fbpx
Wikipedia

Medial triangle

In Euclidean geometry, the medial triangle or midpoint triangle of a triangle ABC is the triangle with vertices at the midpoints of the triangle's sides AB, AC, BC. It is the n = 3 case of the midpoint polygon of a polygon with n sides. The medial triangle is not the same thing as the median triangle, which is the triangle whose sides have the same lengths as the medians of ABC.

The red triangle is the medial triangle of the black. The endpoints of the red triangle coincide with the midpoints of the black triangle.

Each side of the medial triangle is called a midsegment (or midline). In general, a midsegment of a triangle is a line segment which joins the midpoints of two sides of the triangle. It is parallel to the third side and has a length equal to half the length of the third side.

Properties edit

 
M: circumcenter of ABC, orthocenter of DEF
N: incenter of ABC, Nagel point of DEF
S: centroid of ABC and DEF

The medial triangle can also be viewed as the image of triangle ABC transformed by a homothety centered at the centroid with ratio -1/2. Thus, the sides of the medial triangle are half and parallel to the corresponding sides of triangle ABC. Hence, the medial triangle is inversely similar and shares the same centroid and medians with triangle ABC. It also follows from this that the perimeter of the medial triangle equals the semiperimeter of triangle ABC, and that the area is one quarter of the area of triangle ABC. Furthermore, the four triangles that the original triangle is subdivided into by the medial triangle are all mutually congruent by SSS, so their areas are equal and thus the area of each is 1/4 the area of the original triangle.[1]: p.177 

The orthocenter of the medial triangle coincides with the circumcenter of triangle ABC. This fact provides a tool for proving collinearity of the circumcenter, centroid and orthocenter. The medial triangle is the pedal triangle of the circumcenter. The nine-point circle circumscribes the medial triangle, and so the nine-point center is the circumcenter of the medial triangle.

The Nagel point of the medial triangle is the incenter of its reference triangle.[2]: p.161, Thm.337 

A reference triangle's medial triangle is congruent to the triangle whose vertices are the midpoints between the reference triangle's orthocenter and its vertices.[2]: p.103, #206, p.108, #1 

The incenter of a triangle lies in its medial triangle.[3]: p.233, Lemma 1 

A point in the interior of a triangle is the center of an inellipse of the triangle if and only if the point lies in the interior of the medial triangle.[4]: p.139 

The medial triangle is the only inscribed triangle for which none of the other three interior triangles has smaller area.[5]: p. 137 

The reference triangle and its medial triangle are orthologic triangles.

Coordinates edit

Let   be the sidelengths of triangle   Trilinear coordinates for the vertices of the medial triangle   are given by

 

Anticomplementary triangle edit

If   is the medial triangle of   then   is the anticomplementary triangle or antimedial triangle of   The anticomplementary triangle of   is formed by three lines parallel to the sides of  : the parallel to   through   the parallel to   through   and the parallel to   through  

Trilinear coordinates for the vertices of the triangle   anticomplementary to   are given by

 

The name "anticomplementary triangle" corresponds to the fact that its vertices are the anticomplements of the vertices   of the reference triangle. The vertices of the medial triangle are the complements of  

See also edit

References edit

  1. ^ Posamentier, Alfred S., and Lehmann, Ingmar. The Secrets of Triangles, Prometheus Books, 2012.
  2. ^ a b Altshiller-Court, Nathan. College Geometry. Dover Publications, 2007.
  3. ^ Franzsen, William N.. "The distance from the incenter to the Euler line", Forum Geometricorum 11 (2011): 231–236.
  4. ^ Chakerian, G. D. "A Distorted View of Geometry." Ch. 7 in Mathematical Plums (R. Honsberger, editor). Washington, DC: Mathematical Association of America, 1979.
  5. ^ Torrejon, Ricardo M. "On an Erdos inscribed triangle inequality", Forum Geometricorum 5, 2005, 137–141. http://forumgeom.fau.edu/FG2005volume5/FG200519index.html

External links edit

  • Weisstein, Eric W. "Medial triangle". MathWorld.
  • Weisstein, Eric W. "Anticomplementary Triangle". MathWorld.

medial, triangle, euclidean, geometry, medial, triangle, midpoint, triangle, triangle, triangle, with, vertices, midpoints, triangle, sides, case, midpoint, polygon, polygon, with, sides, medial, triangle, same, thing, median, triangle, which, triangle, whose,. In Euclidean geometry the medial triangle or midpoint triangle of a triangle ABC is the triangle with vertices at the midpoints of the triangle s sides AB AC BC It is the n 3 case of the midpoint polygon of a polygon with n sides The medial triangle is not the same thing as the median triangle which is the triangle whose sides have the same lengths as the medians of ABC The red triangle is the medial triangle of the black The endpoints of the red triangle coincide with the midpoints of the black triangle Each side of the medial triangle is called a midsegment or midline In general a midsegment of a triangle is a line segment which joins the midpoints of two sides of the triangle It is parallel to the third side and has a length equal to half the length of the third side Contents 1 Properties 2 Coordinates 3 Anticomplementary triangle 4 See also 5 References 6 External linksProperties edit nbsp M circumcenter of ABC orthocenter of DEF N incenter of ABC Nagel point of DEF S centroid of ABC and DEFThe medial triangle can also be viewed as the image of triangle ABC transformed by a homothety centered at the centroid with ratio 1 2 Thus the sides of the medial triangle are half and parallel to the corresponding sides of triangle ABC Hence the medial triangle is inversely similar and shares the same centroid and medians with triangle ABC It also follows from this that the perimeter of the medial triangle equals the semiperimeter of triangle ABC and that the area is one quarter of the area of triangle ABC Furthermore the four triangles that the original triangle is subdivided into by the medial triangle are all mutually congruent by SSS so their areas are equal and thus the area of each is 1 4 the area of the original triangle 1 p 177 The orthocenter of the medial triangle coincides with the circumcenter of triangle ABC This fact provides a tool for proving collinearity of the circumcenter centroid and orthocenter The medial triangle is the pedal triangle of the circumcenter The nine point circle circumscribes the medial triangle and so the nine point center is the circumcenter of the medial triangle The Nagel point of the medial triangle is the incenter of its reference triangle 2 p 161 Thm 337 A reference triangle s medial triangle is congruent to the triangle whose vertices are the midpoints between the reference triangle s orthocenter and its vertices 2 p 103 206 p 108 1 The incenter of a triangle lies in its medial triangle 3 p 233 Lemma 1 A point in the interior of a triangle is the center of an inellipse of the triangle if and only if the point lies in the interior of the medial triangle 4 p 139 The medial triangle is the only inscribed triangle for which none of the other three interior triangles has smaller area 5 p 137 The reference triangle and its medial triangle are orthologic triangles Coordinates editLet a B C b C A c A B displaystyle a BC b CA c AB nbsp be the sidelengths of triangle A B C displaystyle triangle ABC nbsp Trilinear coordinates for the vertices of the medial triangle E F D displaystyle triangle EFD nbsp are given by E 0 1 b 1 c F 1 a 0 1 c D 1 a 1 b 0 displaystyle begin alignedat 3 E amp 0 amp amp frac 1 b amp amp frac 1 c 5mu F amp frac 1 a amp amp 0 amp amp frac 1 c 5mu D amp frac 1 a amp amp frac 1 b amp amp 0 end alignedat nbsp Anticomplementary triangle editIf E F D displaystyle triangle EFD nbsp is the medial triangle of A B C displaystyle triangle ABC nbsp then A B C displaystyle triangle ABC nbsp is the anticomplementary triangle or antimedial triangle of E F D displaystyle triangle EFD nbsp The anticomplementary triangle of A B C displaystyle triangle ABC nbsp is formed by three lines parallel to the sides of A B C displaystyle triangle ABC nbsp the parallel to A B displaystyle AB nbsp through C displaystyle C nbsp the parallel to A C displaystyle AC nbsp through B displaystyle B nbsp and the parallel to B C displaystyle BC nbsp through A displaystyle A nbsp Trilinear coordinates for the vertices of the triangle E F D displaystyle triangle E F D nbsp anticomplementary to A B C displaystyle triangle ABC nbsp are given by E 1 a 1 b 1 c F 1 a 1 b 1 c D 1 a 1 b 1 c displaystyle begin alignedat 3 E amp frac 1 a amp amp phantom frac 1 b amp amp phantom frac 1 c 5mu F amp phantom frac 1 a amp amp frac 1 b amp amp phantom frac 1 c 5mu D amp phantom frac 1 a amp amp phantom frac 1 b amp amp frac 1 c end alignedat nbsp The name anticomplementary triangle corresponds to the fact that its vertices are the anticomplements of the vertices A B C displaystyle A B C nbsp of the reference triangle The vertices of the medial triangle are the complements of A B C displaystyle A B C nbsp See also editMiddle hedgehog an analogous concept for more general convex setsReferences edit Posamentier Alfred S and Lehmann Ingmar The Secrets of Triangles Prometheus Books 2012 a b Altshiller Court Nathan College Geometry Dover Publications 2007 Franzsen William N The distance from the incenter to the Euler line Forum Geometricorum 11 2011 231 236 Chakerian G D A Distorted View of Geometry Ch 7 in Mathematical Plums R Honsberger editor Washington DC Mathematical Association of America 1979 Torrejon Ricardo M On an Erdos inscribed triangle inequality Forum Geometricorum 5 2005 137 141 http forumgeom fau edu FG2005volume5 FG200519index htmlExternal links editWeisstein Eric W Medial triangle MathWorld Weisstein Eric W Anticomplementary Triangle MathWorld Retrieved from https en wikipedia org w index php title Medial triangle amp oldid 1179392500, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.