ideal for integrating both spatial and nonspatial information Connections from the postrhinal cortex and the medial entorhinal cortex provide spatial information to the hippocampus Connections from the perirhinal cortex and lateral entorhinal cortex provide nonspatial information The integration of this information in the hippocampus makes the hippocampus a practical location for cognitive mapping which necessarily involves combining information about an object s location and its other features 20 O Keefe and Nadel were the first to outline a relationship between the hippocampus and cognitive mapping 8 Many additional studies have shown additional evidence that supports this conclusion 21 Specifically pyramidal cells place cells boundary cells and grid cells have been implicated as the neuronal basis for cognitive maps within the hippocampal system Numerous studies by O Keefe have implicated the involvement of place cells Individual place cells within the hippocampus correspond to separate locations in the environment with the sum of all cells contributing to a single map of an entire environment The strength of the connections between the cells represents the distances between them in the actual environment The same cells can be used for constructing several environments though individual cells relationships to each other may differ on a map by map basis 8 The possible involvement of place cells in cognitive mapping has been seen in a number of mammalian species including rats and macaque monkeys 21 Additionally in a study of rats by Manns and Eichenbaum pyramidal cells from within the hippocampus were also involved in representing object location and object identity indicating their involvement in the creation of cognitive maps 20 However there has been some dispute as to whether such studies of mammalian species indicate the presence of a cognitive map and not another simpler method of determining one s environment 22 While not located in the hippocampus grid cells from within the medial entorhinal cortex have also been implicated in the process of path integration actually playing the role of the path integrator while place cells display the output of the information gained through path integration 23 The results of path integration are then later used by the hippocampus to generate the cognitive map 18 The cognitive map likely exists on a circuit involving much more than just the hippocampus even if it is primarily based there Other than the medial entorhinal cortex the presubiculum and parietal cortex have also been implicated in the generation of cognitive maps 21 Parallel map theory Edit There has been some evidence for the idea that the cognitive map is represented in the hippocampus by two separate maps The first is the bearing map which represents the environment through self movement cues and gradient cues The use of these vector based cues creates a rough 2D map of the environment The second map would be the sketch map that works off of positional cues The second map integrates specific objects or landmarks and their relative locations to create a 2D map of the environment The cognitive map is thus obtained by the integration of these two separate maps 18 This leads to an understanding that it is not just one map but three that help us create this mental process It should be clear that parallel map theory is still growing The sketch map has foundation in previous neurobiological processes and explanations while the bearing map has very little research to support its evidence 24 Cognitive maps in animals EditAccording to O Keefe and Nadel 1978 not only humans require spatial abilities Non humans animals need them as well to find food shelters and others animals whether it is mates or predators 25 To do so some animals establish relationships between landmarks allowing them to make spatial inferences and detect positions 26 The first experiments on rats in a maze conducted by Tolman Ritchie and Kalish 1946 showed that rats can form mental maps of spatial locations with a good comprehension of them But these experiments led again later by other researchers for example by Eichenbaum Stewart amp Morris 1990 and by Singer et al 2006 have not concluded with such clear results Some authors tried to bring to light the way rats can take shortcuts The results have demonstrated that in most cases rats fail to use a shortcut when reaching for food unless they receive a preexposure to this shortcut route In that case rats use that route significantly faster and more often than those who were not preexposed Moreover they have difficulties making a spatial inference such as taking a novel shortcut route 27 In 1987 Chapuis and Varlet led an experiment on dogs to determine if they were able to infer shortcuts The conclusion confirmed their hypothesis Indeed the results demonstrated that the dogs were able to go from starting point to point A with food and then go directly to point B without returning to the starting point But for Andrew T D Bennett 1996 it can simply mean that the dogs have seen some landmarks near point B such as trees or buildings and headed towards them because they associated them with the food Later in 1998 Cheng and Spetch did an experiment on gerbils When looking for the hidden food goal gerbils were using the relationship between the goal and one landmark at a time Instead of deducing that the food was equidistant from two landmarks gerbils were searching it by its position from two independent landmarks This means that even though animals use landmarks to locate positions they do it in a certain way 26 Another experiment including pigeons this time showed that they also use landmarks to locate positions The task was for the pigeons to find hidden food in an arena A part of the testing was to make sure that they were not using their smell to locate food These results show and confirm other evidence of links present in those animals between one or multiple landmark s and hidden food Cheng and Spetch 1998 2001 Spetch and Mondloch 1993 Spetch et al 1996 1997 25 Criticism EditIn a review Andrew T D Bennett noted two principal definitions for the cognitive map term The first one according to Tolman O Keefe and Nadel implies the capacity to create novel short cutting thanks to vigorous memorization of the landmarks The second one according to Gallistel considers a cognitive map as any representation of space held by an animal 22 This lack of a proper definition is also shared by Thinus Blanc 1996 who stated that the definition is not clear enough Therefore this makes further experiments difficult to conclude 25 However Bennett argued that there is no clear evidence for cognitive maps in non human animals i e cognitive map according to Tolman s definition This argument is based on analyses of studies where it has been found that simpler explanations can account for experimental results Bennett highlights three simpler alternatives that cannot be ruled out in tests of cognitive maps in non human animals These alternatives are 1 that the apparently novel short cut is not truly novel 2 that path integration is being used and 3 that familiar landmarks are being recognised from a new angle followed by movement towards them 22 This point of view is also shared by Grieves and Dudchenko 2013 that showed with their experiment on rats briefly presented above that these animals are not capable of making spatial inferences using cognitive maps 27 Heuristics EditSee also Intuition and decision making Heuristics and Heuristic systematic model of information processing Heuristics were found to be used in the manipulation and creation of cognitive maps 28 These internal representations are used by our memory as a guide in our external environment It was found that when questioned about maps imaging distancing etc people commonly made distortions to images These distortions took shape in the regularisation of images i e images are represented as more like pure abstract geometric images though they are irregular in shape There are several ways that humans form and use cognitive maps with visual intake being an especially key part of mapping the first is by using landmarks whereby a person uses a mental image to estimate a relationship usually distance between two objects The second is route road knowledge and is generally developed after a person has performed a task and is relaying the information of that task to another person The third is a survey whereby a person estimates a distance based on a mental image that to them might appear like an actual map This image is generally created when a person s brain begins making image corrections These are presented in five ways Right angle bias when a person straightens out an image like mapping an intersection and begins to give everything 90 degree angles when in reality it may not be that way Symmetry heuristic when people tend to think of shapes or buildings as being more symmetrical than they really are Rotation heuristic when a person takes a naturally realistically distorted image and straightens it out for their mental image Alignment heuristic similar to the previous where people align objects mentally to make them straighter than they really are Relative position heuristic people do not accurately distance landmarks in their mental image based on how well they remember them Another method of creating cognitive maps is by means of auditory intake based on verbal descriptions Using the mapping based from a person s visual intake another person can create a mental image such as directions to a certain location 29 See also EditCognitive geography is distinctive because of its emphasis on geography as well as perception of space and environment 30 Fuzzy cognitive map establishes an important connection between concepts and actual events 31 Motion perception is more directly related to speed and direction processing 32 Repertory grid is a technique for identifying meaning 33 Mind map is directly related to expanding on a particular subject with physical diagrams 14 References Edit Tolman Edward C July 1948 Cognitive maps in rats and men Psychological Review 55 4 189 208 doi 10 1037 h0061626 PMID 18870876 S2CID 42496633 Ungar Simon 2005 Cognitive maps In Caves Roger W ed Encyclopedia of the City Abingdon New York Routledge p 79 doi 10 4324 9780203484234 ISBN 9780415252256 OCLC 55948158 Eden Colin July 1988 Cognitive mapping European Journal of Operational Research 36 1 1 13 doi 10 1016 0377 2217 88 90002 1 In the practical setting of work in with a team of busy managers cognitive mapping is a tool for building interest from all team members in the problem solving activity The cycle of problem construction making sense defining the problem and declaring a portfolio of solutions which I have discussed elsewhere Eden 1982 is the framework that guides the process of working with teams Thus building and working with the cognitive maps of each individual is primarily aimed at helping each team member reflectively construct and make sense of the situation they believe the team is facing pp 7 8 Fiol C Marlene Huff Anne Sigismund May 1992 Maps for managers Where are we Where do we go from here PDF Journal of Management Studies 29 3 267 285 doi 10 1111 j 1467 6486 1992 tb00665 x For geographers a map is a means of depicting the world so that people understand where they are and where they can go For cognitive researchers who often use the idea of a map as an analogy the basic idea is the same Cognitive maps are graphic representations that locate people in relation to their information environments Maps provide a frame of reference for what is known and believed They highlight some information and fail to include other information either because it is deemed less important or because it is not known p 267 Ambrosini Veronique Bowman Cliff 2002 Mapping successful organizational routines In Huff Anne Sigismund Jenkins Mark eds Mapping strategic knowledge London Thousand Oaks CA SAGE Publications pp 19 45 ISBN 0761969497 OCLC 47900801 pp 21 22 We shall not explain here what cognitive maps are about as this has been done extensively elsewhere Huff 1990 Let us just say that cognitive maps are the representation of an individual s personal knowledge of an individual s own experience Weick and Bougon 1986 and they are ways of representing individuals views of reality Eden et al 1981 There are various types of cognitive maps Huff 1990 a b World Leaders in Research Based User Experience Cognitive Maps Mind Maps and Concept Maps Definitions Nielsen Norman Group Retrieved 2020 04 06 Kitchin Robert M 1994 Cognitive maps what are they and why study them PDF Journal of Environmental Psychology 14 1 1 19 doi 10 1016 S0272 4944 05 80194 X a b c O Keefe John Nadel Lynn 1978 The hippocampus as a cognitive map Oxford New York Clarendon Press Oxford University Press ISBN 0198572069 OCLC 4430731 Archived from the original on 2019 09 27 Retrieved 2006 09 27 Sargolini Francesca Fyhn Marianne Hafting Torkel McNaughton Bruce L Witter Menno P Moser May Britt Moser Edvard I May 2006 Conjunctive representation of position direction and velocity in entorhinal cortex Science 312 5774 758 762 Bibcode 2006Sci 312 758S doi 10 1126 science 1125572 PMID 16675704 Goldstein E Bruce 2011 Cognitive psychology connecting mind research and everyday experience 3rd ed Belmont CA Wadsworth Cengage Learning pp 11 12 ISBN 9780840033550 OCLC 658234658 Glickman Stephen E 1992 Some thoughts on the evolution of comparative psychology in Koch Sigmund Leary David E eds A century of psychology as science American Psychological Association pp 738 782 doi 10 1037 10117 048 ISBN 978 1 55798 171 4 retrieved 2020 03 18 Nadel Lynn 2008 03 20 The Hippocampus and Context Revisited Oxford University Press doi 10 1093 acprof oso 9780195323245 001 0001 ISBN 978 0 19 986926 8 Eden Colin 1992 On the Nature of Cognitive Maps Journal of Management Studies 29 3 261 265 doi 10 1111 j 1467 6486 1992 tb00664 x ISSN 1467 6486 a b Society National Geographic National Geography Standard 2 nationalgeographic org Retrieved 2020 04 06 M A Geography B A Geography Mental Maps You Don t Need a GPS to Get Where You Want to Go ThoughtCo Retrieved 2020 04 06 Schenk Frithjof Benjamin Mental Maps The Cognitive Mapping of the Continent as an Object of Research of European History Mental Maps EGO http www ieg ego eu Retrieved 2020 04 06 Lloyd Robert March 1989 Cognitive Maps Encoding and Decoding Information Annals of the Association of American Geographers 79 1 101 124 doi 10 1111 j 1467 8306 1989 tb00253 x JSTOR 2563857 a b c d Jacobs Lucia F Schenk Francoise April 2003 Unpacking the cognitive map the parallel map theory of hippocampal function Psychological Review 110 2 285 315 doi 10 1037 0033 295X 110 2 285 PMID 12747525 Siegel Alexander W Allik Judith P Herman James F March 1976 The Primacy Effect in Young Children Verbal Fact or Spatial Artifact Child Development 47 1 242 doi 10 2307 1128306 ISSN 0009 3920 JSTOR 1128306 a b Manns Joseph R Eichenbaum Howard October 2009 A cognitive map for object memory in the hippocampus Learning amp Memory 16 10 616 624 doi 10 1101 lm 1484509 PMC 2769165 PMID 19794187 a b c Moser Edvard I Kropff Emilio Moser May Britt 2008 Place cells grid cells and the brain s spatial representation system Annual Review of Neuroscience 31 69 89 doi 10 1146 annurev neuro 31 061307 090723 PMID 18284371 a b c Bennett Andrew T D January 1996 Do animals have cognitive maps The Journal of Experimental Biology 199 Pt 1 219 224 doi 10 1242 jeb 199 1 219 PMID 8576693 McNaughton Bruce L Battaglia Francesco P Jensen Ole Moser Edvard I Moser May Britt August 2006 Path integration and the neural basis of the cognitive map Nature Reviews Neuroscience 7 8 663 678 doi 10 1038 nrn1932 PMID 16858394 S2CID 16928213 Jacobs Lucia F 2003 The Evolution of the Cognitive Map PDF Brain Behavior and Evolution 62 2 128 139 doi 10 1159 000072443 PMID 12937351 S2CID 16102408 a b c Blasidell Aaron Cook Robert 2004 Integration of spatial maps in pigeons fr booksc org Retrieved 2022 04 24 a b Olthof Anneke Sutton Jennifer E Slumskie Shawna V D Addetta JoAnne Roberts William A 1999 In search of the cognitive map Can rats learn an abstract pattern of rewarded arms on the radial maze fr booksc org Retrieved 2022 04 24 a href Template Cite web html title Template Cite web cite web a CS1 maint multiple names authors list link a b Grieves Roderick M Dudchenko Paul A 2013 05 01 Cognitive maps and spatial inference in animals Rats fail to take a novel shortcut but can take a previously experienced one Learning and Motivation 44 2 81 92 doi 10 1016 j lmot 2012 08 001 ISSN 0023 9690 McNaughton Bruce L Battaglia Francesco P Jensen Ole Moser Edvard I Moser May Britt August 2006 Path integration and the neural basis of the cognitive map Nature Reviews Neuroscience 7 8 663 678 doi 10 1038 nrn1932 ISSN 1471 003X PMID 16858394 S2CID 16928213 Sternberg Robert J Sternberg Karin 2012 Cognitive Psychology 6th ed Belmont CA Wadsworth Cengage Learning pp 310 315 ISBN 978 1 111 34476 4 Montello D R 2009 Cognitive Geography PDF ucsb edu Papageorgiou Elpiniki Stylios Chrysostomos Groumpos Peter 2003 Fuzzy Cognitive Map Learning Based on Nonlinear Hebbian Rule In Gedeon Tamas Domonkos Fung Lance Chun Che eds AI 2003 Advances in Artificial Intelligence Lecture Notes in Artificial Intelligence Berlin Heidelberg Springer Berlin Heidelberg pp 256 268 doi 10 1007 978 3 540 24581 0 22 ISBN 978 3 540 20646 0 ISSN 0302 9743 Sperling G 2001 01 01 Motion Perception Models in Smelser Neil J Baltes Paul B eds International Encyclopedia of the Social amp Behavioral Sciences Pergamon pp 10093 10099 ISBN 978 0 08 043076 8 retrieved 2020 04 06 Repertory Grids kellysociety org Retrieved 2020 04 06 External links Edit Media related to Cognitive maps at Wikimedia Commons Retrieved from https en wikipedia org w index php title Cognitive map amp oldid 1169999620, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.