fbpx
Wikipedia

Chi distribution

In probability theory and statistics, the chi distribution is a continuous probability distribution over the non-negative real line. It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. It is thus related to the chi-squared distribution by describing the distribution of the positive square roots of a variable obeying a chi-squared distribution.

chi
Probability density function

Cumulative distribution function

Parameters (degrees of freedom)
Support
PDF
CDF
Mean
Median
Mode for
Variance
Skewness
Ex. kurtosis
Entropy
MGF Complicated (see text)
CF Complicated (see text)

If are independent, normally distributed random variables with mean 0 and standard deviation 1, then the statistic

is distributed according to the chi distribution. The chi distribution has one positive integer parameter , which specifies the degrees of freedom (i.e. the number of random variables ).

The most familiar examples are the Rayleigh distribution (chi distribution with two degrees of freedom) and the Maxwell–Boltzmann distribution of the molecular speeds in an ideal gas (chi distribution with three degrees of freedom).

Definitions edit

Probability density function edit

The probability density function (pdf) of the chi-distribution is

 

where   is the gamma function.

Cumulative distribution function edit

The cumulative distribution function is given by:

 

where   is the regularized gamma function.

Generating functions edit

The moment-generating function is given by:

 

where   is Kummer's confluent hypergeometric function. The characteristic function is given by:

 

Properties edit

Moments edit

The raw moments are then given by:

 

where   is the gamma function. Thus the first few raw moments are:

 
 
 
 
 
 

where the rightmost expressions are derived using the recurrence relationship for the gamma function:

 

From these expressions we may derive the following relationships:

Mean:   which is close to   for large k.

Variance:   which approaches   as k increases.

Skewness:  

Kurtosis excess:  

Entropy edit

The entropy is given by:

 

where   is the polygamma function.

Large n approximation edit

We find the large n=k+1 approximation of the mean and variance of chi distribution. This has application e.g. in finding the distribution of standard deviation of a sample of normally distributed population, where n is the sample size.

The mean is then:

 

We use the Legendre duplication formula to write:

 ,

so that:

 

Using Stirling's approximation for Gamma function, we get the following expression for the mean:

 
 
 
 

And thus the variance is:

 

Related distributions edit

Various chi and chi-squared distributions
Name Statistic
chi-squared distribution  
noncentral chi-squared distribution  
chi distribution  
noncentral chi distribution  

See also edit

References edit

  • Martha L. Abell, James P. Braselton, John Arthur Rafter, John A. Rafter, Statistics with Mathematica (1999), 237f.
  • Jan W. Gooch, Encyclopedic Dictionary of Polymers vol. 1 (2010), Appendix E, p. 972.

External links edit

distribution, also, squared, distribution, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, . See also Chi squared distribution This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Chi distribution news newspapers books scholar JSTOR October 2009 template removal help In probability theory and statistics the chi distribution is a continuous probability distribution over the non negative real line It is the distribution of the positive square root of a sum of squared independent Gaussian random variables Equivalently it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin It is thus related to the chi squared distribution by describing the distribution of the positive square roots of a variable obeying a chi squared distribution chiProbability density functionCumulative distribution functionParametersk gt 0 displaystyle k gt 0 degrees of freedom Supportx 0 displaystyle x in 0 infty PDF1 2 k 2 1 G k 2 x k 1 e x 2 2 displaystyle frac 1 2 k 2 1 Gamma k 2 x k 1 e x 2 2 CDFP k 2 x 2 2 displaystyle P k 2 x 2 2 Meanm 2 G k 1 2 G k 2 displaystyle mu sqrt 2 frac Gamma k 1 2 Gamma k 2 Median k 1 2 9 k 3 displaystyle approx sqrt k bigg 1 frac 2 9k bigg 3 Modek 1 displaystyle sqrt k 1 for k 1 displaystyle k geq 1 Variances 2 k m 2 displaystyle sigma 2 k mu 2 Skewnessg 1 m s 3 1 2 s 2 displaystyle gamma 1 frac mu sigma 3 1 2 sigma 2 Ex kurtosis2 s 2 1 m s g 1 s 2 displaystyle frac 2 sigma 2 1 mu sigma gamma 1 sigma 2 Entropyln G k 2 displaystyle ln Gamma k 2 1 2 k ln 2 k 1 ps 0 k 2 displaystyle frac 1 2 k ln 2 k 1 psi 0 k 2 MGFComplicated see text CFComplicated see text If Z 1 Z k displaystyle Z 1 ldots Z k are k displaystyle k independent normally distributed random variables with mean 0 and standard deviation 1 then the statistic Y i 1 k Z i 2 displaystyle Y sqrt sum i 1 k Z i 2 is distributed according to the chi distribution The chi distribution has one positive integer parameter k displaystyle k which specifies the degrees of freedom i e the number of random variables Z i displaystyle Z i The most familiar examples are the Rayleigh distribution chi distribution with two degrees of freedom and the Maxwell Boltzmann distribution of the molecular speeds in an ideal gas chi distribution with three degrees of freedom Contents 1 Definitions 1 1 Probability density function 1 2 Cumulative distribution function 1 3 Generating functions 2 Properties 2 1 Moments 2 2 Entropy 2 3 Large n approximation 3 Related distributions 4 See also 5 References 6 External linksDefinitions editProbability density function edit The probability density function pdf of the chi distribution is f x k x k 1 e x 2 2 2 k 2 1 G k 2 x 0 0 otherwise displaystyle f x k begin cases dfrac x k 1 e x 2 2 2 k 2 1 Gamma left frac k 2 right amp x geq 0 0 amp text otherwise end cases nbsp where G z displaystyle Gamma z nbsp is the gamma function Cumulative distribution function edit The cumulative distribution function is given by F x k P k 2 x 2 2 displaystyle F x k P k 2 x 2 2 nbsp where P k x displaystyle P k x nbsp is the regularized gamma function Generating functions edit The moment generating function is given by M t M k 2 1 2 t 2 2 t 2 G k 1 2 G k 2 M k 1 2 3 2 t 2 2 displaystyle M t M left frac k 2 frac 1 2 frac t 2 2 right t sqrt 2 frac Gamma k 1 2 Gamma k 2 M left frac k 1 2 frac 3 2 frac t 2 2 right nbsp where M a b z displaystyle M a b z nbsp is Kummer s confluent hypergeometric function The characteristic function is given by f t k M k 2 1 2 t 2 2 i t 2 G k 1 2 G k 2 M k 1 2 3 2 t 2 2 displaystyle varphi t k M left frac k 2 frac 1 2 frac t 2 2 right it sqrt 2 frac Gamma k 1 2 Gamma k 2 M left frac k 1 2 frac 3 2 frac t 2 2 right nbsp Properties editMoments edit The raw moments are then given by m j 0 f x k x j d x 2 j 2 G 1 2 k j G 1 2 k displaystyle mu j int 0 infty f x k x j mathrm d x 2 j 2 frac Gamma left tfrac 1 2 k j right Gamma left tfrac 1 2 k right nbsp where G z displaystyle Gamma z nbsp is the gamma function Thus the first few raw moments are m 1 2 G 1 2 k 1 G 1 2 k displaystyle mu 1 sqrt 2 frac Gamma left tfrac 1 2 k 1 right Gamma left tfrac 1 2 k right nbsp m 2 k displaystyle mu 2 k nbsp m 3 2 2 G 1 2 k 3 G 1 2 k k 1 m 1 displaystyle mu 3 2 sqrt 2 frac Gamma left tfrac 1 2 k 3 right Gamma left tfrac 1 2 k right k 1 mu 1 nbsp m 4 k k 2 displaystyle mu 4 k k 2 nbsp m 5 4 2 G 1 2 k 5 G 1 2 k k 1 k 3 m 1 displaystyle mu 5 4 sqrt 2 frac Gamma left tfrac 1 2 k 5 right Gamma left tfrac 1 2 k right k 1 k 3 mu 1 nbsp m 6 k k 2 k 4 displaystyle mu 6 k k 2 k 4 nbsp where the rightmost expressions are derived using the recurrence relationship for the gamma function G x 1 x G x displaystyle Gamma x 1 x Gamma x nbsp From these expressions we may derive the following relationships Mean m 2 G 1 2 k 1 G 1 2 k displaystyle mu sqrt 2 frac Gamma left tfrac 1 2 k 1 right Gamma left tfrac 1 2 k right nbsp which is close to k 1 2 displaystyle sqrt k tfrac 1 2 nbsp for large k Variance V k m 2 displaystyle V k mu 2 nbsp which approaches 1 2 displaystyle tfrac 1 2 nbsp as k increases Skewness g 1 m s 3 1 2 s 2 displaystyle gamma 1 frac mu sigma 3 left 1 2 sigma 2 right nbsp Kurtosis excess g 2 2 s 2 1 m s g 1 s 2 displaystyle gamma 2 frac 2 sigma 2 left 1 mu sigma gamma 1 sigma 2 right nbsp Entropy edit The entropy is given by S ln G k 2 1 2 k ln 2 k 1 ps 0 k 2 displaystyle S ln Gamma k 2 frac 1 2 k ln 2 k 1 psi 0 k 2 nbsp where ps 0 z displaystyle psi 0 z nbsp is the polygamma function Large n approximation edit We find the large n k 1 approximation of the mean and variance of chi distribution This has application e g in finding the distribution of standard deviation of a sample of normally distributed population where n is the sample size The mean is then m 2 G n 2 G n 1 2 displaystyle mu sqrt 2 frac Gamma n 2 Gamma n 1 2 nbsp We use the Legendre duplication formula to write 2 n 2 G n 1 2 G n 2 p G n 1 displaystyle 2 n 2 Gamma n 1 2 cdot Gamma n 2 sqrt pi Gamma n 1 nbsp so that m 2 p 2 n 2 G n 2 2 G n 1 displaystyle mu sqrt 2 pi 2 n 2 frac Gamma n 2 2 Gamma n 1 nbsp Using Stirling s approximation for Gamma function we get the following expression for the mean m 2 p 2 n 2 2 p n 2 1 n 2 1 1 2 e n 2 1 1 1 12 n 2 1 O 1 n 2 2 2 p n 2 n 2 1 2 e n 2 1 1 12 n 2 O 1 n 2 displaystyle mu sqrt 2 pi 2 n 2 frac left sqrt 2 pi n 2 1 n 2 1 1 2 e n 2 1 cdot 1 frac 1 12 n 2 1 O frac 1 n 2 right 2 sqrt 2 pi n 2 n 2 1 2 e n 2 cdot 1 frac 1 12 n 2 O frac 1 n 2 nbsp n 2 1 2 1 1 4 n O 1 n 2 n 1 1 1 n 1 1 2 1 1 4 n O 1 n 2 displaystyle n 2 1 2 cdot left 1 frac 1 4n O frac 1 n 2 right sqrt n 1 1 frac 1 n 1 1 2 cdot left 1 frac 1 4n O frac 1 n 2 right nbsp n 1 1 1 2 n O 1 n 2 1 1 4 n O 1 n 2 displaystyle sqrt n 1 cdot left 1 frac 1 2n O frac 1 n 2 right cdot left 1 frac 1 4n O frac 1 n 2 right nbsp n 1 1 1 4 n O 1 n 2 displaystyle sqrt n 1 cdot left 1 frac 1 4n O frac 1 n 2 right nbsp dd And thus the variance is V n 1 m 2 n 1 1 2 n 1 O 1 n displaystyle V n 1 mu 2 n 1 cdot frac 1 2n cdot left 1 O frac 1 n right nbsp Related distributions editIf X x k displaystyle X sim chi k nbsp then X 2 x k 2 displaystyle X 2 sim chi k 2 nbsp chi squared distribution lim k x k m k s k d N 0 1 displaystyle lim k to infty tfrac chi k mu k sigma k xrightarrow d N 0 1 nbsp Normal distribution If X N 0 1 displaystyle X sim N 0 1 nbsp then X x 1 displaystyle X sim chi 1 nbsp If X x 1 displaystyle X sim chi 1 nbsp then s X H N s displaystyle sigma X sim HN sigma nbsp half normal distribution for any s gt 0 displaystyle sigma gt 0 nbsp x 2 R a y l e i g h 1 displaystyle chi 2 sim mathrm Rayleigh 1 nbsp Rayleigh distribution x 3 M a x w e l l 1 displaystyle chi 3 sim mathrm Maxwell 1 nbsp Maxwell distribution N i 1 k 0 1 2 x k displaystyle boldsymbol N i 1 ldots k 0 1 2 sim chi k nbsp the Euclidean norm of a standard normal random vector of with k displaystyle k nbsp dimensions is distributed according to a chi distribution with k displaystyle k nbsp degrees of freedom chi distribution is a special case of the generalized gamma distribution or the Nakagami distribution or the noncentral chi distribution The mean of the chi distribution scaled by the square root of n 1 displaystyle n 1 nbsp yields the correction factor in the unbiased estimation of the standard deviation of the normal distribution Various chi and chi squared distributions Name Statisticchi squared distribution i 1 k X i m i s i 2 displaystyle sum i 1 k left frac X i mu i sigma i right 2 nbsp noncentral chi squared distribution i 1 k X i s i 2 displaystyle sum i 1 k left frac X i sigma i right 2 nbsp chi distribution i 1 k X i m i s i 2 displaystyle sqrt sum i 1 k left frac X i mu i sigma i right 2 nbsp noncentral chi distribution i 1 k X i s i 2 displaystyle sqrt sum i 1 k left frac X i sigma i right 2 nbsp See also editNakagami distributionReferences editMartha L Abell James P Braselton John Arthur Rafter John A Rafter Statistics with Mathematica 1999 237f Jan W Gooch Encyclopedic Dictionary of Polymers vol 1 2010 Appendix E p 972 External links edithttp mathworld wolfram com ChiDistribution html Retrieved from https en wikipedia org w index php title Chi distribution amp oldid 1178603983, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.