fbpx
Wikipedia

Minkowski–Bouligand dimension

In fractal geometry, the Minkowski–Bouligand dimension, also known as Minkowski dimension or box-counting dimension, is a way of determining the fractal dimension of a set S in a Euclidean space Rn, or more generally in a metric space (Xd). It is named after the Polish mathematician Hermann Minkowski and the French mathematician Georges Bouligand.

Estimating the box-counting dimension of the coast of Great Britain

To calculate this dimension for a fractal S, imagine this fractal lying on an evenly spaced grid and count how many boxes are required to cover the set. The box-counting dimension is calculated by seeing how this number changes as we make the grid finer by applying a box-counting algorithm.

Suppose that N(ε) is the number of boxes of side length ε required to cover the set. Then the box-counting dimension is defined as

Roughly speaking, this means that the dimension is the exponent d such that N(1/n) ≈ C nd, which is what one would expect in the trivial case where S is a smooth space (a manifold) of integer dimension d.

If the above limit does not exist, one may still take the limit superior and limit inferior, which respectively define the upper box dimension and lower box dimension. The upper box dimension is sometimes called the entropy dimension, Kolmogorov dimension, Kolmogorov capacity, limit capacity or upper Minkowski dimension, while the lower box dimension is also called the lower Minkowski dimension.

The upper and lower box dimensions are strongly related to the more popular Hausdorff dimension. Only in very special applications is it important to distinguish between the three (see below). Yet another measure of fractal dimension is the correlation dimension.

Alternative definitions

 
Examples of ball packing, ball covering, and box covering

It is possible to define the box dimensions using balls, with either the covering number or the packing number. The covering number   is the minimal number of open balls of radius ε required to cover the fractal, or in other words, such that their union contains the fractal. We can also consider the intrinsic covering number  , which is defined the same way but with the additional requirement that the centers of the open balls lie inside the set S. The packing number   is the maximal number of disjoint open balls of radius ε one can situate such that their centers would be inside the fractal. While N, Ncovering, N'covering and Npacking are not exactly identical, they are closely related and give rise to identical definitions of the upper and lower box dimensions. This is easy to prove once the following inequalities are proven:

 

These, in turn, follow with a little effort from the triangle inequality.

The advantage of using balls rather than squares is that this definition generalizes to any metric space. In other words, the box definition is extrinsic — one assumes the fractal space S is contained in a Euclidean space, and defines boxes according to the external geometry of the containing space. However, the dimension of S should be intrinsic, independent of the environment into which S is placed, and the ball definition can be formulated intrinsically. One defines an internal ball as all points of S within a certain distance of a chosen center, and one counts such balls to get the dimension. (More precisely, the Ncovering definition is extrinsic, but the other two are intrinsic.)

The advantage of using boxes is that in many cases N(ε) may be easily calculated explicitly, and that for boxes the covering and packing numbers (defined in an equivalent way) are equal.

The logarithm of the packing and covering numbers are sometimes referred to as entropy numbers and are somewhat analogous to the concepts of thermodynamic entropy and information-theoretic entropy, in that they measure the amount of "disorder" in the metric space or fractal at scale ε and also measure how many bits or digits one would need to specify a point of the space to accuracy ε.

Another equivalent (extrinsic) definition for the box-counting dimension is given by the formula

 

where for each r > 0, the set   is defined to be the r-neighborhood of S, i.e. the set of all points in   that are at distance less than r from S (or equivalently,   is the union of all the open balls of radius r centered at a point in S).

Properties

Both box dimensions are finitely additive, i.e. if {A1, ..., An} is a finite collection of sets, then

 

However, they are not countably additive, i.e. this equality does not hold for an infinite sequence of sets. For example, the box dimension of a single point is 0, but the box dimension of the collection of rational numbers in the interval [0, 1] has dimension 1. The Hausdorff measure by comparison, is countably additive.

An interesting property of the upper box dimension not shared with either the lower box dimension or the Hausdorff dimension is the connection to set addition. If A and B are two sets in a Euclidean space, then A + B is formed by taking all the pairs of points ab where a is from A and b is from B and adding a + b. One has

 

Relations to the Hausdorff dimension

The box-counting dimension is one of a number of definitions for dimension that can be applied to fractals. For many well behaved fractals all these dimensions are equal; in particular, these dimensions coincide whenever the fractal satisfies the open set condition (OSC).[1] For example, the Hausdorff dimension, lower box dimension, and upper box dimension of the Cantor set are all equal to log(2)/log(3). However, the definitions are not equivalent.

The box dimensions and the Hausdorff dimension are related by the inequality

 

In general, both inequalities may be strict. The upper box dimension may be bigger than the lower box dimension if the fractal has different behaviour in different scales. For example, examine the set of numbers in the interval [0, 1] satisfying the condition

for any n, all the digits between the 22n-th digit and the (22n+1 − 1)-th digit are zero.

The digits in the "odd place-intervals", i.e. between digits 22n+1 and 22n+2 − 1 are not restricted and may take any value. This fractal has upper box dimension 2/3 and lower box dimension 1/3, a fact which may be easily verified by calculating N(ε) for   and noting that their values behave differently for n even and odd.

Another example: the set of rational numbers  , a countable set with  , has   because its closure,  , has dimension 1. In fact,

 

These examples show that adding a countable set can change box dimension, demonstrating a kind of instability of this dimension.

See also

References

  1. ^ Wagon, Stan (2010). Mathematica in Action: Problem Solving Through Visualization and Computation. Springer-Verlag. p. 214. ISBN 0-387-75477-6.

External links

  • FrakOut!: an OSS application for calculating the fractal dimension of a shape using the box counting method (Does not automatically place the boxes for you).
  • FracLac: online user guide and software ImageJ and FracLac box counting plugin; free user-friendly open source software for digital image analysis in biology

minkowski, bouligand, dimension, fractal, geometry, also, known, minkowski, dimension, counting, dimension, determining, fractal, dimension, euclidean, space, more, generally, metric, space, named, after, polish, mathematician, hermann, minkowski, french, math. In fractal geometry the Minkowski Bouligand dimension also known as Minkowski dimension or box counting dimension is a way of determining the fractal dimension of a set S in a Euclidean space Rn or more generally in a metric space X d It is named after the Polish mathematician Hermann Minkowski and the French mathematician Georges Bouligand Estimating the box counting dimension of the coast of Great Britain To calculate this dimension for a fractal S imagine this fractal lying on an evenly spaced grid and count how many boxes are required to cover the set The box counting dimension is calculated by seeing how this number changes as we make the grid finer by applying a box counting algorithm Suppose that N e is the number of boxes of side length e required to cover the set Then the box counting dimension is defined as dim box S lim e 0 log N e log 1 e displaystyle dim text box S lim varepsilon to 0 frac log N varepsilon log 1 varepsilon Roughly speaking this means that the dimension is the exponent d such that N 1 n C nd which is what one would expect in the trivial case where S is a smooth space a manifold of integer dimension d If the above limit does not exist one may still take the limit superior and limit inferior which respectively define the upper box dimension and lower box dimension The upper box dimension is sometimes called the entropy dimension Kolmogorov dimension Kolmogorov capacity limit capacity or upper Minkowski dimension while the lower box dimension is also called the lower Minkowski dimension The upper and lower box dimensions are strongly related to the more popular Hausdorff dimension Only in very special applications is it important to distinguish between the three see below Yet another measure of fractal dimension is the correlation dimension Contents 1 Alternative definitions 2 Properties 3 Relations to the Hausdorff dimension 4 See also 5 References 6 External linksAlternative definitions Edit Examples of ball packing ball covering and box covering It is possible to define the box dimensions using balls with either the covering number or the packing number The covering number N covering e displaystyle N text covering varepsilon is the minimal number of open balls of radius e required to cover the fractal or in other words such that their union contains the fractal We can also consider the intrinsic covering number N covering e displaystyle N text covering varepsilon which is defined the same way but with the additional requirement that the centers of the open balls lie inside the set S The packing number N packing e displaystyle N text packing varepsilon is the maximal number of disjoint open balls of radius e one can situate such that their centers would be inside the fractal While N Ncovering N covering and Npacking are not exactly identical they are closely related and give rise to identical definitions of the upper and lower box dimensions This is easy to prove once the following inequalities are proven N packing e N covering e N covering e 2 displaystyle N text packing varepsilon leq N text covering varepsilon leq N text covering varepsilon 2 These in turn follow with a little effort from the triangle inequality The advantage of using balls rather than squares is that this definition generalizes to any metric space In other words the box definition is extrinsic one assumes the fractal space S is contained in a Euclidean space and defines boxes according to the external geometry of the containing space However the dimension of S should be intrinsic independent of the environment into which S is placed and the ball definition can be formulated intrinsically One defines an internal ball as all points of S within a certain distance of a chosen center and one counts such balls to get the dimension More precisely the Ncovering definition is extrinsic but the other two are intrinsic The advantage of using boxes is that in many cases N e may be easily calculated explicitly and that for boxes the covering and packing numbers defined in an equivalent way are equal The logarithm of the packing and covering numbers are sometimes referred to as entropy numbers and are somewhat analogous to the concepts of thermodynamic entropy and information theoretic entropy in that they measure the amount of disorder in the metric space or fractal at scale e and also measure how many bits or digits one would need to specify a point of the space to accuracy e Another equivalent extrinsic definition for the box counting dimension is given by the formula dim box S n lim r 0 log vol S r log r displaystyle dim text box S n lim r to 0 frac log text vol S r log r where for each r gt 0 the set S r displaystyle S r is defined to be the r neighborhood of S i e the set of all points in R n displaystyle R n that are at distance less than r from S or equivalently S r displaystyle S r is the union of all the open balls of radius r centered at a point in S Properties EditBoth box dimensions are finitely additive i e if A1 An is a finite collection of sets then dim A 1 A n max dim A 1 dim A n displaystyle dim A 1 cup dotsb cup A n max dim A 1 dots dim A n However they are not countably additive i e this equality does not hold for an infinite sequence of sets For example the box dimension of a single point is 0 but the box dimension of the collection of rational numbers in the interval 0 1 has dimension 1 The Hausdorff measure by comparison is countably additive An interesting property of the upper box dimension not shared with either the lower box dimension or the Hausdorff dimension is the connection to set addition If A and B are two sets in a Euclidean space then A B is formed by taking all the pairs of points a b where a is from A and b is from B and adding a b One has dim upper box A B dim upper box A dim upper box B displaystyle dim text upper box A B leq dim text upper box A dim text upper box B Relations to the Hausdorff dimension EditThe box counting dimension is one of a number of definitions for dimension that can be applied to fractals For many well behaved fractals all these dimensions are equal in particular these dimensions coincide whenever the fractal satisfies the open set condition OSC 1 For example the Hausdorff dimension lower box dimension and upper box dimension of the Cantor set are all equal to log 2 log 3 However the definitions are not equivalent The box dimensions and the Hausdorff dimension are related by the inequality dim Haus dim lower box dim upper box displaystyle dim text Haus leq dim text lower box leq dim text upper box In general both inequalities may be strict The upper box dimension may be bigger than the lower box dimension if the fractal has different behaviour in different scales For example examine the set of numbers in the interval 0 1 satisfying the condition for any n all the digits between the 22n th digit and the 22n 1 1 th digit are zero The digits in the odd place intervals i e between digits 22n 1 and 22n 2 1 are not restricted and may take any value This fractal has upper box dimension 2 3 and lower box dimension 1 3 a fact which may be easily verified by calculating N e for e 10 2 n displaystyle varepsilon 10 2 n and noting that their values behave differently for n even and odd Another example the set of rational numbers Q displaystyle mathbb Q a countable set with dim Haus 0 displaystyle dim text Haus 0 has dim box 1 displaystyle dim text box 1 because its closure R displaystyle mathbb R has dimension 1 In fact dim box 0 1 1 2 1 3 1 4 1 2 displaystyle dim text box left 0 1 frac 1 2 frac 1 3 frac 1 4 ldots right frac 1 2 These examples show that adding a countable set can change box dimension demonstrating a kind of instability of this dimension See also EditCorrelation dimension Packing dimension Uncertainty exponent Weyl Berry conjecture LacunarityReferences Edit Wagon Stan 2010 Mathematica in Action Problem Solving Through Visualization and Computation Springer Verlag p 214 ISBN 0 387 75477 6 Falconer Kenneth 1990 Fractal geometry mathematical foundations and applications Chichester John Wiley pp 38 47 ISBN 0 471 92287 0 Zbl 0689 28003 Weisstein Eric W Minkowski Bouligand Dimension MathWorld External links EditFrakOut an OSS application for calculating the fractal dimension of a shape using the box counting method Does not automatically place the boxes for you FracLac online user guide and software ImageJ and FracLac box counting plugin free user friendly open source software for digital image analysis in biology Retrieved from https en wikipedia org w index php title Minkowski Bouligand dimension amp oldid 1092596906, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.