fbpx
Wikipedia

Inversive geometry

In geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied. Inversion seems to have been discovered by a number of people contemporaneously, including Steiner (1824), Quetelet (1825), Bellavitis (1836), Stubbs and Ingram (1842-3) and Kelvin (1845).[1]

The concept of inversion can be generalized to higher-dimensional spaces.

Inversion in a circle edit

 
Inversion of lambda Mandelbrot set with different translations

Inverse of a point edit

 
P' is the inverse of P with respect to the circle.

To invert a number in arithmetic usually means to take its reciprocal. A closely related idea in geometry is that of "inverting" a point. In the plane, the inverse of a point P with respect to a reference circle (Ø) with center O and radius r is a point P', lying on the ray from O through P such that

 

This is called circle inversion or plane inversion. The inversion taking any point P (other than O) to its image P' also takes P' back to P, so the result of applying the same inversion twice is the identity transformation on all the points of the plane other than O (self-inversion).[2][3] To make inversion an involution it is necessary to introduce a point at infinity, a single point placed on all the lines, and extend the inversion, by definition, to interchange the center O and this point at infinity.

It follows from the definition that the inversion of any point inside the reference circle must lie outside it, and vice versa, with the center and the point at infinity changing positions, whilst any point on the circle is unaffected (is invariant under inversion). In summary, the nearer a point to the center, the further away its transformation, and vice versa.

Compass and straightedge construction edit

 
To construct the inverse P' of a point P outside a circle Ø: Let r be the radius of Ø. Right triangles OPN and ONP' are similar. OP is to r as r is to OP'.
Point outside circle edit

To construct the inverse P' of a point P outside a circle Ø:

  • Draw the segment from O (center of circle Ø) to P.
  • Let M be the midpoint of OP. (Not shown)
  • Draw the circle c with center M going through P. (Not labeled. It's the blue circle)
  • Let N and N' be the points where Ø and c intersect.
  • Draw segment NN'.
  • P' is where OP and NN' intersect.
Point inside circle edit

To construct the inverse P of a point P' inside a circle Ø:

  • Draw ray r from O (center of circle Ø) through P'. (Not labeled, it's the horizontal line)
  • Draw line s through P' perpendicular to r. (Not labeled. It's the vertical line)
  • Let N be one of the points where Ø and s intersect.
  • Draw the segment ON.
  • Draw line t through N perpendicular to ON.
  • P is where ray r and line t intersect.

Dutta's construction edit

There is a construction of the inverse point to A with respect to a circle P that is independent of whether A is inside or outside P.[4]

Consider a circle P with center O and a point A which may lie inside or outside the circle P.

  • Take the intersection point C of the ray OA with the circle P.
  • Connect the point C with an arbitrary point B on the circle P (different from C)
  • Let h be the reflection of ray BA in line BC. Then h cuts ray OC in a point A'. A' is the inverse point of A with respect to circle P.[4]: § 3.2 

Properties edit

The inversion of a set of points in the plane with respect to a circle is the set of inverses of these points. The following properties make circle inversion useful.

  • A circle that passes through the center O of the reference circle inverts to a line not passing through O, but parallel to the tangent to the original circle at O, and vice versa; whereas a line passing through O is inverted into itself (but not pointwise invariant).[5]
  • A circle not passing through O inverts to a circle not passing through O. If the circle meets the reference circle, these invariant points of intersection are also on the inverse circle. A circle (or line) is unchanged by inversion if and only if it is orthogonal to the reference circle at the points of intersection.[6]

Additional properties include:

  • If a circle q passes through two distinct points A and A' which are inverses with respect to a circle k, then the circles k and q are orthogonal.
  • If the circles k and q are orthogonal, then a straight line passing through the center O of k and intersecting q, does so at inverse points with respect to k.
  • Given a triangle OAB in which O is the center of a circle k, and points A' and B' inverses of A and B with respect to k, then
 
  • The points of intersection of two circles p and q orthogonal to a circle k, are inverses with respect to k.
  • If M and M' are inverse points with respect to a circle k on two curves m and m', also inverses with respect to k, then the tangents to m and m' at the points M and M' are either perpendicular to the straight line MM' or form with this line an isosceles triangle with base MM'.
  • Inversion leaves the measure of angles unaltered, but reverses the orientation of oriented angles.[7]

Examples in two dimensions edit

 
Examples of inversion of circles A to J with respect to the red circle at O. Circles A to F, which pass through O, map to straight lines. Circles G to J, which do not map to other circles. The reference circle and line L map to themselves. Circles intersect their inverses, if any, on the reference circle. In the SVG file, click or hover over a circle to highlight it.
  • Inversion of a line is a circle containing the center of inversion; or it is the line itself if it contains the center
  • Inversion of a circle is another circle; or it is a line if the original circle contains the center
  • Inversion of a parabola is a cardioid
  • Inversion of hyperbola is a lemniscate of Bernoulli

Application edit

For a circle not passing through the center of inversion, the center of the circle being inverted and the center of its image under inversion are collinear with the center of the reference circle. This fact can be used to prove that the Euler line of the intouch triangle of a triangle coincides with its OI line. The proof roughly goes as below:

Invert with respect to the incircle of triangle ABC. The medial triangle of the intouch triangle is inverted into triangle ABC, meaning the circumcenter of the medial triangle, that is, the nine-point center of the intouch triangle, the incenter and circumcenter of triangle ABC are collinear.

Any two non-intersecting circles may be inverted into concentric circles. Then the inversive distance (usually denoted δ) is defined as the natural logarithm of the ratio of the radii of the two concentric circles.

In addition, any two non-intersecting circles may be inverted into congruent circles, using circle of inversion centered at a point on the circle of antisimilitude.

The Peaucellier–Lipkin linkage is a mechanical implementation of inversion in a circle. It provides an exact solution to the important problem of converting between linear and circular motion.

Pole and polar edit

 
The polar line q to a point Q with respect to a circle of radius r centered on the point O. The point P is the inversion point of Q; the polar is the line through P that is perpendicular to the line containing O, P and Q.

If point R is the inverse of point P then the lines perpendicular to the line PR through one of the points is the polar of the other point (the pole).

Poles and polars have several useful properties:

  • If a point P lies on a line l, then the pole L of the line l lies on the polar p of point P.
  • If a point P moves along a line l, its polar p rotates about the pole L of the line l.
  • If two tangent lines can be drawn from a pole to the circle, then its polar passes through both tangent points.
  • If a point lies on the circle, its polar is the tangent through this point.
  • If a point P lies on its own polar line, then P is on the circle.
  • Each line has exactly one pole.

In three dimensions edit

 
Inversion of a sphere at the red sphere
 
Inversion of a spheroid (at the red sphere)
 
Inversion of a hyperboloid of one sheet

Circle inversion is generalizable to sphere inversion in three dimensions. The inversion of a point P in 3D with respect to a reference sphere centered at a point O with radius R is a point P ' on the ray with direction OP such that  . As with the 2D version, a sphere inverts to a sphere, except that if a sphere passes through the center O of the reference sphere, then it inverts to a plane. Any plane passing through O, inverts to a sphere touching at O. A circle, that is, the intersection of a sphere with a secant plane, inverts into a circle, except that if the circle passes through O it inverts into a line. This reduces to the 2D case when the secant plane passes through O, but is a true 3D phenomenon if the secant plane does not pass through O.

Examples in three dimensions edit

Sphere edit

The simplest surface (besides a plane) is the sphere. The first picture shows a non trivial inversion (the center of the sphere is not the center of inversion) of a sphere together with two orthogonal intersecting pencils of circles.

Cylinder, cone, torus edit

The inversion of a cylinder, cone, or torus results in a Dupin cyclide.

Spheroid edit

A spheroid is a surface of revolution and contains a pencil of circles which is mapped onto a pencil of circles (see picture). The inverse image of a spheroid is a surface of degree 4.

Hyperboloid of one sheet edit

A hyperboloid of one sheet, which is a surface of revolution contains a pencil of circles which is mapped onto a pencil of circles. A hyperboloid of one sheet contains additional two pencils of lines, which are mapped onto pencils of circles. The picture shows one such line (blue) and its inversion.

Stereographic projection as the inversion of a sphere edit

 
Stereographic projection as an inversion of a sphere

A stereographic projection usually projects a sphere from a point   (north pole) of the sphere onto the tangent plane at the opposite point   (south pole). This mapping can be performed by an inversion of the sphere onto its tangent plane. If the sphere (to be projected) has the equation   (alternately written  ; center  , radius  , green in the picture), then it will be mapped by the inversion at the unit sphere (red) onto the tangent plane at point  . The lines through the center of inversion (point  ) are mapped onto themselves. They are the projection lines of the stereographic projection.

6-sphere coordinates edit

The 6-sphere coordinates are a coordinate system for three-dimensional space obtained by inverting the Cartesian coordinates.

Axiomatics and generalization edit

One of the first to consider foundations of inversive geometry was Mario Pieri in 1911 and 1912.[8] Edward Kasner wrote his thesis on "Invariant theory of the inversion group".[9]

More recently the mathematical structure of inversive geometry has been interpreted as an incidence structure where the generalized circles are called "blocks": In incidence geometry, any affine plane together with a single point at infinity forms a Möbius plane, also known as an inversive plane. The point at infinity is added to all the lines. These Möbius planes can be described axiomatically and exist in both finite and infinite versions.

A model for the Möbius plane that comes from the Euclidean plane is the Riemann sphere.

Invariant edit

The cross-ratio between 4 points   is invariant under an inversion. In particular if O is the centre of the inversion and   and   are distances to the ends of a line L, then length of the line   will become   under an inversion with centre O. The invariant is:

 

Relation to Erlangen program edit

According to Coxeter,[10] the transformation by inversion in circle was invented by L. I. Magnus in 1831. Since then this mapping has become an avenue to higher mathematics. Through some steps of application of the circle inversion map, a student of transformation geometry soon appreciates the significance of Felix Klein’s Erlangen program, an outgrowth of certain models of hyperbolic geometry

Dilation edit

The combination of two inversions in concentric circles results in a similarity, homothetic transformation, or dilation characterized by the ratio of the circle radii.

 

Reciprocation edit

When a point in the plane is interpreted as a complex number   with complex conjugate   then the reciprocal of z is

 

Consequently, the algebraic form of the inversion in a unit circle is given by   where:

 .

Reciprocation is key in transformation theory as a generator of the Möbius group. The other generators are translation and rotation, both familiar through physical manipulations in the ambient 3-space. Introduction of reciprocation (dependent upon circle inversion) is what produces the peculiar nature of Möbius geometry, which is sometimes identified with inversive geometry (of the Euclidean plane). However, inversive geometry is the larger study since it includes the raw inversion in a circle (not yet made, with conjugation, into reciprocation). Inversive geometry also includes the conjugation mapping. Neither conjugation nor inversion-in-a-circle are in the Möbius group since they are non-conformal (see below). Möbius group elements are analytic functions of the whole plane and so are necessarily conformal.

Transforming circles into circles edit

Consider, in the complex plane, the circle of radius   around the point  

 

where without loss of generality,   Using the definition of inversion

 

it is straightforward to show that   obeys the equation

 

and hence that   describes the circle of center   and radius  

When   the circle transforms into the line parallel to the imaginary axis  

For   and   the result for   is

 

showing that the   describes the circle of center   and radius  .

When   the equation for   becomes

 

Higher geometry edit

As mentioned above, zero, the origin, requires special consideration in the circle inversion mapping. The approach is to adjoin a point at infinity designated ∞ or 1/0 . In the complex number approach, where reciprocation is the apparent operation, this procedure leads to the complex projective line, often called the Riemann sphere. It was subspaces and subgroups of this space and group of mappings that were applied to produce early models of hyperbolic geometry by Beltrami, Cayley, and Klein. Thus inversive geometry includes the ideas originated by Lobachevsky and Bolyai in their plane geometry. Furthermore, Felix Klein was so overcome by this facility of mappings to identify geometrical phenomena that he delivered a manifesto, the Erlangen program, in 1872. Since then many mathematicians reserve the term geometry for a space together with a group of mappings of that space. The significant properties of figures in the geometry are those that are invariant under this group.

For example, Smogorzhevsky[11] develops several theorems of inversive geometry before beginning Lobachevskian geometry.

In higher dimensions edit

In a real n-dimensional Euclidean space, an inversion in the sphere of radius r centered at the point   is a map of an arbitrary point   found by inverting the length of the displacement vector   and multiplying by  :

 

The transformation by inversion in hyperplanes or hyperspheres in En can be used to generate dilations, translations, or rotations. Indeed, two concentric hyperspheres, used to produce successive inversions, result in a dilation or homothety about the hyperspheres' center.

When two parallel hyperplanes are used to produce successive reflections, the result is a translation. When two hyperplanes intersect in an (n–2)-flat, successive reflections produce a rotation where every point of the (n–2)-flat is a fixed point of each reflection and thus of the composition.

Any combination of reflections, translations, and rotations is called an isometry. Any combination of reflections, dilations, translations, and rotations is a similarity.

All of these are conformal maps, and in fact, where the space has three or more dimensions, the mappings generated by inversion are the only conformal mappings. Liouville's theorem is a classical theorem of conformal geometry.

The addition of a point at infinity to the space obviates the distinction between hyperplane and hypersphere; higher dimensional inversive geometry is frequently studied then in the presumed context of an n-sphere as the base space. The transformations of inversive geometry are often referred to as Möbius transformations. Inversive geometry has been applied to the study of colorings, or partitionings, of an n-sphere.[12]

Anticonformal mapping property edit

The circle inversion map is anticonformal, which means that at every point it preserves angles and reverses orientation (a map is called conformal if it preserves oriented angles). Algebraically, a map is anticonformal if at every point the Jacobian is a scalar times an orthogonal matrix with negative determinant: in two dimensions the Jacobian must be a scalar times a reflection at every point. This means that if J is the Jacobian, then   and   Computing the Jacobian in the case zi = xi/‖x2, where x2 = x12 + ... + xn2 gives JJT = kI, with k = 1/‖x4, and additionally det(J) is negative; hence the inversive map is anticonformal.

In the complex plane, the most obvious circle inversion map (i.e., using the unit circle centered at the origin) is the complex conjugate of the complex inverse map taking z to 1/z. The complex analytic inverse map is conformal and its conjugate, circle inversion, is anticonformal. In this case a homography is conformal while an anti-homography is anticonformal.

Inversive geometry and hyperbolic geometry edit

The (n − 1)-sphere with equation

 

will have a positive radius if a12 + ... + an2 is greater than c, and on inversion gives the sphere

 

Hence, it will be invariant under inversion if and only if c = 1. But this is the condition of being orthogonal to the unit sphere. Hence we are led to consider the (n − 1)-spheres with equation

 

which are invariant under inversion, orthogonal to the unit sphere, and have centers outside of the sphere. These together with the subspace hyperplanes separating hemispheres are the hypersurfaces of the Poincaré disc model of hyperbolic geometry.

Since inversion in the unit sphere leaves the spheres orthogonal to it invariant, the inversion maps the points inside the unit sphere to the outside and vice versa. This is therefore true in general of orthogonal spheres, and in particular inversion in one of the spheres orthogonal to the unit sphere maps the unit sphere to itself. It also maps the interior of the unit sphere to itself, with points outside the orthogonal sphere mapping inside, and vice versa; this defines the reflections of the Poincaré disc model if we also include with them the reflections through the diameters separating hemispheres of the unit sphere. These reflections generate the group of isometries of the model, which tells us that the isometries are conformal. Hence, the angle between two curves in the model is the same as the angle between two curves in the hyperbolic space.

See also edit

Notes edit

  1. ^ Curves and Their Properties by Robert C. Yates, National Council of Teachers of Mathematics, Inc.,Washington, D.C., p. 127: "Geometrical inversion seems to be due to Jakob Steiner who indicated a knowledge of the subject in 1824. He was closely followed by Adolphe Quetelet (1825) who gave some examples. Apparently independently discovered by Giusto Bellavitis in 1836, by Stubbs and Ingram in 1842-3, and by Lord Kelvin in 1845.)"
  2. ^ Altshiller-Court (1952, p. 230)
  3. ^ Kay (1969, p. 264)
  4. ^ a b Dutta, Surajit (2014) A simple property of isosceles triangles with applications, Forum Geometricorum 14: 237–240
  5. ^ Kay (1969, p. 265)
  6. ^ Kay (1969, p. 265)
  7. ^ Kay (1969, p. 269)
  8. ^ M. Pieri (1911,12) "Nuovi principia di geometria della inversion", Giornal di Matematiche di Battaglini 49:49–96 & 50:106–140
  9. ^ Kasner, E. (1900). "The Invariant Theory of the Inversion Group: Geometry Upon a Quadric Surface". Transactions of the American Mathematical Society. 1 (4): 430–498. doi:10.1090/S0002-9947-1900-1500550-1. hdl:2027/miun.abv0510.0001.001. JSTOR 1986367.
  10. ^ Coxeter 1969, pp. 77–95
  11. ^ A.S. Smogorzhevsky (1982) Lobachevskian Geometry, Mir Publishers, Moscow
  12. ^ Joel C. Gibbons & Yushen Luo (2013) Colorings of the n-sphere and inversive geometry

References edit

  • Altshiller-Court, Nathan (1952), College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (2nd ed.), New York: Barnes & Noble, LCCN 52-13504
  • Blair, David E. (2000), Inversion Theory and Conformal Mapping, American Mathematical Society, ISBN 0-8218-2636-0
  • Brannan, David A.; Esplen, Matthew F.; Gray, Jeremy J. (1998), "Chapter 5: Inversive Geometry", Geometry, Cambridge: Cambridge University Press, pp. 199–260, ISBN 0-521-59787-0
  • Coxeter, H.S.M. (1969) [1961], Introduction to Geometry (2nd ed.), John Wiley & Sons, ISBN 0-471-18283-4
  • Hartshorne, Robin (2000), "Chapter 7: Non-Euclidean Geometry, Section 37: Circular Inversion", Geometry: Euclid and Beyond, Springer, ISBN 0-387-98650-2
  • Kay, David C. (1969), College Geometry, New York: Holt, Rinehart and Winston, LCCN 69-12075

External links edit

  • Inversion: Reflection in a Circle at cut-the-knot
  • Wilson Stother's inversive geometry page
  • IMO Compendium Training Materials practice problems on how to use inversion for math olympiad problems
  • Weisstein, Eric W. "Inversion". MathWorld.
  • Visual Dictionary of Special Plane Curves Xah Lee

inversive, geometry, other, uses, point, reflection, geometry, inversive, geometry, study, inversion, transformation, euclidean, plane, that, maps, circles, lines, other, circles, lines, that, preserves, angles, between, crossing, curves, many, difficult, prob. For other uses see Point reflection In geometry inversive geometry is the study of inversion a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves Many difficult problems in geometry become much more tractable when an inversion is applied Inversion seems to have been discovered by a number of people contemporaneously including Steiner 1824 Quetelet 1825 Bellavitis 1836 Stubbs and Ingram 1842 3 and Kelvin 1845 1 The concept of inversion can be generalized to higher dimensional spaces Contents 1 Inversion in a circle 1 1 Inverse of a point 1 1 1 Compass and straightedge construction 1 1 1 1 Point outside circle 1 1 1 2 Point inside circle 1 2 Dutta s construction 1 3 Properties 1 4 Examples in two dimensions 1 5 Application 1 5 1 Pole and polar 2 In three dimensions 2 1 Examples in three dimensions 2 1 1 Sphere 2 1 2 Cylinder cone torus 2 1 3 Spheroid 2 1 4 Hyperboloid of one sheet 2 2 Stereographic projection as the inversion of a sphere 2 3 6 sphere coordinates 3 Axiomatics and generalization 4 Invariant 5 Relation to Erlangen program 5 1 Dilation 5 2 Reciprocation 5 3 Transforming circles into circles 5 4 Higher geometry 6 In higher dimensions 7 Anticonformal mapping property 8 Inversive geometry and hyperbolic geometry 9 See also 10 Notes 11 References 12 External linksInversion in a circle edit nbsp Inversion of lambda Mandelbrot set with different translationsInverse of a point edit nbsp P is the inverse of P with respect to the circle To invert a number in arithmetic usually means to take its reciprocal A closely related idea in geometry is that of inverting a point In the plane the inverse of a point P with respect to a reference circle O with center O and radius r is a point P lying on the ray from O through P such that O P O P r 2 displaystyle OP cdot OP prime r 2 nbsp This is called circle inversion or plane inversion The inversion taking any point P other than O to its image P also takes P back to P so the result of applying the same inversion twice is the identity transformation on all the points of the plane other than O self inversion 2 3 To make inversion an involution it is necessary to introduce a point at infinity a single point placed on all the lines and extend the inversion by definition to interchange the center O and this point at infinity It follows from the definition that the inversion of any point inside the reference circle must lie outside it and vice versa with the center and the point at infinity changing positions whilst any point on the circle is unaffected is invariant under inversion In summary the nearer a point to the center the further away its transformation and vice versa Compass and straightedge construction edit nbsp To construct the inverse P of a point P outside a circle O Let r be the radius of O Right triangles OPN and ONP are similar OP is to r as r is to OP Point outside circle edit To construct the inverse P of a point P outside a circle O Draw the segment from O center of circle O to P Let M be the midpoint of OP Not shown Draw the circle c with center M going through P Not labeled It s the blue circle Let N and N be the points where O and c intersect Draw segment NN P is where OP and NN intersect Point inside circle edit To construct the inverse P of a point P inside a circle O Draw ray r from O center of circle O through P Not labeled it s the horizontal line Draw line s through P perpendicular to r Not labeled It s the vertical line Let N be one of the points where O and s intersect Draw the segment ON Draw line t through N perpendicular to ON P is where ray r and line t intersect Dutta s construction edit There is a construction of the inverse point to A with respect to a circle P that is independent of whether A is inside or outside P 4 Consider a circle P with center O and a point A which may lie inside or outside the circle P Take the intersection point C of the ray OA with the circle P Connect the point C with an arbitrary point B on the circle P different from C Let h be the reflection of ray BA in line BC Then h cuts ray OC in a point A A is the inverse point of A with respect to circle P 4 3 2 Properties edit nbsp The inverse with respect to the red circle of a circle going through O blue is a line not going through O green and vice versa nbsp The inverse with respect to the red circle of a circle not going through O blue is a circle not going through O green and vice versa nbsp Inversion with respect to a circle does not map the center of the circle to the center of its imageThe inversion of a set of points in the plane with respect to a circle is the set of inverses of these points The following properties make circle inversion useful A circle that passes through the center O of the reference circle inverts to a line not passing through O but parallel to the tangent to the original circle at O and vice versa whereas a line passing through O is inverted into itself but not pointwise invariant 5 A circle not passing through O inverts to a circle not passing through O If the circle meets the reference circle these invariant points of intersection are also on the inverse circle A circle or line is unchanged by inversion if and only if it is orthogonal to the reference circle at the points of intersection 6 Additional properties include If a circle q passes through two distinct points A and A which are inverses with respect to a circle k then the circles k and q are orthogonal If the circles k and q are orthogonal then a straight line passing through the center O of k and intersecting q does so at inverse points with respect to k Given a triangle OAB in which O is the center of a circle k and points A and B inverses of A and B with respect to k then O A B O B A and O B A O A B displaystyle angle OAB angle OB A text and angle OBA angle OA B nbsp dd The points of intersection of two circles p and q orthogonal to a circle k are inverses with respect to k If M and M are inverse points with respect to a circle k on two curves m and m also inverses with respect to k then the tangents to m and m at the points M and M are either perpendicular to the straight line MM or form with this line an isosceles triangle with base MM Inversion leaves the measure of angles unaltered but reverses the orientation of oriented angles 7 Examples in two dimensions edit nbsp Examples of inversion of circles A to J with respect to the red circle at O Circles A to F which pass through O map to straight lines Circles G to J which do not map to other circles The reference circle and line L map to themselves Circles intersect their inverses if any on the reference circle In the SVG file click or hover over a circle to highlight it Inversion of a line is a circle containing the center of inversion or it is the line itself if it contains the center Inversion of a circle is another circle or it is a line if the original circle contains the center Inversion of a parabola is a cardioid Inversion of hyperbola is a lemniscate of BernoulliApplication edit For a circle not passing through the center of inversion the center of the circle being inverted and the center of its image under inversion are collinear with the center of the reference circle This fact can be used to prove that the Euler line of the intouch triangle of a triangle coincides with its OI line The proof roughly goes as below Invert with respect to the incircle of triangle ABC The medial triangle of the intouch triangle is inverted into triangle ABC meaning the circumcenter of the medial triangle that is the nine point center of the intouch triangle the incenter and circumcenter of triangle ABC are collinear Any two non intersecting circles may be inverted into concentric circles Then the inversive distance usually denoted d is defined as the natural logarithm of the ratio of the radii of the two concentric circles In addition any two non intersecting circles may be inverted into congruent circles using circle of inversion centered at a point on the circle of antisimilitude The Peaucellier Lipkin linkage is a mechanical implementation of inversion in a circle It provides an exact solution to the important problem of converting between linear and circular motion Pole and polar edit Main article pole and polar nbsp The polar line q to a point Q with respect to a circle of radius r centered on the point O The point P is the inversion point of Q the polar is the line through P that is perpendicular to the line containing O P and Q If point R is the inverse of point P then the lines perpendicular to the line PR through one of the points is the polar of the other point the pole Poles and polars have several useful properties If a point P lies on a line l then the pole L of the line l lies on the polar p of point P If a point P moves along a line l its polar p rotates about the pole L of the line l If two tangent lines can be drawn from a pole to the circle then its polar passes through both tangent points If a point lies on the circle its polar is the tangent through this point If a point P lies on its own polar line then P is on the circle Each line has exactly one pole In three dimensions edit nbsp Inversion of a sphere at the red sphere nbsp Inversion of a spheroid at the red sphere nbsp Inversion of a hyperboloid of one sheetCircle inversion is generalizable to sphere inversion in three dimensions The inversion of a point P in 3D with respect to a reference sphere centered at a point O with radius R is a point P on the ray with direction OP such that O P O P O P O P R 2 displaystyle OP cdot OP prime OP cdot OP prime R 2 nbsp As with the 2D version a sphere inverts to a sphere except that if a sphere passes through the center O of the reference sphere then it inverts to a plane Any plane passing through O inverts to a sphere touching at O A circle that is the intersection of a sphere with a secant plane inverts into a circle except that if the circle passes through O it inverts into a line This reduces to the 2D case when the secant plane passes through O but is a true 3D phenomenon if the secant plane does not pass through O Examples in three dimensions edit Sphere edit The simplest surface besides a plane is the sphere The first picture shows a non trivial inversion the center of the sphere is not the center of inversion of a sphere together with two orthogonal intersecting pencils of circles Cylinder cone torus edit The inversion of a cylinder cone or torus results in a Dupin cyclide Spheroid edit A spheroid is a surface of revolution and contains a pencil of circles which is mapped onto a pencil of circles see picture The inverse image of a spheroid is a surface of degree 4 Hyperboloid of one sheet edit A hyperboloid of one sheet which is a surface of revolution contains a pencil of circles which is mapped onto a pencil of circles A hyperboloid of one sheet contains additional two pencils of lines which are mapped onto pencils of circles The picture shows one such line blue and its inversion Stereographic projection as the inversion of a sphere edit nbsp Stereographic projection as an inversion of a sphereA stereographic projection usually projects a sphere from a point N displaystyle N nbsp north pole of the sphere onto the tangent plane at the opposite point S displaystyle S nbsp south pole This mapping can be performed by an inversion of the sphere onto its tangent plane If the sphere to be projected has the equation x 2 y 2 z 2 z displaystyle x 2 y 2 z 2 z nbsp alternately written x 2 y 2 z 1 2 2 1 4 displaystyle x 2 y 2 z tfrac 1 2 2 tfrac 1 4 nbsp center 0 0 0 5 displaystyle 0 0 0 5 nbsp radius 0 5 displaystyle 0 5 nbsp green in the picture then it will be mapped by the inversion at the unit sphere red onto the tangent plane at point S 0 0 1 displaystyle S 0 0 1 nbsp The lines through the center of inversion point N displaystyle N nbsp are mapped onto themselves They are the projection lines of the stereographic projection 6 sphere coordinates edit The 6 sphere coordinates are a coordinate system for three dimensional space obtained by inverting the Cartesian coordinates Axiomatics and generalization editOne of the first to consider foundations of inversive geometry was Mario Pieri in 1911 and 1912 8 Edward Kasner wrote his thesis on Invariant theory of the inversion group 9 More recently the mathematical structure of inversive geometry has been interpreted as an incidence structure where the generalized circles are called blocks In incidence geometry any affine plane together with a single point at infinity forms a Mobius plane also known as an inversive plane The point at infinity is added to all the lines These Mobius planes can be described axiomatically and exist in both finite and infinite versions A model for the Mobius plane that comes from the Euclidean plane is the Riemann sphere Invariant editThe cross ratio between 4 points x y z w displaystyle x y z w nbsp is invariant under an inversion In particular if O is the centre of the inversion and r 1 displaystyle r 1 nbsp and r 2 displaystyle r 2 nbsp are distances to the ends of a line L then length of the line d displaystyle d nbsp will become d r 1 r 2 displaystyle d r 1 r 2 nbsp under an inversion with centre O The invariant is I x y w z x w y z displaystyle I frac x y w z x w y z nbsp Relation to Erlangen program editAccording to Coxeter 10 the transformation by inversion in circle was invented by L I Magnus in 1831 Since then this mapping has become an avenue to higher mathematics Through some steps of application of the circle inversion map a student of transformation geometry soon appreciates the significance of Felix Klein s Erlangen program an outgrowth of certain models of hyperbolic geometry Dilation edit The combination of two inversions in concentric circles results in a similarity homothetic transformation or dilation characterized by the ratio of the circle radii x R 2 x x 2 y T 2 y y 2 T R 2 x displaystyle x mapsto R 2 frac x x 2 y mapsto T 2 frac y y 2 left frac T R right 2 x nbsp Reciprocation edit When a point in the plane is interpreted as a complex number z x i y displaystyle z x iy nbsp with complex conjugate z x i y displaystyle bar z x iy nbsp then the reciprocal of z is 1 z z z 2 displaystyle frac 1 z frac bar z z 2 nbsp Consequently the algebraic form of the inversion in a unit circle is given by z w displaystyle z mapsto w nbsp where w 1 z 1 z displaystyle w frac 1 bar z overline left frac 1 z right nbsp Reciprocation is key in transformation theory as a generator of the Mobius group The other generators are translation and rotation both familiar through physical manipulations in the ambient 3 space Introduction of reciprocation dependent upon circle inversion is what produces the peculiar nature of Mobius geometry which is sometimes identified with inversive geometry of the Euclidean plane However inversive geometry is the larger study since it includes the raw inversion in a circle not yet made with conjugation into reciprocation Inversive geometry also includes the conjugation mapping Neither conjugation nor inversion in a circle are in the Mobius group since they are non conformal see below Mobius group elements are analytic functions of the whole plane and so are necessarily conformal Transforming circles into circles edit Consider in the complex plane the circle of radius r displaystyle r nbsp around the point a displaystyle a nbsp z a z a r 2 displaystyle z a z a r 2 nbsp where without loss of generality a R displaystyle a in mathbb R nbsp Using the definition of inversion w 1 z displaystyle w frac 1 z nbsp it is straightforward to show that w displaystyle w nbsp obeys the equation w w a a 2 r 2 w w a 2 a 2 r 2 2 r 2 a 2 r 2 2 displaystyle ww frac a a 2 r 2 w w frac a 2 a 2 r 2 2 frac r 2 a 2 r 2 2 nbsp and hence that w displaystyle w nbsp describes the circle of center a a 2 r 2 textstyle frac a a 2 r 2 nbsp and radius r a 2 r 2 textstyle frac r a 2 r 2 nbsp When a r displaystyle a to r nbsp the circle transforms into the line parallel to the imaginary axis w w 1 a displaystyle w w tfrac 1 a nbsp For a R displaystyle a not in mathbb R nbsp and a a r 2 displaystyle aa neq r 2 nbsp the result for w displaystyle w nbsp is w w a w a w a a r 2 a a a a r 2 2 r 2 a a r 2 2 w a a a r 2 w a a a r 2 r a a r 2 2 displaystyle begin aligned amp ww frac aw a w a a r 2 frac aa aa r 2 2 frac r 2 aa r 2 2 4pt Longleftrightarrow amp left w frac a aa r 2 right left w frac a a a r 2 right left frac r left aa r 2 right right 2 end aligned nbsp showing that the w displaystyle w nbsp describes the circle of center a a a r 2 textstyle frac a aa r 2 nbsp and radius r a a r 2 textstyle frac r left a a r 2 right nbsp When a a r 2 displaystyle a a to r 2 nbsp the equation for w displaystyle w nbsp becomes a w a w 1 2 Re a w 1 Re a Re w Im a Im w 1 2 Im w Re a Im a Re w 1 2 Im a displaystyle begin aligned amp aw a w 1 Longleftrightarrow 2 operatorname Re aw 1 Longleftrightarrow operatorname Re a operatorname Re w operatorname Im a operatorname Im w frac 1 2 4pt Longleftrightarrow amp operatorname Im w frac operatorname Re a operatorname Im a cdot operatorname Re w frac 1 2 cdot operatorname Im a end aligned nbsp Higher geometry edit As mentioned above zero the origin requires special consideration in the circle inversion mapping The approach is to adjoin a point at infinity designated or 1 0 In the complex number approach where reciprocation is the apparent operation this procedure leads to the complex projective line often called the Riemann sphere It was subspaces and subgroups of this space and group of mappings that were applied to produce early models of hyperbolic geometry by Beltrami Cayley and Klein Thus inversive geometry includes the ideas originated by Lobachevsky and Bolyai in their plane geometry Furthermore Felix Klein was so overcome by this facility of mappings to identify geometrical phenomena that he delivered a manifesto the Erlangen program in 1872 Since then many mathematicians reserve the term geometry for a space together with a group of mappings of that space The significant properties of figures in the geometry are those that are invariant under this group For example Smogorzhevsky 11 develops several theorems of inversive geometry before beginning Lobachevskian geometry In higher dimensions editIn a real n dimensional Euclidean space an inversion in the sphere of radius r centered at the point O o 1 o n displaystyle O o 1 o n nbsp is a map of an arbitrary point P p 1 p n displaystyle P p 1 p n nbsp found by inverting the length of the displacement vector P O displaystyle P O nbsp and multiplying by r 2 displaystyle r 2 nbsp P P O r 2 P O P O 2 p j p j o j r 2 p j o j k p k o k 2 displaystyle begin aligned P amp mapsto P O frac r 2 P O P O 2 5mu p j amp mapsto p j o j frac r 2 p j o j sum k p k o k 2 end aligned nbsp The transformation by inversion in hyperplanes or hyperspheres in En can be used to generate dilations translations or rotations Indeed two concentric hyperspheres used to produce successive inversions result in a dilation or homothety about the hyperspheres center When two parallel hyperplanes are used to produce successive reflections the result is a translation When two hyperplanes intersect in an n 2 flat successive reflections produce a rotation where every point of the n 2 flat is a fixed point of each reflection and thus of the composition Any combination of reflections translations and rotations is called an isometry Any combination of reflections dilations translations and rotations is a similarity All of these are conformal maps and in fact where the space has three or more dimensions the mappings generated by inversion are the only conformal mappings Liouville s theorem is a classical theorem of conformal geometry The addition of a point at infinity to the space obviates the distinction between hyperplane and hypersphere higher dimensional inversive geometry is frequently studied then in the presumed context of an n sphere as the base space The transformations of inversive geometry are often referred to as Mobius transformations Inversive geometry has been applied to the study of colorings or partitionings of an n sphere 12 Anticonformal mapping property editThe circle inversion map is anticonformal which means that at every point it preserves angles and reverses orientation a map is called conformal if it preserves oriented angles Algebraically a map is anticonformal if at every point the Jacobian is a scalar times an orthogonal matrix with negative determinant in two dimensions the Jacobian must be a scalar times a reflection at every point This means that if J is the Jacobian then J J T k I displaystyle J cdot J T kI nbsp and det J k displaystyle det J sqrt k nbsp Computing the Jacobian in the case zi xi x 2 where x 2 x12 xn2 gives JJT kI with k 1 x 4 and additionally det J is negative hence the inversive map is anticonformal In the complex plane the most obvious circle inversion map i e using the unit circle centered at the origin is the complex conjugate of the complex inverse map taking z to 1 z The complex analytic inverse map is conformal and its conjugate circle inversion is anticonformal In this case a homography is conformal while an anti homography is anticonformal Inversive geometry and hyperbolic geometry editThe n 1 sphere with equation x 1 2 x n 2 2 a 1 x 1 2 a n x n c 0 displaystyle x 1 2 cdots x n 2 2a 1 x 1 cdots 2a n x n c 0 nbsp will have a positive radius if a12 an2 is greater than c and on inversion gives the sphere x 1 2 x n 2 2 a 1 c x 1 2 a n c x n 1 c 0 displaystyle x 1 2 cdots x n 2 2 frac a 1 c x 1 cdots 2 frac a n c x n frac 1 c 0 nbsp Hence it will be invariant under inversion if and only if c 1 But this is the condition of being orthogonal to the unit sphere Hence we are led to consider the n 1 spheres with equation x 1 2 x n 2 2 a 1 x 1 2 a n x n 1 0 displaystyle x 1 2 cdots x n 2 2a 1 x 1 cdots 2a n x n 1 0 nbsp which are invariant under inversion orthogonal to the unit sphere and have centers outside of the sphere These together with the subspace hyperplanes separating hemispheres are the hypersurfaces of the Poincare disc model of hyperbolic geometry Since inversion in the unit sphere leaves the spheres orthogonal to it invariant the inversion maps the points inside the unit sphere to the outside and vice versa This is therefore true in general of orthogonal spheres and in particular inversion in one of the spheres orthogonal to the unit sphere maps the unit sphere to itself It also maps the interior of the unit sphere to itself with points outside the orthogonal sphere mapping inside and vice versa this defines the reflections of the Poincare disc model if we also include with them the reflections through the diameters separating hemispheres of the unit sphere These reflections generate the group of isometries of the model which tells us that the isometries are conformal Hence the angle between two curves in the model is the same as the angle between two curves in the hyperbolic space See also editCircle of antisimilitude Duality projective geometry Inverse curve Limiting point geometry Mobius transformation Projective geometry Soddy s hexlet Inversion of curves and surfaces German Notes edit Curves and Their Properties by Robert C Yates National Council of Teachers of Mathematics Inc Washington D C p 127 Geometrical inversion seems to be due to Jakob Steiner who indicated a knowledge of the subject in 1824 He was closely followed by Adolphe Quetelet 1825 who gave some examples Apparently independently discovered by Giusto Bellavitis in 1836 by Stubbs and Ingram in 1842 3 and by Lord Kelvin in 1845 Altshiller Court 1952 p 230 Kay 1969 p 264 a b Dutta Surajit 2014 A simple property of isosceles triangles with applications Forum Geometricorum 14 237 240 Kay 1969 p 265 Kay 1969 p 265 Kay 1969 p 269 M Pieri 1911 12 Nuovi principia di geometria della inversion Giornal di Matematiche di Battaglini 49 49 96 amp 50 106 140 Kasner E 1900 The Invariant Theory of the Inversion Group Geometry Upon a Quadric Surface Transactions of the American Mathematical Society 1 4 430 498 doi 10 1090 S0002 9947 1900 1500550 1 hdl 2027 miun abv0510 0001 001 JSTOR 1986367 Coxeter 1969 pp 77 95 A S Smogorzhevsky 1982 Lobachevskian Geometry Mir Publishers Moscow Joel C Gibbons amp Yushen Luo 2013 Colorings of the n sphere and inversive geometryReferences editAltshiller Court Nathan 1952 College Geometry An Introduction to the Modern Geometry of the Triangle and the Circle 2nd ed New York Barnes amp Noble LCCN 52 13504 Blair David E 2000 Inversion Theory and Conformal Mapping American Mathematical Society ISBN 0 8218 2636 0 Brannan David A Esplen Matthew F Gray Jeremy J 1998 Chapter 5 Inversive Geometry Geometry Cambridge Cambridge University Press pp 199 260 ISBN 0 521 59787 0 Coxeter H S M 1969 1961 Introduction to Geometry 2nd ed John Wiley amp Sons ISBN 0 471 18283 4 Hartshorne Robin 2000 Chapter 7 Non Euclidean Geometry Section 37 Circular Inversion Geometry Euclid and Beyond Springer ISBN 0 387 98650 2 Kay David C 1969 College Geometry New York Holt Rinehart and Winston LCCN 69 12075External links editInversion Reflection in a Circle at cut the knot Wilson Stother s inversive geometry page IMO Compendium Training Materials practice problems on how to use inversion for math olympiad problems Weisstein Eric W Inversion MathWorld Visual Dictionary of Special Plane Curves Xah Lee Retrieved from https en wikipedia org w index php title Inversive geometry amp oldid 1176914806 Inversion in a circle, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.